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Towards renormalizable gravity without negative-energy states
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A second-derivative gauge theory with a massless spin-2 boson on flat spacetime is pre-
sented. The dynamical symmetry preserves the spacetime metric and follows from an al-
ternative interpretation of the equivalence principle. Gauge ambiguity is eliminated by a
choice of reference frame, and the gauge boson propagator is derived from an invariant four-
parameter polynomial action involving only dimensionless couplings. It is deduced that the
theory is power-counting renormalizable in this gauge for almost all configurations of param-
eters. Examination of the linearized radiation then shows that, for some of these configura-
tions, all excitations have non-negative canonical energy density. The paper concludes with
an analysis of the static isotropic solutions to the weak-field vacuum equations.
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I. INTRODUCTION

To conceive a consistent quantum theory compatible with observable gravitational
phenomena is widely recognized as an outstanding challenge of theoretical physics.
Unfortunately, applications of established quantum field theory techniques to general
relativity fall short due to the form of the implied interactions. Their negative mass
dimensionality suggests that ultraviolet divergences cannot be removed by renormal-
ization of a finite number of parameters.

It so happens that pure gravity, as dictated by Einstein’s theory, is finite at one loop
[1] due to a cancellation particular to four spacetime dimensions. However, coupling
to matter—whether it be of scalar [1], Maxwell [2], Yang-Mills [3], or Dirac [4] type—
introduces nonrenormalizable divergences at that same order. And even pure gravity
diverges at two loops [5].

Recent approaches to the subject involve (a) more general quantization procedures,
often with perturbative notions discarded, or (b) exotic frameworks such as string
theories. In many cases, one must relinquish ideas from conventional gauge theories
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that have contributed to the success of modern particle physics. In almost all cases, one
must acquire a radically different point of view than that which is sufficient to effectively
model the other forces of nature.

The divergences of general relativity can be curbed by adding four-derivative terms
to the Einstein-Hilbert action [6]. The resulting theory is even asymptotically free [7].
Six additional degrees of freedom are introduced to the two excitations corresponding
to Einstein’s massless spin-2 graviton: one corresponds to a massive spin-0 particle and
the remaining five to a massive spin-2 particle. The full particle content is required for
renormalizability. Unfortunately, the massive spin-2 particle is a ghost—it has negative
classical energy. This difficulty is characteristic of higher-derivative theories, and seems
to be unavoidable if one requires both renormalizability and unitarity [8].

The appearance of ghosts poses an, as yet unresolved, obstacle towards the accep-
tance of presently known renormalizable theories of gravitation. One can surmise,
however, that enhancing the particle content can aid renormalizability. It is generally
accepted that macroscopic effects of gravity are primarily due to interactions with a
massless spin-2 field. It is also known [9] that coupling a free field with these charac-
teristics to its own energy-momentum tensor leads to Einstein’s theory. But there is no
fundamental reason for additional particles to be absent. In fact, phenomenology may
indicate otherwise. The current standard cosmological model involves general relativity
with a nonzero cosmological constant and cold dark matter. While it does fit experimen-
tal data well, its theoretical motivation is incomplete; it suffers from the well-known
cosmological constant problem [10] and posits that most of the matter content of the
universe is practically undetectable. Alternatives that aim to resolve difficulties at the
galactic [11] and cosmological [12] scales all include additional degrees of freedom.

In this paper it is proposed that general covariance may not be the most appro-
priate symmetry for relativistic gravitation. Instead, physical laws are required to be
invariant with respect to those local transformations that preserve the natural structure
of Minkowski spacetime. That is, field equations, etc., should take the same form in
inertial and rotating/accelerating frames, but need not be invariant with respect to local
scale transformations. Then the volume form and metric can be constant and the field
equations can be derived from a polynomial action, greatly simplifying renormalization.

