Data Transfer and Sharing within Web Service Workflows

Donglai Zhang

September 2013

A dissertation submitted to the School of Computer Science of The University of Adelaide for the degree of Doctor of Philosophy

Supervisors:
Dr. Andrew L. Wendelborn
Dr. Paul D. Coddington
Contents

Abstract ... viii
Statement of Originality ... x
Acknowledgement .. xi

1 Introduction

1.1 Web Service Workflow for Remote Cooperation 3
 1.1.1 Wide Area Network and Local Area Network 4
 1.1.2 Network Connections for Research Work 5
1.2 Distributed Data Transfer in Workflow 6
 1.2.1 Data Transfer Requirements 6
 1.2.2 Data Transfer in a Workflow 8
1.3 Distributed Data Transfer and SOAP 9
 1.3.1 Distributed Data Transfer 9
 1.3.2 Data Transfer Performance Improvement with SOAP 10
1.4 Web Service Data Transfer with Attachment 13
 1.4.1 SOAP with Attachment 13
 1.4.2 Web Service Attachment Performance 14
1.5 Data Sharing in Web Service Workflow 15
 1.5.1 Workflow Classification 15
 1.5.2 Workflow Data Sharing 16
 1.5.3 Web Service Workflow Data Sharing Review 18
 1.5.4 Web Service Data Forwarding (WSDF) Framework 20
 1.5.5 WSDF Implementation 20
2 Research Background 24

2.1 Introduction 24
2.2 Distributed Environment Networks 25
2.3 Distributed Resource Sharing 26
2.3.1 Information Sharing 26
2.3.2 Computational Resource Sharing in Distributed Environment 26
2.4 Distributed Computing Infrastructures 28
2.4.1 Grid Infrastructure 29
2.4.2 Cloud Infrastructure 31
2.5 Service Oriented Architecture and Web Service 33
2.5.1 Service Oriented Architecture (SOA) 33
2.5.2 Web Services 34
2.5.2.1 Web Service Architecture 35
2.5.2.2 Web Service Description Language (WSDL) 35
2.5.2.3 Single Object Access Protocol (SOAP) 36
2.5.3 RESTful Approach of Web service 37
2.5.4 Stateful Web Service and WSRF 38
2.6 Distributed Resources Collaboration 39

3 E-Science and Web Service Workflow 40

3.1 E-Science 41
3.1.1 E-Science Projects 41
3.1.2 Instruments in e-Science 44
3.2 Workflow 45
3.2.1 Workflow Definition 46
3.2.2 Workflow System 46
3.3 Data Transfer and Sharing within Workflow 50
3.3.1 Data Transfer with e-Science workflow 50
3.3.2 Web Service Data Transfer .. 50
3.3.3 Web Service Data Sharing .. 51

4 Web service Data Transfer with SOAP 53
4.1 Introduction ... 53
4.2 Research Background and Motivation 54
 4.2.1 Synchrotron Project and CIMA 55
 4.2.2 Motivation for the Research Work 56
4.3 Web Service Data Transfer with SOAP Message 57
 4.3.1 Data Transfer Performance Analysis 58
4.4 SOAP Message Data Transfer Improvements 59
 4.4.1 TCP Tuning .. 59
 4.4.2 Push/Pull Model ... 61
 4.4.3 Selection of Communication Protocols 62
 4.4.4 Sending Data as Attachment 62
 4.4.5 Multiple Data Transfer Connections 63
4.5 Improving Data Transfer in an e-Science Context 63
 4.5.1 Experimental Framework .. 64
 4.5.2 TCP Tuning .. 65
 4.5.3 Combination of Pull Model with HTTP 67
 4.5.4 Pull Model with Concurrent HTTP Clients 71
4.6 Conclusions ... 73

