
 

PUBLISHED VERSION  

 

 

Seth Westra, Mark Thyer, Michael Leonard, Dmitri Kavetski, and Martin Lambert 
A strategy for diagnosing and interpreting hydrological model nonstationarity 
Water Resources Research, 2014; 50(6):5090-5113 
 
 
© 2014. American Geophysical Union. All Rights Reserved. 
 
 
DOI: 10.1002/2013WR014719 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/84096  

 

 

PERMISSIONS 

 

http://publications.agu.org/author-resource-center/usage-permissions/ 
 

Permission to Deposit an Article in an Institutional Repository 

Adopted by Council 13 December 2009 

 

AGU allows authors to deposit their journal articles if the version is the final published citable version of 
record, the AGU copyright statement is clearly visible on the posting, and the posting is made 6 months 
after official publication by the AGU. 

 

 

21 August, 2015 

http://dx.doi.org/10.1002/2013WR014719
http://hdl.handle.net/2440/84096
http://publications.agu.org/author-resource-center/usage-permissions/


RESEARCH ARTICLE
10.1002/2013WR014719

A strategy for diagnosing and interpreting hydrological model
nonstationarity
Seth Westra1, Mark Thyer1, Michael Leonard1, Dmitri Kavetski1, and Martin Lambert1

1School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide, South Australia, Australia

Abstract This paper presents a strategy for diagnosing and interpreting hydrological nonstationarity,
aiming to improve hydrological models and their predictive ability under changing hydroclimatic condi-
tions. The strategy consists of four elements: (i) detecting potential systematic errors in the calibration data;
(ii) hypothesizing a set of ‘‘nonstationary’’ parameterizations of existing hydrological model structures,
where one or more parameters vary in time as functions of selected covariates; (iii) trialing alternative sta-
tionary model structures to assess whether parameter nonstationarity can be reduced by modifying the
model structure; and (iv) selecting one or more models for prediction. The Scott Creek catchment in South
Australia and the lumped hydrological model GR4J are used to illustrate the strategy. Streamflow predic-
tions improve significantly when the GR4J parameter describing the maximum capacity of the production
store is allowed to vary in time as a combined function of: (i) an annual sinusoid; (ii) the previous 365 day
rainfall and potential evapotranspiration; and (iii) a linear trend. This improvement provides strong evidence
of model nonstationarity. Based on a range of hydrologically oriented diagnostics such as flow-duration
curves, the GR4J model structure was modified by introducing an additional calibration parameter that con-
trols recession behavior and by making actual evapotranspiration dependent only on catchment storage.
Model comparison using an information-theoretic measure (the Akaike Information Criterion) and several
hydrologically oriented diagnostics shows that the GR4J modifications clearly improve predictive perform-
ance in Scott Creek catchment. Based on a comparison of 22 versions of GR4J with different representations
of nonstationarity and other modifications, the model selection approach applied in the exploratory period
(used for parameter estimation) correctly identifies models that perform well in a much drier independent
confirmatory period.

1. Introduction

The development of hydrological models that produce credible predictions under a changing climate is
one of the most challenging aspects of hydrological modeling [Klemes, 1986]. This challenge is particularly
pertinent when models are extrapolated outside the range of observed data used for parameter estimation,
which is often necessary when looking at long lead times or high warming scenarios [Milly et al., 2008].
Under such conditions, model evaluation and selection require methods that make the best use of available
historical data to assess the model’s extrapolative ability [Anderson and Woessner, 1992; Oreskes et al., 1994].

One of the most stringent tests of hydrological model credibility is ‘‘differential split-sample testing’’ [Klemes,
1986]. In these tests, the performance of a calibrated model is evaluated on one or more periods that are cli-
matologically different from the period used for parameter estimation; for example, a model calibrated
under ‘‘wet’’ conditions can be tested on a ‘‘dry’’ period, and vice versa. For a model capable of such extrapo-
lation, parameter estimates and predictive performance should remain similar across the two periods. How-
ever, numerous studies concluded that parameter estimates depended on the calibration period [Gan and
Burges, 1990; Wagener et al., 2003; Choi and Beven, 2007; Le Lay et al., 2007; Marshall et al., 2007; Wu and
Johnston, 2007; Vaze et al., 2010; Merz et al., 2011; Zhang et al., 2011; Coron et al., 2012; Seiller et al., 2012].
Furthermore, seasonal variations of hydrological parameters have been reported by Ye et al. [1997] and Paik
et al. [2005].

We define the term ‘‘hydrological model nonstationarity’’ as the situation where hydrological model param-
eters vary in time, and thus depend on the period of record used for their estimation. Such nonstationarity
can lead to poor predictions, especially when the model is applied to a climatologically different period
[Gharari et al., 2013]. For example, Coron et al. [2012] found that models calibrated to a period with a wetter
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climate overestimated the mean annual runoff when applied to a drier period, and vice versa. The severity
of the nonstationarity problem and its implications on model prediction depend on multiple factors, includ-
ing: (i) the length and variability of the historical record; (ii) the magnitude of future climate change; and (iii)
the hydrological model [e.g., Brigode et al., 2012].

There are many possible reasons for hydrological model nonstationary, including systematic data errors, weak-
nesses in calibration procedures, numerical artefacts, model structural deficiencies, and others [Beven and
Binley, 1992; Wagener et al., 2003; Clark et al., 2011; Kavetski et al., 2011]. For example, streamflow records can
become biased due to siltation of weirs and changes in the channel flow geometry [Guerrero et al., 2012]; rain-
fall records can be affected by changes in the location and quality of rain gauges [Molini et al., 2005], and so
forth. Similarly, poor choice of objective function can cause nonstationarity in the calibrated model parame-
ters. For example, Thyer et al. [2009] showed that calibration to different time periods using a standard least
squares objective function produced distinctly different estimates of hydrological parameters; these discrep-
ancies were substantially reduced when a weighed least squares objective function was used.

A fundamental concern with hydrological nonstationarity is the possible implication that one or more impor-
tant physical processes are not adequately represented [Lin and Beck, 2007; de Vos et al., 2010], or that
changes in the catchment (e.g., land use changes) are occurring but are not explicitly represented by the
model. We therefore argue that, provided that robust data, numerical methods and calibration procedures are
used, hydrological model nonstationarity must be caused by the approximate nature of the hydrological mod-
els [Anderson and Woessner, 1992]. From this perspective, models with time-invariant parameters are more
likely to be reliably representing the key physical processes. This is particularly important when predicting
catchment response to future climatic forcings, as accurate process representation is critical when extrapolat-
ing a model outside of its calibrated range. Stationarity of model parameters can therefore be viewed as a
necessary condition for the hydrological model to provide credible projections under extrapolation, and tests
for stationarity can be useful as part of model selection for climate impact studies [Seiller et al., 2012].

A pragmatic approach to detect and mitigate nonstationarity is to calibrate the model to one or more historical
periods that are analogous to the expected future hydroclimatic conditions [e.g., Vaze et al., 2010]. Provided
such historical analogues are available, this approach reduces the extent of model extrapolation, and thus may
be adequate for short future time horizons and small levels of climate change. An obvious limitation is that there
may not be any historical periods that are sufficiently representative of the projected future conditions. This limi-
tation can be particularly significant when it is recognized that hydroclimatic changes are expressed not only in
terms of changes in annual average precipitation and potential evapotranspiration, but, just as importantly, in
terms of the seasonality, intermittency, and intensity of future precipitation events [Bates et al., 2008; Westra
et al., 2013]. Furthermore, by maximizing the ‘‘similarity’’ of the historical climate sequences to the projected
future climate, it becomes necessary to use only relatively short portions of the historical record for model cali-
bration, so that potentially valuable information on catchment behavior is ignored during parameter estimation.
This is a type of bias-variance trade-off: to maximize the similarity between the calibration period and expected
future climate (and hence reduce parameter bias), we need to use shorter periods of the historical record as the
basis for calibration (which will usually increase parameter variance) [Brigode et al., 2012]. Finally, this approach
does not characterize and/or resolve the cause of suspected model nonstationarity.

This paper develops a strategy to diagnose nonstationarity in hydrological model parameters and identify
possible causes that require further investigation. The major distinct elements of the strategy are the char-
acterization of parameter nonstationarity by representing hydrological model parameter(s) as a function of
a set of time-varying covariates, the trialing of alternative model structures, and the assessment of empirical
support for each proposed description of nonstationarity and/or alternative model structures using multiple
model selection criteria. Compared to the existing approach of separately calibrating the hydrological
model to different historical periods, the proposed approach has the following advantages:

1. A larger portion of the historical record is used for parameter estimation. This avoids the potential loss of
information when discarding large portions of observed data.