After examining how reference frames transform with respect to gauge transforma-
tions in Section II, a complex-valued gauge field is introduced and used to construct
various covariant quantities in Section III. Then, in Section IV, a second-order action
that involves a weighted sum of four invariants is presented. These invariants are cho-
sen so that the free-gauge-field action is sesquilinear quadratic in the gauge field (to
promote positive kinetic energy) and so that the gauge field propagator behaves like
k−2 for large momenta k . In Sections V and VI, a quantization via the Faddeev-Popov
procedure is proposed and the gauge field propagator is derived. From the form of
the propagator and the fact that all couplings have non-negative mass dimension, it
is concluded that the theory is power-counting renormalizable. To further examine
the particle content of the theory, and to check if any excitations have negative energy,
Section VII explores plane wave solutions of the linearized vacuum equations. In ad-
dition to a massless spin-2 boson, various excitations of helicity 0 and 1 are present;
depending on the parameters that appear in the action, there are either fourteen or
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sixteen dynamical degrees of freedom1. For certain values of these parameters, the
linearized canonical energy is indeed non-negative. Finally, in Sections VIII and IX,
weak-field static isotropic solutions are found and examined. The general equations of
motion for a test particle within a spherically symmetric field prove to be difficult to
solve directly. Several simplifying assumptions allow for a straightforward solution, how-
ever it is shown that the ensuing trajectories cannot correctly describe the delay of light
passing by a spherically symmetric gravitational source. It remains to be investigated
whether a more general approach can yield the correct result.

In the following: inactive indices are always omitted (contracted quantities are
assigned unique symbols); the Minkowski metric is taken to be [η] = diag(1,−1,−1,−1) ;
and the components of the antisymmetrization and symmetrization of a rank-2 tensor
X are denoted by X [µν ] and X (µν ). Left- and right-handed spinor indices are denoted
using unprimed and primed uppercase letters from the Latin alphabet like ϕA and
χA ′ ; the two-dimensional antisymmetric symbol ε is used to (carefully) raise and lower
spinor indices; and the vector-spinor translation symbolσ, given by the Pauli matrices,
is used to construct the canonical double covering from the spin group SL 2(C) to the
connected Lorentz group (refer to Appendix A for details).

II. DYNAMICAL SYMMETRY

The equivalence principle can be interpreted as the requirement that gravitation
be completely indistinguishable from the fictitious forces that appear in accelerated
reference frames. It is therefore peculiar that general relativity postulates invariance
with respect to local scale transformations—transformations that affect the spacetime
metric and volume form. In fact, the resulting nonpolynomial couplings are one of the
primary obstacles to the theory’s renormalization. Another quirk of general covariance is
that it is completely independent from Lorentz invariance: one can construct generally
covariant theories that are Galilean in freely-falling frames. This section provides an
alternative to general covariance that circumvents these issues while respecting the
equivalence principle as stated above.

The theory in this paper is formulated on a flat Minkowski background. One can
readily assume the existence of global coordinates. Nevertheless, certain notions from
the theory of manifolds prove indispensable.

Let
�

xα
	

α=0,...,3 denote orthonormal (Cartesian) coordinates and
�

∂/∂xα
	

the cor-
responding coordinate frame. Lowercase indices from the beginning of the Greek
alphabet will be used to denote vector components with respect to these coordinates.
Now let

�

∂µ
	

µ=0,...,3 denote another frame related to
�

∂/∂xα
	

by a smoothly varying
proper orthochronous Lorentz transformation2 Λ=Λ(x ),

∂µ ≡
�

Λ−1�α
µ

∂

∂xα
. (2.1)

1 Fourteen or sixteen degrees of freedom may seem excessive compared to the two degrees of freedom that Ein-
stein’s theory exhibits, but not unreasonable if one compares to the theories that govern electroweak and strong
interactions: three massive weak bosons possess nine degrees of freedom between them and eight gluons boast
a total of sixteen.