5 Web Services Data Transfer with Attachment 76
5.1 Introduction ... 77
5.2 Web Service with Attachment (WS-Att) 78
5.3 GridFTP .. 80
5.4 Experiment Environment for WS-Att 80
 5.4.1 Experiment Location .. 80
 5.4.2 Multiple Threads WS-Att .. 81
8.1.2 Distributed Environment for Testing ... 118
 8.1.2.1 WAN environment ... 118
 8.1.2.2 Cloud Environment .. 119
8.1.3 Latency and Bandwidth Settings for Workflow Environment 120
8.1.4 Services ... 121
8.1.5 Data Size ... 121
8.2 Experiment Environment ... 122
 8.2.1 Experiments in Emulated Distributed Environment 122
 8.2.2 Experiments in Cloud Environment .. 123
8.3 Theoretical Analysis ... 123
 8.3.1 Theoretical Data Transfer Time Analysis 123
8.4 Results Analysis ... 127
 8.4.1 Data Transfer vs. Resource Management 131
 8.4.2 Impact of Data Size ... 131
 8.4.3 Network Connection Between Services and Client 135
 8.4.3.1 Number of Services .. 136
 8.4.4 Comparison with Theoretical Results 137
9 WSDF Testing in the Cloud ... 139
 9.1 Introduction ... 139
 9.2 Testing Methodology ... 141
 9.2.1 Cloud Provider .. 141
 9.2.2 Number of Services and Data Size 143
 9.3 Experiment Environment ... 143
 9.4 Cloud Experiment Result and Analysis 145
 9.4.1 Total Time Consumed .. 145
 9.4.2 Data Size .. 146
 9.4.3 WSDF Performance Improvement Comparison 152
10 Conclusion and Future Work ... 154
 10.1 Data Transfer ... 154
Contents

10.2 Data Forwarding .. 157
 10.2.1 Utilization of Web Service 157
 10.2.2 A Generalized Approach 159
 10.2.3 WSDF with Decentralized Workflows 160
 10.2.4 WSDF and Workflow Execution 161
10.3 Future Work .. 161

Bibliography ... 163

Appendix A: Operation Signatures 176
Abstract

With the development of distributed systems, it is more and more common for users to harness different resources to implement a larger task to meet their requirements.

Among the different approaches to distributed resource coordination, workflows based on Service Oriented Architecture (SOA) is an important case, as SOA provides a framework that is designed for loosely coupled applications. This thesis introduces the research work that we have carried out in distributed computing environments to improve the performance of data transfer and sharing in a web service workflow.

In a distributed environment, we explore how to improve the efficiency of data moving between services in a web service workflow. Data movement in a web service workflow can be categorized into two classes: data transfer between any two nodes in the workflow and the intermediate data sharing between different web services. We initially explored ways to improve the data transfer performance between two web service nodes, then improved the data sharing performance via study of the data sharing relationship between applications composed in a workflow.

We carried out the initial part of the research work based on the CIMA (Common Instrument Middleware Architecture) web service interface, which has been used by multiple academic organizations as an interface to distributed scientific instruments and applications. With the related experiments, we explore how the data generated by instruments can be transferred efficiently between different web service nodes. In the rest of the research, we study the data sharing relationships between different web service applications. By proposing the Web Service Data Forwarding (WSDF) framework, we allow intermediate data to be forwarded directly from the data generator to its consumer without going via a third party (the workflow engine).
We have implemented prototype systems for our proposed ideas. We also tested these systems in different environments to demonstrate the performance improvement that is expected from the WSDF approach.
Thesis Declaration

I, Donglai Zhang certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Donglai Zhang
Acknowledgments

Firstly, I would like to thank my wife and my family to support me with my study. Without your help, I will not have a chance to even start this work.

Secondly, great appreciation to my supervisors, Dr. Andrew Wendelborn and Dr. Paul Coddington, for their invaluable guidance and assistance with my study. Both of them are great supervisors. They are very experienced within the area of this research work and provided significant amount of guidance and feedback that was critical to the project. With their help, I not only gained research experiences, but also learned the fundamental methodologies for future research work as a researcher.

Third, I would thank my friends: Kewen, Paul, M, Peter, Wei, and Yidong — thanks for your help during my study.