2. By representing selected hydrological model parameters as continuous functions of selected covariates, it
becomes possible to at least tentatively extrapolate these parameters to different hydroclimatic regimes (note
that the difficulties of model evaluation under extrapolation described by Klemes [1986] still apply). Such extrapola-
tion is not possible when the parameters are kept constant at values calibrated to a subset of the historical record.
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3. The use of model selection techniques such as split-sample testing and/or information-theoretic
approaches allows an assessment of whether the additional model complexity associated with the descrip-
tion of parameter nonstationarity produces a significant improvement in the model’s predictive ability. In
contrast, it is not clear how to evaluate the trade-off between model fit, complexity and length of record
when calibrating parameters to different historical periods.

4. Additional insights are provided on the nature of possible deficiencies in the model structure [de Vos
et al., 2010]. As parameter nonstationarity can be symptomatic of poor representation of important hydro-
logical processes, it can serve as a valuable diagnostic of the suitability of the existing model for extrapola-
tion. The nature of the suggested nonstationarity can help guide model improvement, especially when the
nonstationarity can be attributed to a specific cause, such as a particular poorly represented process in the
model or a major change in catchment conditions.

The paper is structured as follows. The key elements of the proposed strategy for diagnosing and interpret-
ing hydrological nonstationarity are presented in section 2, followed by a description of the case study
catchment in section 3. Section 4 provides a detailed investigation of data quality, including the analysis of
possible systematic changes in the quality of rainfall, evapotranspiration, or streamflow data. Section 5
describes a set of 22 candidate hydrological models with different combinations of nonstationarity parame-
ters to be evaluated, and section 6 describes the approach to parameter estimation. Section 7 details an
AIC-based approach for model selection and diagnosis of hydrological nonstationarity. Results are pre-
sented in section 8, followed by discussion in section 9 and conclusions in section 10.

2. Overview of the Strategy for Diagnosing and Interpreting Hydrological
Nonstationarity

Our strategy for developing hydrological models for predicting catchment runoff under changing hydrocli-
matic conditions follows the philosophical approach of ‘‘multiple working hypotheses,’’ described originally
by Chamberlain [1890] and more recently in the hydrological context by Clark et al. [2011]. In this approach,
a set of candidate models (hypotheses) is constructed and evaluated, with each model providing an alterna-
tive representation of catchment behavior. The models are calibrated to observed data in an exploratory
period, and an information-theoretic measure (the AIC) is used to evaluate the level of support from the
data for each model. A selected subset of models is then tested on an independent confirmatory period
that is climatologically different from the period used for parameter estimation, thus representing a differ-
ential split-sample test [Klemes, 1986]. The four elements of the strategy are outlined next.

2.1. Detecting Systematic Errors in the Calibration Data
Biases and systematic changes in the measurement of hydrological data can significantly affect model cali-
bration and can lead to nonstationarity in the estimated model parameters. In situations where biases and/
or changes in data quality cannot be excluded a priori, they must be retained among the working hypothe-
ses to be evaluated a posteriori as part of model calibration and analysis. In this study, we use a set of stand-
ard diagnostics to assess the quality of the rainfall, potential evapotranspiration, and runoff data (section 4).

2.2. Modeling One or More Parameters as Functions of Time-Varying Covariates
As we define hydrological model nonstationarity as the case where hydrological model parameters change in
time, a practical strategy for detecting nonstationarity is to allow the model parameters to vary in time as func-
tions of selected covariates and examine the resulting impact on model performance. In this study, the covariates
are selected to represent the major time scales of hydrological variability. For example, we use a sinusoidal func-
tion to represent seasonal changes in the catchment storage capacity. The covariates are discussed further in sec-
tion 5.1, and resemble some of the time scales of variability used in the ‘‘unobserved components’’ of the data-
based mechanistic modelling (DBM) approach [Young and Beven, 1994; Young, 1998]. In DBM, however, time-
varying covariates are used as part of model identification and development using transfer functions, whereas in
our case the purpose is largely as a diagnostic for structural errors in conceptual hydrological models.

2.3. Construction of Alternative Model Structures
One of the possible causes of nonstationarity in hydrological model parameters is poor process representa-
tion within the model. This step therefore aims to identify missing or poorly represented processes, and can
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be used both to improve the hydrological model and to better characterize its predictive uncertainty. In this
paper, we use multiple hydrological diagnostics, such as flow-duration curves stratified by season and by
the phase of the hydrograph (rising and falling limbs), to isolate possible weaknesses in the conceptual
model GR4J when simulating runoff in Scott Creek catchment. Based on this assessment, we make two
modifications to the standard GR4J model; these are discussed in section 5.2.

Alternative approaches for model development and comparison include flexible model frameworks such as
FUSE [Clark et al., 2008] and SUPERFLEX [Fenicia et al., 2011]. These frameworks can be used to analyze
larger and more diverse sets of model structures. However, incorporating flexible model structures into the
second step of the nonstationarity analysis strategy (section 2.2) requires further work to support nonnested
structures with distinctly different conceptualizations and parameterizations. For example, in nonnested
models, it may not be possible to apply nonstationary covariates to the same parameter, making it difficult
to consistently compare the extent of parameter nonstationarity across all models under consideration.

2.4. Model Selection and Evaluation
The final step is to evaluate the empirical support for the model structures hypothesized and calibrated in
Steps 2 and 3. Many model selection approaches can be used, including:

1. Cross-validation based methods [e.g., Schoups et al., 2008; Hastie et al., 2009], including split-sample test-
ing, in which one or more models are fitted using a portion of the historical record (usually referred to as
the ‘‘calibration’’ period) and tested on the remainder of the record (usually referred to as the ‘‘validation’’ or
‘‘verification’’ period). This has been the preferred approach in the hydrological literature for estimating ‘‘out
of sample’’ model error [e.g., Hastie et al., 2009];

2. Information theory [e.g., Burnham and Anderson, 2010], which is receiving increased interest in the hydro-
logical literature [e.g., Gupta et al., 2008; Weijs et al., 2010]. The information-theoretic framework aims to esti-
mate the ‘‘in-sample’’ prediction error from the likelihood (objective) function calculated during model
calibration, while also attempting to account for the expected model ‘‘optimism’’ arising from the assess-
ment of model performance over the calibration period itself [Hastie et al., 2009]. The Akaike Information
Criterion (AIC) [Akaike, 1974] and its small sample approximation (AICc) [Sugiura, 1978] are widely used
model selection criteria derived using information theory.

3. Bayesian approaches, such as the Bayesian Information Criterion (BIC) [Schwarz, 1978; Marshall et al.,
2005; Martinez and Gupta, 2011], Kashyap’s Information Criteria (KIC) [Kashyap, 1982; Martinez and Gupta,
2011], and Bayesian model averaging [Hoeting et al., 1999; Claeskens and Hjort, 2008].

There are ongoing debates in the hydrological and broader communities on the advantages, limitations,
and interpretations of different model selection criteria [e.g., Gupta et al., 2008; Ye et al., 2008; Burnham and
Anderson, 2010]. An increasing number of studies compare multiple model selection approaches, often with
contradictory results that appear to depend on specific features of the data and models being investigated
[Schoups et al., 2008; Ye et al., 2008; Burnham and Anderson, 2010; Dai et al., 2012; Engelhardt et al., 2013]. In
this study, we adopt the AIC because it is a simple yet widely used model selection criterion that seeks to
maintain parsimony while selecting the model with the greatest predictive ability [McQuarrie and Tsai, 2007;
Burnham and Anderson, 2010]. The key properties of this criterion are given in section 7.

Note that this paper uses the term ‘‘exploratory period’’ to refer to the period used for parameter estimation
(calibration), model comparison, and selection. Furthermore, the term ‘‘confirmatory period’’ refers to the
period used for independent model evaluation. The confirmatory period is commonly referred to as the val-
idation or verification period in the hydrological literature, however the term ‘‘confirmatory’’ is intended to
emphasize that future model performance cannot be ‘‘validated’’ or ‘‘verified’’ from past performance alone
[Oreskes et al., 1994].

3. Case Study Catchment

The four steps of the strategy for analysing nonstationarity of hydrological model parameters are illustrated
using the Scott Creek catchment in South Australia. This catchment has an area of 29 km2 and forms a part
of the larger Onkaparinga catchment—Adelaide’s primary surface water source (Figure 1). The median

Water Resources Research 10.1002/2013WR014719

WESTRA ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 5093



annual rainfall (P) in Scott Creek is 905 mm, and the median annual potential evapotranspiration (PET) is
1600 mm. The long-term average runoff is 123 mm, giving a runoff coefficient of 0.14.

The Scott Creek catchment is classified as semiarid and has a winter-dominated rainfall regime. February is
the driest month (monthly average of 20 mm), while July is the wettest (monthly average of 130 mm). In
contrast, monthly PET varies from 50 mm in July to 250 mm in January. Therefore, in summer the catchment
is water-limited (P << PET), whereas in winter it is energy-limited (P >> PET). The combined effect of sea-
sonality in P and PET is that, in an average year, the runoff is highly seasonal, with over 75% occurring in
the 3 month period from July to September. The seasonality of the catchment suggests that different physi-
cal mechanisms may be governing the rainfall-runoff relationships in summer and winter.