2 Recall that a proper orthochronous Lorentz transformation Λ satisfies Λρµ Λσν ηρσ =ηµν , detΛ= 1, and Λ0
0 ≥ 1, and

resides in the connected Lorentz group.
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By definition, the transformation Λ preserves η as well as time and space orientations.
The (global) discrete transformations involving time and space inversions are neglected
to make the treatment of spinor fields less convoluted.

One can try to find coordinates
�

y µ
	

for which ∂/∂y µ = ∂µ, however the relevant
differential equation rarely admits solutions. Since, for any

�

y µ
	

, one has

∂ 2

∂y [µ∂y ν ]
= 0 , (2.2)

a necessary condition for
�

∂µ
	

to be a coordinate frame is ∂ [µ∂ν ] = 0. To demonstrate
why this is not true in general, and to aid the forthcoming construction of covariant
objects, it is useful to define the “object of anholonomity”ω, given by

∂ [µ∂ν ] =ωρµν ∂ρ . (2.3)

Acting on some field Φ with the differential operator ∂ [µ∂ν ], and noting that (2.2) also
applies for

�

xα
	

, one finds that

∂ [µ∂ν ]Φ=
�

�

Λ−1�α
[µ

∂

∂x |α|

��

�

Λ−1�β
ν ]

∂

∂xβ

�

Φ (2.4)

=
�

Λ−1�α
[µ

�

∂

∂x |α|
�

Λ−1�β
ν ]

�

∂ Φ
∂xβ

, (2.5)

and hence,

ωρµν =Λ
ρ
β

�

Λ−1�α
[µ

∂

∂x |α|
�

Λ−1�β
ν ] =−

�

Λ−1�α
µ

�

Λ−1�β
ν

∂

∂x [α
Λρ
β ] . (2.6)

The relevant condition for
�

∂µ
	

to be a coordinate frame is then [13] precisely ω = 0,
which requires that the curl in (2.6) vanishes. It is clear that this condition is satisfied if
Λ is constant (i.e., a global Lorentz transformation), as one would expect. Frames

�

∂µ
	

for whichω is nonzero do not correspond to coordinates and are called “anholonomic.”
Orthonormal frames, such as those defined by vierbein in general relativity, are generally
anholonomic.

With respect to an arbitrary (metric and orientation preserving) local transformation

∂µ→
�

Λ−1�ν
µ ∂ν , (2.7)

it can be seen from (2.6) thatω transforms like

ωρµν →
�

Λ−1�λ
µ

�

Λ−1�τ
ν

�

Λρσω
σ
λτ− ∂ [λΛ

ρ
τ]

�

. (2.8)

The affine nature of this transformation proves useful when seeking covariant quantities.
Nevertheless, ω is devoid of physical content. It is merely an intrinsic measure of
acceleration, an artefact of the inability to describe accelerating frames in terms of
coordinates.

Working exclusively in frames which are related by local Lorentz transformations al-
lows for a straightforward treatment of spinor fields3. However, a choice of orthonormal

3 In generally covariant theories, on the other hand, one must introduce vierbein fields [4] as general linear groups
do not admit spin representations [14].
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frame does not unambiguously specify the components of such fields. This can be seen
as follows4. Suppose that

�

ιA
	

A=1,2 is a spin frame—a smoothly varying choice of basis
for complex, 2-dimensional spinor space—such that

∂µ =σAA ′

µ ιA ιA ′ . (2.9)

Then, with respect to a local transformation λ = λ(x ) ∈ SL 2(C), (2.9) transforms as
required,

∂µ→Λνµ ∂ν =σ
AA ′

µ λB
A λ

B ′

A ′ ιB ιB ′ , (2.10)

where Λ = Λ(λ) is given by the canonical double covering (A3) from SL 2(C) to the
connected Lorentz group. Since the relation (2.9) is invariant with respect to phase
transformations

ι→ e iθ ι , (2.11)

a choice of frame
�

∂µ
	

can at most fix the components of a spinor field ϕ =ϕA ιA up to
phase. The only way to avoid such ambiguities, so that the components of fields of any
spin are well-defined, is to explicitly specify a spin frame.