In addition to seasonal variations, the runoff characteristics of the Scott Creek catchment also vary interann-
ually. At the aggregated annual scale, the relationship between catchment-average rainfall and runoff is
approximately linear (with a Pearson correlation R2 of 0.80), and a 1% change in annual rainfall yields an
approximately 3% change in runoff. This catchment sensitivity is within the typical range for semiarid catch-
ments in southeast Australia [Chiew, 2006]. The runoff coefficient, when calculated for each calendar year,
varies from 0.06 in the driest year (2006) to 0.22 in the wettest year (1986).

The streamflow varies over four orders of magnitude, with approximately 21% of days over the exploratory
and confirmatory periods having flows below 0.01 mm/d, and with only 22 days having flows above
10 mm/d. Approximately 30% of the total flow volume occurs in the top 1% of flow days, and 68% of the
total flow volume occurs in the top 10% of flow days.

The 1985–1999 period is used for the exploratory analysis (parameter estimation and model selection), and
the 2000–2009 period is used for the confirmatory analysis (model evaluation). Prior to both periods, a 4
year spin-up period is used to reduce the impact of unknown initial conditions. The confirmatory period is
much drier than the exploratory period, with 19% less runoff on average, and therefore provides a stringent
differential split-sample test.

Figure 1. Map of the Onkaparinga catchment.
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4. Identifying Systematic
Errors in Calibration Data

The first element of the strategy
is to identify systematic errors in
the observed data. In this study,
we examine the quality of
observed streamflow, potential
evapotranspiration, and rainfall.

Streamflow estimates for Scott
Creek were obtained from a rec-
tangular stepped weir located
near the catchment outlet and
operated continuously since
1969. Analysis of the differences

between streamflow gaugings and streamflow estimates from the rating curve suggests a significant
increase in rating curve errors during 1980–1984, with some evidence of systematic bias (Figure 2). Further-
more, the gauging station metadata indicates that a major rating curve change occurred in 1984. Hence, to
avoid the impact of potentially biased streamflow data on the inference of nonstationarity, our analysis is
based exclusively on post-1984 data. The drawback of selecting this time period is that it has a smaller num-
ber of rating curve measurements, so that all flows greater than 10 mm (1-in-6-month flow) are
extrapolated.

Catchment-average PET was estimated using Morton’s areal potential evapotranspiration (APET) method
[Morton, 1983; McMahon et al., 2013], which is based on temperature, vapor pressure, and incoming solar
radiation data from the Australian SILO 0.05� latitude/longitude gridded data set [Jeffrey et al., 2001]. The
time series of annual APET have a slight upward trend from 1985 to 2009. A similar trend is present in Mor-
ton’s APET estimated at the high-quality Kent Town weather station (the nearest high-quality weather
recording station), indicating that this trend is unlikely to be caused by measurement errors.

Three rainfall gauges are located within or very close to Scott Creek catchment. Continuous rainfall data for
these gauges were obtained from the SILO patched point database, and these data are occasionally infilled
using interpolated data when observed data are missing or suspect [Jeffrey et al., 2001]. Therefore, to detect
potential systematic errors, a homogeneity analysis [Allen et al., 1998] was performed by comparing the
rainfall time series at each gauge in Scott Creek catchment to time series from the rain gauge at Happy Val-
ley, which is part of Australia’s high-quality gauge network [Lavery et al., 1992]. No statistically significant
evidence of inhomogeneity was found. The catchment-average rainfall for Scott Creek was obtained by
kriging the three gauges, and is dominated by a single gauge at Cherry Gardens (see Figure 1), which has a
weight of 0.9.

Based on the analysis of streamflow, PET, and rainfall data in Scott Creek catchment, we conclude that these
data are of relatively high quality from 1985 onward, and we therefore use only post-1984 data for model
development and evaluation. A negative consequence of using stringent criteria for data selection is that
potentially long portions of the historical record might be discarded from the analysis. For the present case
study, the record retained is sufficient for the intended analysis, and reduces the potential contribution of
poor data quality to parameter nonstationarity.

An alternative way of addressing data quality is to develop more comprehensive data error models. For
example, rainfall error models could be based on detailed geostatistical analysis [Renard et al., 2011]. How-
ever, this requires considerable additional information and was not pursued in this study.

5. Candidate Hydrological Models

All hydrological models considered in this work are derived from the lumped conceptual rainfall-runoff
model GR4J [Perrin et al., 2003]. The published version of GR4J has four calibration parameters, namely the
production store capacity (h1, units of mm), the groundwater exchange coefficient (h2, units of mm), the

Figure 2. Runoff error time series at Scott Creek over the exploratory (1985–1999) and
confirmatory (2000–2009) periods. Runoff errors are defined as the differences between
the streamflows predicted by the rating curve and the actual streamflow gauging. Error
analysis using the loess smoother [Hastie et al., 2009] shows a clear overprediction of
streamflow prior to the last rating curve change in 1984.
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1 day-ahead maximum capacity of the routing store (h3, units of mm), and the time base of the unit hydro-
graph (h4, units of days).

GR4J was developed to provide, on average, good performance across a wide range of catchment condi-
tions [Perrin et al., 2003]. This makes GR4J particularly suitable as a starting point for model modifications
and refinements, including the versions constructed in this work as part of detecting and quantifying hydro-
logical nonstationarity. The GR4J modifications are described next.

5.1. Simulating Hydrological Model Nonstationarity
Parameter h1 is allowed to vary in time to represent several potential time scales of model nonstationarity.
We focus on h1 because it represents the primary storage of water in the catchment. Previous studies [Kuc-
zera et al., 2006; Renard et al., 2011] have indeed suggested that h1 is the most sensitive GR4J parameter,
with Renard et al. [2011] showing through a sensitivity analysis that stochastic variations of h1 have the larg-
est impact on model predictions. By treating h1 as a function of multiple covariates representing seasonal,
annual, and longer-term variability, we attempt to characterize the major potential time scales of nonstatio-
narity, as follows:

1. Seasonal-scale variability in catchment characteristics is represented by conditioning h1 on a sine function
with a yearly period, parameterized by its amplitude and phase. In the Scott Creek catchment, a major source of
seasonality might be the switch from water limitations in summer to energy limitations in winter (section 3).

2. Annual-scale variability due to hydrometeorological changes is represented by conditioning h1 on the 365
day antecedent daily rainfall and potential evapotranspiration. This conditioning aims to account for nonsta-
tionarity in the predictive errors, such as when a hydrological model systematically overestimates flows dur-
ing dry years and underestimates flows during wet years [e.g., Coron et al., 2012; Pathiraja et al., 2012].

3. Long-term changes in catchment response are represented using a linear trend in h1.

The full nonstationary model for h1 is:

h1ðtjkÞ5k11 k2t|{z}
linear trend

1 k3sin 2p
t1k4

365

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

seasonal variability

1 k5P3651k6PET365|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
annual variability

(1)

where t is the number of days since the start of simulation and k1; :::; k6 are six ‘‘nonstationarity’’ parame-
ters. Parameter k1 is a constant term, k2 represents the linear trend, fk3; k4g represent the amplitude and
phase of the sine term, and fk5; k6g represent the influence of previous 365 day rainfall (P365) and potential
evapotranspiration (PET365). Note that parameters k1 and k4 depend on the starting date of the simulation
(here selected as 1 January in both the exploratory and confirmation periods).

As discussed in section 9.3, there may be physically interpretable reasons for temporal changes in catchment
storage capacity. For example, an increase in on-farm dams [Teoh, 2002] in Scott Creek catchment may lead
to an increase in the total available storage volume, and thus to a larger value of the storage parameter h1.
Other forms of nonstationarity might be less physically interpretable. For example, in Scott Creek, the total vol-
ume of available storage in the soil matrix is unlikely to change regularly each season, so that the presence of
a sinusoidal pattern in h1 does not immediately indicate a seasonal change in actual catchment storage
capacity. Therefore, we view the primary purpose of the covariates described in this section as diagnostic: by
representing the main time scales of likely variation in model parameters, it becomes possible to identify defi-
ciencies in the model structure, which in turn can be used to identify areas for model improvement.

5.2. Modifying the Structure of GR4J
Nonstationarity in hydrological model parameters can indicate that a hydrological process is either absent
or incorrectly represented in the hydrological model. We test this proposition by making several modifica-
tions to GR4J, based on the results of model diagnostics (discussed further in section 7).

5.2.1. Representation of Recession Dynamics
Inspection of hydrographs predicted using the standard GR4J model indicated systematic deficiencies in
the representation of the falling limb (section 8). To improve the representation of recession behavior, an
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additional parameter h5 is introduced to provide greater flexibility in the GR4J equation that controls the
partitioning of net rainfall between the production and routing stores:

Ps5

h1 12 S
h1

� �h5
� �

tanh Pn
h1

� �

11 S
h1

tanh Pn
h1

� � (2)

where Ps is the portion of net rainfall Pn that enters the production store and S is the water content in the
production store [compare with Perrin et al., 2003, equation 3].

5.2.2. Representation of Evapotranspiration Dynamics
The low runoff coefficient in the Scott Creek catchment and the general aridity of its regional environment
indicate a large contribution of evapotranspiration to the overall water balance. Analysis of the GR4J simula-
tions found that almost 30% of the rainfall is converted to actual evapotranspiration on rainy days, before
the rainfall enters the production store.

In the original version of GR4J, actual evapotranspiration (AET) is determined from two different model
processes. The first process occurs on all rainy days when P> PET; here the net rainfall is calculated Pn 5 P –
PET, and AET occurs at the potential rate. The second process occurs on days when P< PET, and the AET is
calculated as a function of the water level in the production store.

In the modified GR4J, an alternative formulation is considered, in which Pn 5 P (i.e., removing the first pro-
cess), and AET is only a function of the volume of water in the production store. This representation is com-
mon in hydrological models, including HBV [Bergstrom, 1995], TOPMODEL [Beven et al., 1995], and others.

5.3. Model Structure Groupings
To assist in the systematic comparison of predictive performance across a large number of candidate mod-
els, we define the following three model structure groupings, as described in Table 1:

1. A set of eight model structures, labeled g1.1,. . .,g1.8, are used to cover all possible combinations of the
three nonstationarity components developed in section 5.1. Note that the individual terms within each dis-
tinct nonstationarity component in equation (1) are always considered jointly (e.g., we do not split the
annual variability representation into individual P and PET terms).

2. A set of four model structures, labeled g2.1,. . .,g2.4, are used to examine the impact of GR4J structural
modifications presented in section 5.2 for improving the representation of recession and evapotranspiration
dynamics. Note that the original GR4J model (g1.1) is included in this grouping as model g2.1, and is used as
a reference against which this set of model modifications are compared.

3. A set of 12 model structures, labeled g3.1,. . .,g3.12, are given by different combinations of nonstationarity
models and GR4J structural modifications. In this grouping, the reference model (g3.1) is selected to be
model g2.2, as this model was found to be the best model in grouping g2.x (section 8.2). Note that the model
grouping g3.x does not include all possible combinations of covariates for nonstationary h1 and other model
modifications, as this would have led to an excessively large number of candidate models. Rather, important
groups of parameters were identified based on the analysis of the first two model groupings (g1.x and g2.x);
this is discussed further in section 8.

6. Parameter Estimation

This section describes the method of maximum likelihood used in this study to estimate the model parame-
ters. This method requires the construction of a likelihood function, followed by parameter optimization
through likelihood maximization.

6.1. Specification of the Likelihood Function
The likelihood function LðÞ is defined as the joint probability of the observed streamflow given the observed
forcings and the parameters h of a predictive model, i.e., LðhÞ5pð~y 1; ~y 2; . . . ; ~y nj~x 1; ~x 2; :::; ~x n; hÞ5pð~yj~x; hÞ.
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The predictive model is constructed by combining a hydrological model with a description of predictive
uncertainty, as detailed next.

Consider a deterministic hydrological model h(), such as GR4J. At time step t, the model predictions of
streamflow yt are:

yt5hð~x1:t; hhÞ (3)

where ~x1:t is the time series (t51; :::; n) of observed hydrological inputs (here, daily rainfall and PET) and hh

is the vector of hydrological model parameters (here, hh5fh1; :::; h5g).

Next, consider an additive residual error model, defined as

et5~y t2yt (4)

where ~y t is the observed streamflow at time step t.

The residual error model in equation (4) provides an aggregate representation of all data and structural
errors responsible for the differences between observed and predicted streamflows [Kennedy and O’Hagan,
2001].

We assume that the residuals e are independent in time and follow a Gaussian distribution with zero mean
and standard deviation re, i.e., e � N 0; reð Þ. As hydrological model residuals are typically heteroscedastic
[Sorooshian, 1981; Schoups and Vrugt, 2010], we allow re to vary in time as a linear function of predicted
streamflow, i.e.,

reðtÞ5ae1beyt (5)

The error model parameters he5fae; beg are unknown and are therefore estimated as part of the inference.

Under the residual error assumptions listed above, the following log likelihood is obtained:

Table 1. Modified GR4J Models Used in This Papera

New Process: Trend Seasonality

Antecedent

Net PrecipRain PET

Model k1 k2 k3 k4 k5 k6 h2 h3 h4 h5 Pn

g1:1 � � � � P – E
g1:2 � � � � � P – E
g1:3 � � � � � � P – E
g1:4 � � � � � � P – E
g1:5 � � � � � � � P – E
g1:6 � � � � � � � � P – E
g1:7 � � � � � � � P – E
g1:8 � � � � � � � � � P – E
g2:15g1:1 � � � � P – E
g2:2 � � � � � P – E
g2:3 � � � � P
g2:4 � � � � � P
g3:15g2:2 � � � � � P – E
g3:2 � � � � � � P – E
g3:3 � � � � � � � P – E
g3:4 � � � � � � � � P – E
g3:5 � � � � � P
g3:6 � � � � � � P
g3:7 � � � � � � � P
g3:8 � � � � � � P
g3:9 � � � � � � � P
g3:10 � � � � � � � � P
g3:11 � � � � � � � � � � P – E
g3:12 � � � � � � � � � � P

aThe parameters for the nonstationary model of h1 are represented by k1,. . .,k6 as described in equation (1). Parameter h5 is described
in equation (2). The last column describes the approach used to calculate net rainfall (Pn).
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logLðhÞ5logLðhh; heÞ5
Xn

t51

log f etðhhÞ; 0; reðtÞðhh; heÞ
� �

(6)

where f ðz; l; rÞ is the Gaussian probability density function with mean l and standard deviation r, eval-
uated at point z. Note that the residuals depend solely on hydrological parameters, whereas the standard
deviations of the residuals depend on both hydrological and error model parameters.

The impact of the assumptions underlying the residual error model (equations (4) and (5)) on the model
selection technique is discussed further in section 7.

6.2. Extension to Models With Nonstationary Parameters
As detailed in section 2.2, hydrological nonstationarity can be investigated by allowing one or more hydro-
logical model parameters hh to vary in time as functions of selected covariates. For example, h1 is modeled
as a function of covariates as described in equation (1). This can be accommodated within the likelihood
function by no longer calibrating h1 and instead calibrating k1; :::; k6.

The remainder of the paper uses the short-hand notation g to represent the combined hydrological and
error models,

g5gð~x1:t; hÞ

5hð~x1:t; hh; kÞ1e
(7)

As discussed in section 5.3, we compare the performance of 22 alternative models listed in Table 1. The indi-
vidual models are identified by an index on g. Note that the models have different numbers of calibrated
parameters, e.g., model g1:2 can be written as g1:25hð~x1:t; h2; h3; h4; k1; k2Þ1e.

6.3. Mitigating Deficiencies in the Assumed Likelihood Function
The assumption of independent residual errors in equation (6) is poor in most hydrological applications
[Sorooshian and Dracup, 1980; Evin et al., 2014]. Moreover, near-zero flows exert a strong influence on the
inference when using a likelihood that represents error heteroscedasticity using the linear relationship in
equation (5). Therefore, two changes are made to the likelihood function, as detailed below.

6.3.1. Handling Low (Close to Zero) Flows in the Likelihood Function
The Scott Creek catchment is highly seasonal, typically with very little runoff during summer. The handling of
low flows in the likelihood function is the subject of ongoing research [e.g., Smith et al., 2010]. To avoid this issue
negatively impacting on the analysis, observed daily flows below a threshold of 0.09 mm are censored from the
likelihood function. The resulting streamflow data set is referred to as ~yð>0:09Þ. This censoring threshold corre-
sponds to the streamflow value for which, based on the rating curve analysis, there is a 95% probability that the
streamflow predicted by the rating curve is greater than zero. Over the exploratory period, 55% of days have
flows below 0.09 mm, yet these censored days contribute less than 5% of the total catchment flow volume.

Residual error diagnostics were checked in all cases, and are presented here for the simplest model (g1.1)
and for one of the most complex models (g3.11). Density plots of the standardized residuals in Figure 3 pro-
vide empirical support for the Gaussian assumption used in the error model. The reliability of the total pre-
dictive uncertainty was assessed using a predictive quantile-quantile plot [Thyer et al., 2009] (not shown).
The observed p-values are very close to the 1:1 line, suggesting that the error model provides a reasonably
reliable approximation of the probability distribution of the residuals.