The working in the remainder of this paper takes place in a spin frame
�

ιA
	

that is or-
thonormal and oriented, in the sense that it induces a frame

�

∂µ
	

, via (2.9), that is given
by a local transformation (2.1) of the orthonormal coordinate frame

�

∂/∂xα
	

. A theory
is constructed that is invariant with respect to gauge transformations λ=λ(x )∈ SL 2(C),

ιA →
�

λ−1�B
A ιB . (2.12)

In certain circumstances, it is useful to eliminate unphysical gauge degrees of free-
dom by requiring that

�

ιA
	

lie within a specific class of frames. This can be accomplished
by insisting that the object of anholonomityω corresponding to

�

∂µ
	

vanishes,

ω= 0 . (2.13)

It is always possible to move to a frame where (2.13) holds by applying a gauge transfor-
mation that agrees with the inverse of (2.1) up to a global Lorentz transformation.

The condition (2.13), unlike most gauge conditions, places no constraint upon any
dynamical field. Nevertheless, (2.13) is not gauge covariant and does break gauge
symmetry; from (2.8) it is evident that it only respects transformations Λ = Λ(λ) that
satisfy

∂ [µΛ
ρ
ν ] = 0 . (2.14)

Since (2.14) amounts to an overdetermined linear system of 24 differential equations
in 6 unknowns, only trivial solutions with ∂Λ = 0 exist. This means that, once one
chooses a coordinate frame, the only further transformations that can be performed
without violating (2.13) are global Lorentz transformations; special relativity re-emerges
in Cartesian coordinates if gravitation is absent.

4 Notational conventions regarding spinors are established in Appendix A, which also serves as a brief review of
chiral spinor algebra. The conventions used here agree, for the most part, with [15].
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III. GAUGE COVARIANCE

In modern gauge theories, gauge fields are introduced to make the field equations
that govern matter—typically fermionic matter—covariant in the simplest possible way.
This is not the case with general relativity, which was developed before the significance
of gauge theories was recognized. In fact, it is not even possible to construct a generally
covariant description of spinor fields using only a dynamical spacetime metric. One
must introduce unphysical degrees of freedom via vierbein [4]which respect, in addition
to general covariance, a local Lorentz symmetry. This makes the treatment of fields with
half-odd-integer spin in general relativity quite cumbersome.

In this paper, the fundamental gauge fields are chosen so as to couple to Dirac fields
in a fashion similar to that of the familiar models of particle physics.

Let (ϕ,χ) be a Dirac bispinor field made up of left- and right-handed fields ϕ =ϕA ιA
and χ =χA ′ ιA ′ . With respect to a global spacetime transformation λ∈ SL 2(C), it trans-
forms like

(ϕA ,χA ′)→ (λA
B ϕ

B , λA ′

B ′χ
B ′ ) . (3.1)

The Dirac Lagrangian is given by5

L[ϕ,χ]≡
i
p

2

�

σ
µ

AA ′ϕ
A ′�∂µϕ

A�+σµAA ′ χ
A�∂µχ

A ′�
�

−
i
p

2

�

σ
µ

AA ′ϕ
A�∂µϕ

A ′�+σµAA ′ χ
A ′�∂µχ

A�
�

+m
�

εA B ϕ
AχB + εA ′B ′ϕ

A ′χB ′
�

. (3.2)

The easiest way to make the Lagrangian (3.2) invariant with respect to gauge trans-
formations (2.12) is to introduce a (complex) gauge field B that transforms like

�

Bµ
�A

B →
�

Λ−1�ν
µ

�

λA
C

�

λ−1)DB
�

Bν
�C

D +
1

K

�

λ−1�C
B ∂νλ

A
C

�

(3.3)