6.3.2. Handling Autocorrelation in the Residuals
Autocorrelation of residual errors can significantly influence model inference and selection, yet is omitted in equa-
tion (6). In this case study, statistically significant error autocorrelation was found for all models. For the most com-
plex model (g3.11), the lag-1 autocorrelation coefficient for the residuals (after the low flow threshold is applied) is
0.32, which, although relatively low in the context of rainfall-runoff applications, is statistically significant at the
5% level. To reduce the impact of ignoring autocorrelation in the likelihood function, all hydrological models
were recalibrated to a ‘‘thinned’’ streamflow set comprising every kth day of record. We trialed several values of k,
and identified the minimal value of k for which the lag-1 autocorrelation coefficient was no longer significant at
the 5% level. For almost all the models, this led to a 6 day sampling interval (k 5 6).
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The thinning is incorporated into
the likelihood function in equation
(6) by only including the model
residuals from every sixth day of
record, while still censoring days
with observed flows below the
0.09 mm threshold, i.e.,
et : t 2 f1; 7; 13; :::g \ ~y t > 0:09.
The corresponding streamflow set
is referred to as ~yð>0:09Þ

t:5116j .

The sensitivity of the results to
the particular choice of thinned
period is investigated by calibrat-
ing (separately) to six nonover-
lapping sets of thinned residuals,
defined as
et : t 2 f2; 8; 14; :::g \ ~y t > 0:09,
et : t 2 f3; 9; 15; :::g \ ~y t > 0:09,
and so on. The corresponding

streamflow sets are referred to as ~yð>0:09Þ
t:5216j , ~yð>0:09Þ

t:5316j , and so on.

More complex residual error models, such as those including specialized treatment of low flows [Smith
et al., 2010] and direct treatment of error autocorrelation [Evin et al., 2014], are clearly of interest to improve
the specification of the likelihood function. However, practical difficulties have been encountered when
jointly inferring error autocorrelation and heteroscedasticity, including strong interactions of the error auto-
correlation parameter with the GR4J mass balance parameter h2 [Evin et al., 2014]. Moreover, combined
treatment of error autocorrelation and low flows requires separate theoretical development. Hence, censor-
ing of low flows and calibrating to thinned streamflow sets was used in this work as a pragmatic approach
to reduce the violations of the likelihood assumptions.

6.4. Parameter Optimization
The parameter values that maximize the likelihood function in equation (6) were estimated using a quasi-
Newton optimization method. Optimization was repeated with 100 random starting points to reduce the
probability of being trapped in local optima.

7. Model Evaluation and Selection

We use an information-theoretic approach combined with multiple hydrologically oriented diagnostics to
evaluate the performance of the hydrological models described in section 5. This section describes the spe-
cific metrics used.

7.1. The Akaike Information Criterion
Information-theoretic techniques use the Kullback-Leibler information to compare an approximate probabil-
ity model pð~yjhÞ against the (unknown) ‘‘true’’ probability density function ptrueð~yÞ describing the system of
interest [Burnham and Anderson, 2010]:

IKL ptrueð~yÞ k pð~yjhÞð Þ5
ð

log
ptrueð~yÞ
pð~yjhÞ ptrueð~yÞ d~y

5

ð
log ptrueð~yÞð Þptrueð~yÞd~y2

ð
log pð~yjhÞð Þptrueð~yÞ d~y

(8)

The Kullback-Leibler information IKL ptrueð~yÞ k pð~yjhÞð Þ, often referred to as the ‘‘Kullback-Leibler divergence
of pð~yjhÞ from ptrueð~yÞ,’’ can be interpreted as the information lost when an approximate likelihood pð~yjhÞ is
used to represent the ‘‘true’’ likelihood ptrueð~yÞ. Since ptrueð~yÞ represents the ‘‘truth,’’ it does not vary as a

Figure 3. Density plots of standardized residuals in the exploratory period for models
g1.1 and g3.11. The standard Gaussian distribution is shown for reference.
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function of the parameters, whereas pð~yjhÞ varies over the parameter space h 2 H. Also note that the con-
ditioning of pð~yjhÞ on ~x indicated previously has been suppressed for notational convenience.

We stress that pð~yjhÞ refers to the complete probability model of the data, which here is constructed by combin-
ing a deterministic component (i.e., the hydrological model) and a stochastic component (i.e., the error model).

In real environmental systems ptrueð~yÞ is unknown and therefore the Kullback-Leibler information cannot be

calculated. However, since the term
ð

log ptrueð~yÞð Þptrueð~yÞd~y in equation (8) is a constant that depends

only on the (unknown) ‘‘truth,’’ it is possible to calculate the difference in Kullback-Leibler information
between any two models p1ð~yjhÞ and p2ð~yjhÞ. This difference can be treated as a measure of relative empir-
ical support in favor of one of the models.

The Akaike Information Criterion (AIC) is derived such that, under a set of assumptions discussed below,
choosing the model that maximizes the AIC yields the smallest Kullback-Leibler divergence from the true
model ptrue [Akaike, 1974]. The derivation of the AIC, A, from the Kullback-Leibler information is described in
Burnham and Anderson [2010], and uses the maximum-likelihood estimate of the parameter vector, ĥ:

A5logLðĥÞ2K (9)

The term K denotes the number of calibrated parameters in the model, and is often described as a ‘‘com-
plexity penalty’’ that accounts for the fact that the model parameters ĥ are being calibrated to the (finite)
observed data.

The AIC differences, denoted by DA, can be interpreted as the loss of information when model i is used
instead of the AIC-best model in a set of models under comparison:

DAi5Ai2Amin (10)

This metric can be evaluated for each model i 5 1,. . .,M in the set of M models being compared, with Amin

being the lowest (best) AIC value produced by the models in the set.

Akaike ‘‘weights,’’ wðAÞ , defined for model i from the set of M models as:

wðAÞijM 5
exp 2 1

2 DAi
	 


XM

j51
exp 2

1
2

DAj

� � (11)

can then be interpreted as the ‘‘weight of evidence in favor of model i,’’ i.e., the probability that, given the set of M
models, model i will obtain the highest likelihood value when predicting new data arising from the same system.

The Akaike weights facilitate a probabilistic interpretation of AIC differences. Values of DAi less than 2 are
usually interpreted as indicating ‘‘substantial’’ support for model i, whereas values greater than 10 indicate
that there is ‘‘virtually no support’’ for that model [Burnham and Anderson, 2010].

Two major assumptions underlying the AIC should be considered. First, the term K in equation (9) is derived
under the assumption that the sample size is ‘‘large.’’ A ‘‘large’’ sample is usually defined when n/K> 40 [Burn-
ham and Anderson, 2010], and in this study the criterion is met in all cases. Second, the AIC is derived under
the assumption that the likelihood function provides a ‘‘good’’ approximation to the actual system. This
assumption is questionable in this study, in particular because the error model used to derive the likelihood in
equation (6) assumes the residuals are independent (section 6.3.2). Since neglecting the serial dependence of
the errors results in an overestimation of the information content of the data and may affect the AIC assump-
tions, this paper does not use the full interpretation of the AIC weights described in the preceding paragraph.
However, despite these limitations, we proceed on the assumption that AIC-based rankings and the relative
magnitudes of the AIC differences and the AIC weights can still help guide model selection (see section 8).

We also note that the likelihood function used in this work to calibrate the hydrological models and to com-
pute the AIC criterion is based on an aggregate residual error model that does not distinguish between
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structural and data errors (refer to equation (4)). Although such aggregate error models may still provide a
suitable basis for predictive applications [e.g., Evin et al., 2014], the associated likelihood functions may not
provide all the information required to detect and quantify model structural errors, unless an additional
error decomposition is carried out [e.g., Renard et al., 2011]. In other words, the diagnostic power of such
likelihood functions for model selection is limited [Gupta et al., 2008]. This important limitation provides fur-
ther motivation for incorporating multiple hydrologically oriented model diagnostics into hydrological
model selection and evaluation studies.

7.2. Hydrologically Oriented Model Diagnostics
Given the limitations of model comparison based on single criteria such as the AIC, additional metrics with
hydrological interpretation are used for a more thorough model comparison:

1. The Nash-Sutcliffe coefficient of efficiency (NSE), which is widely used in the hydrological literature and
therefore enables direct comparison with other studies;

2. The differences between modeled and observed annual total flow volume, which is a measure of the
catchment water balance;

3. Daily-scale flow-duration curves, which allow comparing the probability distributions of observed and
modeled flows and can provide a visual indication of potential biases (e.g., compensating behavior with
overestimation of low flows and underestimation of high flows). We consider stratified flow-duration curves
for: (i) all flows throughout the year; (ii) flows in individual seasons; and (iii) flows in the rising and falling
limb of the hydrographs.

This list is not intended as a comprehensive set of diagnostics for hydrological model evaluation. In addition
to general metrics, the diagnostics should reflect any specific modeling goals. We refer the reader to Marti-
nez and Gupta [2011] for further details.

8. Results

This section examines the performance of the 22 hydrological models (Table 1) over the exploratory and
confirmatory periods (section 3). For convenience, the comparison makes use of the model structure group-
ings described in section 5.3. The impact of thinning the streamflow set used in the calibration (section
6.3.2) is also investigated.

Figure 4 shows the AIC differences, the residual error parameters (ae and be), the NSE and the magnitude of
the groundwater flux calculated over the exploratory period using streamflow set ~yð>0:09Þ. The AIC differen-
ces when estimating parameters using streamflow set ~yð>0:09Þ

t:5116j and the AIC values for the AIC-best model in
each model structure grouping are also shown.

8.1. Model Grouping g1.x: Nonstationary GR4J
The results for the model grouping g1.x are presented as red bars in Figure 4. When calibrating to stream-
flow set ~yð>0:09Þ, the best AIC value is achieved by model g1.8, which is the most complex model in the com-
parison and includes all forms of nonstationarity. In contrast, when calibrating to streamflow set ~yð>0:09Þ

t:5116j ,
model g1.6 is the AIC-best model, with model g1.8 very closely behind. The only difference between these
two models is that g1.8 has the linear trend in parameter h1.

8.1.1. Interpretation of the AIC Weights
The AIC-best model estimated using the streamflow set ~yð>0:09Þ has an AIC weight of 0.994, while the
second-best model has a weight of 0.006. In contrast, the AIC-best and AIC-second best models estimated
using streamflow set ~yð>0:09Þ

t:5116j have near-equal weights of 50.1 and 49.9, respectively, with almost no weight
for the remaining models. This would indicate that the remaining models have almost no probability of
being selected as AIC-best under an independent confirmatory period, but it is unlikely that this interpreta-
tion holds in this case. This is because the assumption of independence in the model residuals is unlikely to
hold exactly, even when sampling every sixth day. Other deficiencies in the likelihood function, including
the GR4J hydrological model, the Gaussian distribution and linear heteroscedasticity of the residual errors,
may also affect the ‘‘good model’’ assumption underlying the AIC and reduce its interpretability. Despite
these limitations, the relative magnitude of AIC differences in Figure 4 is instructive, and suggests which
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model modifications are responsible for the greatest improvements in model performance. For example,
comparison of models g1.2, g1.3, and g1.4 shows that the sinusoid representation of the seasonal-scale non-
stationarity in h1 delivers by far the greatest improvement in predictive ability.

8.1.2. Increasing Trend in Parameter h1

Figure 5 shows the time variation of parameter h1 (i.e., the catchment storage capacity) and the actual stor-
age in the production store for the two AIC-best models, g1.6 and g1.8, over the exploratory period. The sinu-
soidal variation is prominent for both models. There is also an apparent trend, with higher values of the
production store observed in the second half of the record. The magnitude of this trend is similar regardless
of whether a linear trend is included (g1.8) or not included (g1.6) as one of the covariates. It is likely that cova-
riation exists between parameters k2 (representing the linear trend) and k5 (representing the previous 365
day PET) as a trend was found in PET (section 3), and this could explain the similarity in performance
between the two models. In both models, the increase in h1 over the exploratory period means that the
responsiveness of the catchment to rainfall is decreasing through time (as a larger storage capacity provides
a stronger damping of the effects of rainfall variability on the streamflow).

The actual water level in the production store is highly seasonal, with the store reaching a maximum value
in late winter/early spring, and a minimum value in summer. This is not surprising given the seasonal nature
of rainfall and PET in this catchment. More interesting is the timing of the sinusoid function for h1, with a
maximum value occurring at the beginning of the year and a minimum value occurring in the middle of the
year. As the production store affects the catchment responsiveness and the partitioning of rainfall between
actual evapotranspiration and runoff/groundwater recharge, this result suggests that, in summer, the model
without a sinusoidal term in h1 is overestimating the runoff responses and/or underestimating the actual
evapotranspiration flux. The opposite effect is present in the winter predictions.

8.1.3. Other Measures of Model Performance
The residual error model parameters ae and be can serve as additional measures of hydrological model per-
formance and are shown in Figure 4. These parameters need to be interpreted jointly, as ae describes the
standard deviation of the residuals at low flows, while be describes the rate of increase in the standard devi-
ation of the residuals with respect to the predicted flow. Figure 4 shows that, as we consider models with
lower AIC, ae decreases faster than be. In fact, be for the AIC-best model (be50:40) is only slightly larger than
be for the AIC-worst model (be50:36). This indicates that the GR4J modifications provide the greatest
improvements when predicting low flows.

Figure 4. Model comparison in the exploratory period: Akaike differences (DAi ) when using every day and every sixth day in the likelihood function, residual error model parameters (ae

and be), Nash Sutcliffe coefficient of efficiency (NSE) and groundwater flux for all models. The red, green, and blue colors indicate the model structure groupings g1.x, g2.x, and g3.x, respec-
tively. Within each grouping, the models are ordered from best to worst performance, as given by the AIC differences.
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The value of h1 for model g1.1

(the original GR4J model, where
h1 is constant in time) is approxi-
mately 400 mm, which is closer
to the winter minimum value of
h1 when the parameter is
allowed to vary sinusoidally. This
suggests that the nonstationarity
model (equation (1)) provides the
largest improvements during
periods of low flow, particularly
in summer and autumn. This is
apparent when examining the
autumn flow-duration curves for
models g1.1, g1.2, g1.3, and g1.4 in
Figure 6a, a significant improve-
ment is provided by model g1.3,
in which h1 varies sinusoidally
over the year, whereas the
improvements are much more
limited for the other models.

In contrast to the AIC-based rank-
ings, the NSE yields a very differ-
ent ranking of models, with
model g1.1 selected as the ‘‘best’’
model with respect to both

streamflow sets ~yð>0:09Þ and ~yð>0:09Þ
t:5116j . The NSE ranking is more consistent with the annually aggregated flow

error metric: the models with the lowest error in total annual flow also have the highest NSE values. The rela-
tively close correspondence between the annual flow metric and the NSE is probably due to the highly
skewed nature of flows in the catchment, with the majority of flow volume occurring in a relatively small
number of wet days, and hence with the NSE being dominated by the model performance in those few
high-flow days. In contrast, the AIC is informed by the heteroscedastic likelihood model, which allows for a
greater contribution from low flows whose total flow volume is small.

8.2. Model Grouping g2.x: Improved the Process Representation
The models in grouping g2.x represent modifications to the recession and ET equations in the GR4J model
(except for g2.1 which represents the original GR4J). Figure 4 shows that these modifications yield substan-
tial improvements to model performance. Regardless of whether the model was calibrated using stream-
flow set ~yð>0:09Þ or ~yð>0:09Þ

t:5116j , model g2.2 was selected as the AIC-best model, followed by model g2.4. Both
models contain the additional parameter h5, and model g2.4 also includes the modified representation of
actual evapotranspiration.

In contrast to the model selection results based on the AIC or the inferred parameters of the residual error
model, model g2.1 is the best in reproducing annual average flows. The most notable difference is the
groundwater export volume, with model g2.4 having either 2.5 or 1.9 times the groundwater flux compared
to model g2.1, depending on whether streamflow set ~yð>0:09Þ or ~yð>0:09Þ

t:5116j were used, respectively. For models
g2.3 and g2.4 the total groundwater export is of a similar magnitude to the streamflow, thereby representing
a major component of the catchment water balance.

Figure 6b shows the flow-duration curves for simulated runoff from models g1.1 and g2.2. The model pre-
dictions are adequate for flows greater than the 30% exceedance probability. However, model g2.2 clearly
outperforms g1.1 for lower flows, supporting the earlier conclusion that the largest improvements occur
for low flows. To further investigate the models’ predictive performance, flow-duration curves were plot-
ted separately for the rising and falling limbs of the hydrographs, as shown in Figures 6c and 6d. The
most significant improvements occur in the falling limb. This is not surprising, as h5 was specifically

Figure 5. Time series of the production store capacity parameter h1 (dotted line) and the
actual storage S in the production store (solid gray curves). (top) The results for the AIC-
best model (g1.8) obtained when calibrating to streamflow set ~yð>0:09Þ . (bottom) The
results for the AIC-best model (g1.6) obtained when calibrating to streamflow set ~yð>0:09Þ

t:5116j ;
see section 6.3 for a description of the streamflow sets.
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introduced to improve the shape of hydrograph recessions (by modifying the partitioning of net rainfall
into the production and routing store).

8.3. Model Grouping g3.x: Combining the Nonstationary GR4J With Improved Process Representation
The models in grouping g3.x combine the nonstationarity characterization of parameter h1 with the reces-
sion and ET modifications to the standard GR4J model. As noted in section 5.3, the AIC-best model from
grouping g2.x (i.e., model g2.2) is included in model grouping g3.x as model g3.1.

The AIC-based model ranking is almost identical, regardless of whether streamflow set ~yð>0:09Þ or ~yð>0:09Þ
t:5116j is

used. The AIC-best and second-best models (g3.11 and g3.12, respectively) have the same model structure
except for the evapotranspiration term. The third-best model is g3.4, which does not use the previous 365
day rainfall and PET as covariates.