=σE E ′

µ σνF F ′
�

λ−1�F
E

�

λ−1�F ′

E ′

�

λA
C

�

λ−1)DB
�

Bν
�C

D +
1

K

�

λ−1�C
B ∂νλ

A
C

�

,

where K is a (real) dimensionless coupling constant and Λ=Λ(λ) is given by the dou-
ble covering (A3). Then one can replace the derivatives ∂ϕ and ∂χ with covariant
derivatives given by

Dµϕ
A ≡ ∂µϕA −K

�

Bµ
�A

B ϕ
B and Dµχ

A ′ ≡ ∂µχA ′ −K
�

Bµ
�A ′

B ′ χ
B ′ . (3.4)

One can also covariantly differentiate 1-forms A like

DµAν ≡ ∂µAν −ΓρµνAρ , (3.5)

where

Γρµσ ≡−K σρAA ′σ
BA ′

σ

�

Bµ
�A

B −K σρAA ′σ
A B ′

σ

�

Bµ
�A ′

B ′ =−2K Re
�

σ
ρ

AA ′σ
BA ′

σ

�

Bµ
�A

B

�

. (3.6)

5 The bispinor representation commonly referred to as the chiral or Weyl representation is used here. If one sets

ψ≡ [ε1Aϕ
A ,ε2Aϕ

A ,χ1′ ,χ2′ ]> = [ϕ2,−ϕ1,χ1′ ,χ2′ ]>, ψ≡ψ†

�

0 1
1 0

�

= [χ 1,χ 2,ϕ 2′ ,−ϕ 1′ ] ,

and ∂/ =
�

0 ∂0

∂0 0

�

+
�

0 σ · ∂
−σ · ∂ 0

�

,

then one can write (3.2) as
L[ϕ,χ] =Re

�

iψ∂/ψ
�

−mψψ .
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Note that Γ is real and transforms like the affine connection of general relativity6,

Γρµσ→
�

Λ−1�ν
µ

h

Λρλ
�

Λ−1�τ
σΓ

λ
ντ−

�

Λ−1�λ
σ ∂νΛ

ρ
λ

i

. (3.7)

It is reasonable to require compatibility with the metric η,

Dρηµν =−ηλνΓλρµ−ηµλΓ
λ
ρν = 2K ηµν Re

�

�

Bρ
�A

A

�

= 0 . (3.8)

Taking the trace of (3.3) shows that the 1-form BA
A transforms homogeneously. One can

therefore satisfy (3.8), without ruining covariance, by setting

BA
A = 0 . (3.9)

The condition (3.9) can be regarded in a similar fashion to the condition that the metric
be symmetric in general relativity (i.e., it is imposed on the symbols themselves a priori).
It also serves to eliminate ImBA

A , which amounts to a superfluous electromagnetic
potential.

Since the algebra sl2(C) consists of the traceless 2×2 complex matrices, the gauge
field B may now be regarded as a 1-form taking values in its adjoint representation.
However, decomposing B in terms of a basis for sl2(C) would only complicate the
situation by introducing yet another set of indices. Nevertheless, one should keep
in mind that B now only contains 12 independent complex components. The same
information is contained in the 24 real components of Γ (satisfying (3.8)), as is evident
from the existence of the formula for B in terms of Γ,

�

Bµ
�A

B =−
1

2K
σAA ′

ρ σ
σ
BA ′ Γ

ρ
µσ , (3.10)

which emerges once (3.9) is imposed.
A general spin-tensor with the valence of B transforms, with respect to global Lorentz

transformations, according to the 16-dimensional complex representation7

( 1
2

, 1
2
)⊗ ( 1

2
, 0)C⊗ ( 1

2
, 0)C = ( 3

2
, 1

2
)C⊕ ( 1

2
, 1

2
)C⊕ ( 1

2
, 1

2
)C . (3.11)

The condition of tracelessness (3.9) eliminates exactly one of the vector factors ( 1
2

, 1
2
)C,

and so B and B transform according to the representations

( 3
2

, 1
2
)C⊕ ( 1

2
, 1

2
)C and ( 1

2
, 3

2
)C⊕ ( 1

2
, 1

2
)C . (3.12)

It is clear that these fields contain components that rotate like objects of spin 2.
One can now proceed to construct covariant objects by examining how the antisym-

metrized differential operator [D, D] acts on various covariant fields. By applying it on a

6 Recall that, with respect to a general coordinate transformation dx ′/dx in general relativity, the affine connection
transforms like

Γρµσ→
∂ x ν

∂x ′µ
∂ x ′ρ

∂xλ
∂ xτ

∂x ′σ
Γλντ+

∂ x ′ρ

∂xλ
∂ 2xλ

∂x ′µ∂x ′σ

=
∂ x ν

∂x ′µ

�

∂ x ′ρ

∂xλ
∂ xτ

∂x ′σ
Γλντ−

∂ xλ

∂x ′σ
∂ 2x ′ρ

∂x ν∂xλ

�

.

7 The standard notation for specifying spin representations [16] is made use of here. For instance, the Dirac
field (3.1) transforms according to ( 1

2
, 0)C⊕ (0, 1

2
)C, vectors fields transform according to ( 1

2
, 1

2
), and perturbations

from the Minkowski metric in Einstein’s theory (i.e., symmetric rank-2 Lorentz tensors) transform according to
(1, 1)⊕ (0, 0).
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scalarφ, left-handed spinorϕ, and 1-form A, and making sure to account for the object
of anholonomityω (2.3), one finds that

D[µDν ]φ = K τρµν ∂ρφ , (3.13)

D[µDν ]ϕ
A =−K

�

Gµν
�A

B ϕ
B +K τρµν Dρϕ

A , (3.14)

and
D[µDν ]Aρ =−Rσµνρ Aσ+K τσµν DσAρ , (3.15)

where the torsion τ is given by

τρµν ≡−
1

K
Γρ[µν ]+

1

K
ωρµν , (3.16)

the field strength G, by

�

Gµν
�A

B ≡ ∂ [µ
�

Bν ]
�A

B −K
�

B A
C

�

[µ
�

Bν ]
�C

B −ω
ρ
µν

�

Bρ
�A

B , (3.17)

and the curvature R , by

Rρµνσ ≡ ∂ [µΓ
ρ
ν ]σ+Γ

ρ
[µ|λ|Γ

λ
ν ]σ−ω

λ
µν Γ

ρ
λσ . (3.18)

Note that, as B is complex and traceless so is G, whereas τ and R are real like Γ andω.
It should be stressed that it is not possible to eliminate the torsion τ, as is done in

Einstein’s theory, by imposing further constraints on the affine connection. This is clear
from the fact that both Γ and τ consist of 24 independent real components. In fact, it is
not difficult to show directly from (3.16) and the metric compatibility condition (3.8)
that, in a coordinate frame,

Γρµν = 2K ηρσηλ(µτ
λ
ν )σ−K τρµν . (3.19)

Therefore imposing the constraint τ= 0 would eliminate all but pure gauge configura-
tions. This is not surprising, as even in general relativity torsion permeates orthonormal
frames.

Due to nonvanishing torsion, the curvature R does not share the same properties
as the curvature in Riemannian geometry. In particular, the Bianchi identities must be
modified to account for τ, and the contraction analogous to the Ricci tensor, Rρµρν , is no
longer symmetric.

IV. INVARIANT ACTION

An immediate concern with having a noncompact gauge group is the likelihood of
indefinite classical energy. Recall that, even though standard general relativity (with
and without a cosmological constant) is known to avoid such complications [17], they
seem to be a characteristic flaw of the known renormalizable alternatives [6, 8].