Models with the sinusoidal term (g3.3, g3.4, g3.6, g3.7, g3.9, g3.10, g3.11, and g3.12) generally rank much higher
than the models without this term: all six top-ranked models include this term. This suggests that the model
modifications described in section 8.2 are not able to eliminate the sinusoidal variation in h1. Models with
parameter h5 perform better than models without this parameter, which is consistent with the results in
section 8.2. In contrast, Figure 4 shows that the inclusion of the linear trend in the nonstationarity model of
h1 has a much smaller effect on the model rankings (i.e., compare models g3.3 versus g3.4, g3.6 versus g3.7,
and g3.9 versus g3.10).

Similar to the case for model groupings g1.x and g2.x, there is no close relationship between the AIC value of
models within the groupings g3.x and their errors in total annual flow volume. This implies that the AIC and
likelihood values are not good predictors of annual flow error over the exploratory period. This is not sur-
prising, as the likelihood used in this study is based on a heteroscedastic error model that provides a

Figure 6. Comparison of observed and simulated flow-duration curves for the exploratory period (1985-1999). (a) Autumn data for models g1.1, g1.2, g1.3 and g1.4. (b) All data for models
g1.1 and g2.2, with the inset zoom showing the highest 10% of flow days. (c) Rising limb of the hydrograph for models g1.1 and g2.2. (d) Falling limb of the hydrograph for models g1.1 and
g2.2.
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balanced fit to low and high flows. Consequently, the likelihood function is not overly sensitive to errors in
the total flow volume.

8.4. Sensitivity of AIC-Based Model Rankings to the Choice of Thinned Data Set
This section reports the sensitivity of the AIC-based model selection to the choice of thinned data set (see
section 6.3.2). Figure 7 shows the model ranks for each of the three sets of models (i.e., g1.x, g2.x, and g3.x)
using all six distinct thinned data sets. The colors are used to distinguish between three groupings of model
structure that were found to perform similarly (sections 8.1–8.3): (i) models with a sinusoid parameterization
of h1, (ii) models with the additional parameter h5, and (iii) models with both a sinusoid parameterization of
h1 and the recession parameter h5.

The findings show reasonable consistency in the rankings obtained with different streamflow sets, particu-
larly when accounting for the major model structural groupings. In set g1.x, models with the sinusoid func-
tion consistently outperform those without this function. Model g1.6 is the AIC-best for four of the thinned
data sets, whereas g1.5 and g1.8 are each the AIC-best for one thinned data set. Similarly, in set g2.x, models
g2.2 and g2.4 consistently outperform the remaining models, except for the sixth thinned data set, in which
model g2.3 is ranked AIC-second best. Finally, in set g3.x, the six models with both the sinusoid function and
the recession parameter h5 are consistently ranked among the top four models, although there is some vari-
ation in their individual rankings. Thus, the conclusions in section 8.3 regarding the covariates with the
most dominant influence on model performance appear to be reasonably robust with respect to the choice
of thinned data set used in the exploratory period.

8.5. Model Evaluation Over an Independent Confirmatory Period
This section reports the performance of the models over the confirmatory period. The focus of this evalua-
tion is to establish whether the AIC-best models identified over the exploratory period also perform well
over the independent confirmatory period where, as discussed in section 3, the annual flows are on average
19% lower than in the exploratory period.

Figure 8 shows the observed and simulated hydrographs for representative half-year subperiods of the
exploratory period (top) and confirmatory period (bottom). The prediction intervals are calculated using the
estimated residual model parameters ae and be. The cooler half-year (May to November) is shown as the
majority of annual flow occurs during this period. The figure compares the predictions of the simplest
model (g1.1) and the AIC-best model (g3.11). The models’ ability to capture the observed hydrographs is diffi-
cult to determine by visual inspection alone, with both models underestimating some days and overesti-
mating other days. Flow-duration curves (Figures 6–8) are arguably better diagnostics for assessing the
predictive performance at individual streamflow quantiles. However, it can be seen from Figure 8 that, in
the confirmatory period, the simplest model (g1.1) significantly overpredicts the observed flows for the
majority of flow events, while the AIC-best model (g3.11) matches the observations much better. Another
noticeable feature is the narrower prediction interval for model g3.11, particularly for low flows. This

Figure 7. AIC ranking when models are calibrated separately to the six distinct thinned data sets (section 6.3.2). The model sets g1.x, g2.x, and g3.x are shown in separate figures. Within
each figure, the mean rank and the range for each of the six sets is presented. The colors denote an alternative way of grouping the models, based on the presence of particular cali-
brated parameters (as indicated in the legend).
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highlights that the nonstationary model yields a significant improvement in predictive precision, while
maintaining a good description of residual errors (Figure 3).

Figure 9 presents the performance metrics, namely the likelihood, NSE, and annual average flow volume
error, for all models. Note that the AIC is not included in this comparison because the AIC is based on the
maximum-likelihood parameter values estimated over the exploratory period, and it cannot be assumed
that those parameters will also be the maximum-likelihood estimates over the confirmatory period. Based
on likelihood values, the original GR4J model g1.1 is the worst performing model in the confirmatory period.
This model also incurs the largest errors in predicting the annual average flows, underestimating them by
18%. In contrast, the best model in the confirmatory period is model g3.11, and this model underestimates
the average flow rate by only 2.6%—a significant improvement. Figure 9 also shows that including a linear
trend in h1 leads to an underestimation of flows in the confirmatory period (by 6.7% on average), while the
absence of this term leads to an overestimation by a similar magnitude (7.7% on average). Potential reasons
for this finding are discussed in section 9.3.

Figure 10 shows the AIC calculated over the exploratory period against the likelihood calculated over the
confirmatory period, for both the full and thinned data sets. This plot examines the ability of the AIC to pre-
dict model performance in the confirmatory period. It can be seen that lower (better) AIC values over the
exploratory period are associated with higher (better) log likelihood values in the confirmatory period. This
association is statistically significant, with correlation coefficients of 20.66 and 20.44 for the full and
thinned data sets, respectively. Therefore, even though the AIC tended to favor more complex models in
the exploratory period, this complexity appears to be justified by the data: these more complex models also
have the highest likelihood values in the confirmatory period.

9. Discussion: Model Selection for Future Climate Predictions

This section discusses three alternative perspectives for selecting one or more models to be used for predic-
tion. The discussion is not intended as exhaustive (e.g., section 2 lists further approaches).

Figure 8. Observed and simulated flow series for a representative year from (top) the exploratory period and (bottom) an independent
drier confirmatory period, for the standard GR4J model (model g1.1, red lines) and the AIC-best model (model g3.11, blue lines). The 90%
prediction intervals are shown using shading.
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9.1. An Information-Theoretic Approach to Model Selection
Section 6.1 discussed the use of the Kullback-Leibler information as a measure of the information lost when rep-
resenting environmental processes using a (necessarily approximate) model. As noted by Burnham and Anderson
[2010], a key theoretical appeal of the AIC is that, given a set of models, it identifies the model that approximately
minimizes the Kullback-Leibler information. However, as emphasized in section 6.1, this appealing feature can be
undermined if the assumptions in the likelihood function (and thus the AIC) are strongly violated. Note that this
includes assumptions in both the deterministic and error models, i.e., AIC-based conclusions may be sensitive to
deficiencies in either/both the physical process representation and the statistical description of uncertainty.

Of the 22 models, whether calibrating to data set ~yð>0:09Þ or ~yð>0:09Þ
t:5116j , model g3.11 gives the lowest (best) AIC

value, followed by model g3.12. Models g3.3 and g3.4 also perform well in some of the thinned data sets, as
shown in Figure 7. Models g3.11 and g3.12 are the most complex models considered in this work, incorporat-
ing all the covariates and differing only in the calculation of the actual ET. Similar results have been found
in other studies [e.g., Engelhardt et al., 2013], where the AIC tended to favor very complex models when
compared to Bayesian selection criteria such as the BIC or KIC. Nevertheless, the model with the lowest
(best) AIC in the exploratory period was found to maximize the likelihood in the confirmatory period,
although significant scatter is observed (Figure 10).

Figure 9. Model likelihood, NSE, and flow error (as a percentage of total annual flow) evaluated during the confirmatory period. Red,
green, and blue colors indicate the model structure groupings g1.x, g2.x, and g3.x, respectively. All models are ordered from best to worst
performance, as given by the AIC differences over the exploratory period (see Figure 4).
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The problems with applying the AIC weights in cases where the hydrological and error model assumptions
are not met are demonstrated by comparing the weights of the candidate models. In the case where
streamflow set ~yð>0:09Þ is used for parameter estimation, the model with highest AIC rank has an Akaike
weight of close to one, while all other models have weights close to zero. This may be due to the omission
of error autocorrelation from the likelihood function, which results in an inference that overestimates the
information content of the data. If streamflow set ~yð>0:09Þ

t:5116j is used, the residual error autocorrelation is no
longer statistically significant at the 5% significance level, yet the AIC weight of the preferred model
decreases only slightly, to 0.98. Since the AIC is derived under the assumption that the entire predictive
model (here, GR4J and the linear heteroscedastic error model) is a sufficiently ‘‘good’’ approximation of the
real system, it may be that the AIC is affected more by deficiencies in the hydrological model (i.e., in GR4J
and its variants) than by deficiencies in the error model. This reinforces the need to improve the specifica-
tion of likelihood functions in hydrological modelling and understand the sensitivity of AIC weights to viola-
tions in the deterministic and stochastic components of the likelihood function. The use of ‘‘hydrologically
meaningful’’ measures of model performance is hence of clear importance, as described next [see Martinez
and Gupta, 2011].