The prospect of instability is here exemplified by the fact that the invariant analogous
to the Yang-Mills Lagrangian,

ηµρηνσ
�

Gµν
�A

B

�

Gρσ
�B

A +h.c. , (4.1)
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changes sign if one makes the replacement G → i G. One can improve the situation
somewhat by requiring that the free linearized system be symmetric with respect to
global phase transformations

B→ e iθ B . (4.2)

Unfortunately, couplings to Dirac fields and cubic self-interaction terms, which are
required by gauge covariance, cannot be invariant with respect to such transformations.
It is possible, however, to form a gauge invariant action that respects this symmetry
in coordinate frames (where ω vanishes) in the limit K → 0. Then one can say that
this global U1 symmetry that is present in the coordinate gauge (2.13) is broken by the
coupling strength K , just as global chiral symmetries are broken by the fermion mass in
(3.2). Imposing such a symmetry (while requiring that the free linearized system not
depend on K ) prohibits constructions like (4.1) from appearing in the Lagrangian. The
allowed terms reduce to sesquilinear quadratics in G and certain contractions quadratic
in the torsion and its covariant derivatives.

To aid the construction of invariants that are sesquilinear in G, it is useful to define
the covariant complex tensors

Cρµνσ ≡σ
ρ

AA ′σ
BA ′

σ

�

Gµν
�A

B , Hµν ≡ Cρµρν , and K≡ηµνHµν . (4.3)

Then the curvature R is proportional to the real part of C,

−
1

K
Rρµνσ = Cρµνσ+C

ρ
µνσ . (4.4)

Due to the antisymmetry and tracelessness of G, one has

Cρνµσ =−C
ρ
µνσ , Cρµνρ = 0 , and |C|2 = 0 , (4.5)

where the last identity refers to the contraction of C with its conjugate. It can further be
shown that H (resp. H) is imaginary (anti-)self-dual,

H[µν ] =
i

2
εµνρσHρσ , (4.6)

where ε denotes the 4-dimensional antisymmetric symbol with ε0123 = 1. This implies
that the invariant H[µν ]H[µν ] vanishes.

There also exist invariants that are not quadratic in the field strength G, but still
respect the approximate U1 symmetry outlined above. For instance, in the coordinate
gauge (2.13) one has

T =−εBCεB ′C ′σ
(µ
AA ′σ

ν )
CC ′
�

Bµ
�A

B

�

Bν
�A ′

B ′ , (4.7)

where T is a linear combination of contracted quadratic products of the torsion (3.16),

T ≡ηµρτνµντ
σ
ρσ+

1

4
ηµρτσµντ

ν
ρσ−

1

8
ηµρηνσηλττ

λ
µντ

τ
ρσ . (4.8)

Deriving the expression (4.7) involves manipulating the quantities

�

Jµρ
�BD

AC ≡ i
[µν ][ρσ]
λτ σλAA ′σ

BA ′

ν στCC ′σ
DC ′

σ (4.9)
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and
�

Kµρ
�B B ′

AA ′ ≡ i
[µν ][ρσ]
λτ

�

σλAC ′σ
BC ′

ν στC A ′σ
C B ′

σ +στAC ′σ
BC ′

σ σλC A ′σ
C B ′

ν

�

, (4.10)

where

i
µνρσ
λτ ≡δνλδ

σ
τ η

µρ +
1

4
δντδ

σ
λ η

µρ −
1

8
ηµρηνσηλτ . (4.11)

One finds that

�

Jµρ
�BD

AC =
9

16
ηµρδB

A δ
D
C +

3

8
ηνρδB

A σ
µ

C A ′σ
DA ′

ν −
3

8
ηνρδD

C σ
µ

AA ′σ
BA ′

ν (4.12)

and
�

Kµρ
�B B ′

AA ′ =−ε
BCεB ′C ′σ

(µ
AA ′σ

ρ)
CC ′ +

11

8
ηµρδB

A δ
B ′

A ′ . (4.13)