9.2. A Multiple Diagnostics Approach to Model Selection
The limitations of single-metric approaches can be reduced by using multiple ‘‘hydrologically meaningful’’
diagnostics [e.g., see Legates and McCabe, 1999; Martinez and Gupta, 2011]. These diagnostics can be con-
structed to scrutinize the ability of the model to reproduce specific hydrological features of interest. For
example, in this study, seasonal flow-duration curves were used to establish that model g1.3 (for which
parameter h1 is allowed to vary sinusoidally over the year) outperforms models based on other representa-
tions of nonstationarity (interannual, etc.). From a physical perspective, this can be attributed to the season-
ality of the catchment, with summer being water-limited and winter being energy-limited. Flow-duration
curves also helped to establish that, of all GR4J modifications considered in this study, the introduction of
parameter h5 to control the portion of net rainfall directed to the production store yields the largest
improvement in the simulation of hydrograph recessions.

The annual flow error (or bias) is another useful diagnostic, given its obvious relevance for studies such as
reservoir yield analyses. However, in this study, the predictive power of this statistic appears limited, with
no statistically significant correlation between the flow errors in the confirmatory versus exploratory peri-
ods. These results indicate that a ‘‘good’’ model in terms of overall mass balance over a calibration period
may not be a ‘‘good’’ model when applied in prediction.

In contrast to the flow error, the NSE performed better as a diagnostic tool, with a statistically significant
correlation between the NSE in the exploratory and confirmatory periods. In contrast to the AIC, the NSE
generally favored simpler models, such as model g2.2 (followed closely by g2.3 and g2.1) when calibrating to
the streamflow set ~yð>0:09Þ, and g1.1 when calibrating to the streamflow set ~yð>0:09Þ

t:5116j . As a result, in this study,

Figure 10. Likelihood function values computed over the confirmatory period (2000–2009) plotted against AIC values computed over the
exploratory period (1985–1999). (left) The results for the full data set; (right) the results for the thinned data set. Correlation coefficients are
20.66 and 20.44, respectively, which are statistically significant at the 5% level.
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the models favored by the NSE are very different to the models favored by the AIC. This is likely to be due
to the different weighting of low and high flows in the heteroscedastic likelihood (which attempts to bal-
ance the fitting of low and high flows) versus the NSE metric (which is generally insensitive to low flows).

Given that different models are favored by different metrics, it is unclear how to best use multiple diagnos-
tics for model selection and for constructing a multimodel ensemble. Which models should be included in
the ensemble, and how should they be weighted?

9.3. Use of Independent Information to Assist in Model Selection
In many cases, information on a particular catchment may be difficult to include directly into a hydrological
modeling framework, but may nevertheless enable the physical realism of the model predictions to be
assessed against the empirical evidence. This is referred to as the ‘‘principle of hydrological consistency’’ in
Martinez and Gupta [2011].

In this study, the observed trend in parameter h1 might at least partially be explained by independent evi-
dence suggesting an increase in farm dams in the catchment. In particular, the report by Teoh et al. [2002]
shows that no farm dams were present in the catchment in 1987, increasing to 140 farm dams with a total
storage volume of 118 mL in 1996, and to 161 farm dams with a total storage volume of 148 mL in 1999.
The 1999 volume equates to a catchment-averaged depth of 5.1 mm, and represents 4% of the annual aver-
age catchment discharge over the exploratory period. Controls on the development of new farm dams
have been instigated in the early 2000s [Teoh, 2002], and it is therefore likely that the total storage volume
of farm dams would not have increased substantially since that time. Interestingly, during the confirmatory
period all the models without a trend in h1 overestimated total annual flows, whereas all the models with a
trend underestimated total annual flows (see section 8.5). This is consistent with the independent evidence
on trends in farm dams, however other changes (e.g., groundwater extraction due to agricultural activities)
may also have occurred over this time, and cannot be ruled out as alternative potential physical causes of
the nonstationarity in h1.

Catchment groundwater flux is an alternative source of information that can be used to evaluate hydrologi-
cal consistency. In most models calibrated in this study, groundwater represents an important component
of the water balance, although the total groundwater flux estimates varies substantially between models,
ranging from 0.064 to 0.411 mm/d (Figure 4). The best available estimate of groundwater export (calculated
as net recharge minus base flow) was approximately 995 mL/yr (0.094 mm/d) when averaged over the 30
year period from 1975 to 2004, although the estimates are very approximate and uncertainty estimates are
not available [Adelaide and Mount Lofty Ranges Natural Resources Board, 2013]. Therefore, available evidence
on the groundwater flux is consistent with the modeling results presented here, in that all evidence points
to a groundwater export. However, more detailed estimates of groundwater fluxes are needed before indi-
vidual models can be more confidently excluded from the analysis.

10. Conclusions

This paper proposes and illustrates a strategy for diagnosing and interpreting hydrological nonstationarity.
The major aim is to improve the ability of a hydrological model to provide extrapolative predictions under
changing hydroclimatic conditions, since future hydroclimatic conditions may be outside of the domain of
the data used for model selection and parameter estimation.

The strategy consists of four elements: (1) detecting, and where possible, eliminating, systematic errors in
data; (2) allowing one or more hydrological model parameters to vary in time as functions of covariates
intended to capture the relevant time scales of hydrological model nonstationarity (e.g., seasonal, annual,
and interannual); (3) trialing alternative model structures, with the aim of reducing hydrological model non-
stationarity; and (4) model selection and evaluation including the combined use of information-theoretic
metrics (such as the AIC) and hydrologically oriented diagnostics (such as flow-duration curves).

The strategy is illustrated for a small catchment in South Australia, using the GR4J hydrological model as
the initial hypothesis. A heteroscedastic error model likelihood is applied to a thresholded and thinned data
set to reduce the impact of low flows and residual error autocorrelation, respectively. An exploratory period
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is used for model calibration and selection, and a confirmatory period that is much drier than the explora-
tory period is used to test whether the models are robust under extrapolation.

The key conclusions of implementing the nonstationarity analysis strategy in the case study are:

1. Improved model predictions are obtained when the GR4J storage capacity parameter (h1) is made
dependent on covariates describing seasonality, annual variability, and longer-term trends. No systematic
errors were found in the calibration data itself, suggesting that the nonstationarity model of h1 is compen-
sating for structural errors in how the model represents changes in the hydrological dynamics of the
catchment.

2. The model selection analysis highlights the impact of the choice of model evaluation metrics and meth-
odology. The AIC approach often reports a strong difference between models, compared to the NSE metric
which has a much lower discriminatory power. Hydrological models with low AIC values in the exploratory
period also perform well in terms of the AIC in the confirmatory period. In contrast, models selected using
the NSE in the exploratory period performed poorly over the confirmatory period.

3. Hydrologically oriented model diagnostics, such as the flow-duration curves (stratified by season, rising
and falling hydrograph limbs, etc.), are useful for detecting model weaknesses. For example, they can help
detect systematic biases in predictions of low and high flows, motivate and guide changes in the model
representation of recessions and actual evapotranspiration, and so on.

4. Overall, reasonable improvements in predictive performance are achieved: whereas the original GR4J
model overestimates annual average flows in the confirmatory period by 18%, the best-performing modi-
fied models (incorporating parameter non-stationarity and other structural changes) underestimate the
flows by only 3–7%.

When using the inferred nonstationarity models for developing streamflow projections for a future climate,
scientific judgement is still required to estimate how the identified parameter trends might continue over
time. For example, in this study, the identified trend of increasing model storage capacity could be tenta-
tively explained by an increase in farm dams within the catchment, although other hypotheses such as
changes in vegetation dynamics or groundwater extractions could not be excluded. Given this uncertainty,
projections should be based on an ensemble of possible models, encompassing a range of possible future
changes to catchment stores. This offers the best chance to adequately capture the uncertainty in future
catchment behavior.

Future research is recommended on: (1) extending the nonstationarity approach to multiple model parame-
ters, to detect and quantify nonstationarity across nonnested models (e.g., models that do not share com-
mon parameters); (2) further exploring the AIC-based model selection methodology and comparing its
results to other selection approaches such those identified in section 2; and (3) applying the nonstationary
approaches and model selection strategy to flexible model structures such as FUSE [Clark et al., 2008] and
SUPERFLEX [Fenicia et al., 2011; Kavetski and Fenicia, 2011], with the aim of finding model structures that
minimize parameter nonstationarity.
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