Since

T =
�

Jµρ
�BD

AC

�

Bµ
�A

B

�

Bρ
�C

D +h.c.+
�

Kµρ
�B B ′

AA ′
�

Bµ
�A

B

�

Bρ
�A ′

B ′ , (4.14)

ignoring the terms involving δB
A or δD

C in (4.12) and (4.13), as B is traceless (3.9), leads
to (4.7). Similarly,

U ≡ηµρ
�

Dλτ
ν
µν

��

Dλτσρσ
�

+
1

4
ηµρ

�

Dλτ
σ
µν

��

Dλτνρσ
�

−
1

8
ηµρηνσηλτ

�

Dητ
λ
µν

��

Dηττρσ
�

(4.15)

is given, to leading order, by

U =−εBCεB ′C ′σ
(µ
AA ′σ

ν )
CC ′

h

∂ρ
�

Bµ
�A

B

ih

∂ ρ
�

Bν
�A ′

B ′

i

+O (K ) , (4.16)

in the coordinate gauge (2.13).
The complex tensors (4.3) and the invariants (4.8) and (4.15) are sufficient to form a

Lagrangian that defines a power-counting renormalizable theory. The Lagrangian that
is analysed in the remainder of this paper is

L[B]≡αH(µν )H(µν )+βKK+
γ

G
T +δU , (4.17)

where α, β , γ, and δ are dimensionless real parameters and G is the gravitational
constant.

It should be emphasized that (4.17) is not the most general gauge invariant La-
grangian, or even the most general Lagrangian that respects the approximate U1 sym-
metry mentioned above. For instance,

R≡
1

K 2
ηµνRρµρν −

2

K
Dµτνµν +6ηµρτνµντ

σ
ρσ+2ηµρτσµντ

ν
ρσ (4.18)

is linearly independent from the terms in (4.17) in general frames, but is proportional
to T whenω vanishes globally. However, since the remainder of this paper regards the
linearized theory in the coordinate gauge, terms like R, T 2, and D2T , which contribute
at most boundary terms to the linearized theory whenω= 0, are ignored.
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The Lagrangian (4.17) is remarkably similar to that of the renormalizable higher-
derivative model8 discussed in [6], particularly if one replaces T with R and neglects
torsion. However, (4.17) should imply a better behaved energy spectrum than if one
were to replace H and K with contractions of the real curvature R and thereby introduce
quadratic terms that are bilinear, as opposed to sesquilinear, in B. In addition, (4.17) is
polynomial with each term containing no more than four factors of the fundamental
field B. This should be contrasted to the Einstein-Hilbert and higher-derivative La-
grangians which, if expanded about a vacuum configuration, consist of infinite power
series of metric perturbations due to their nonpolynomial nature.

A system of Dirac fields interacting gravitationally is then governed by the Lagrangian

L[ϕ,χ ,B]≡L[ϕ,χ]+L[B]+K
�

J µ�B
A

�

Bµ
�A

B +K
�

J µ�B ′

A ′
�

Bµ
�A ′

B ′ , (4.19)

where L[ϕ,χ], L[B] are given by (3.2), (4.17), and

�

J µ�B
A ≡−

i
p

2
σ
µ

AA ′ϕ
A ′ϕB +

i

2
p

2
δB

A σ
µ

CC ′ϕ
C ′ϕC

+
i
p

2
σ
µ

AA ′ χ
A ′χB −

i

2
p

2
δB

A σ
µ

CC ′ χ
C ′χC . (4.20)

Additional terms proportional toδB
A have been included in (4.20) to eliminate redundant

trace parts (which do not contribute to the Lagrangian as B is traceless).

V. ASPECTS OF QUANTIZATION

A thorough study of the quantized theory would be out of place in this work, but
there are several immediate observations that can be made regarding quantization.

Consider the Lagrangian (4.17) in the coordinate gauge (2.13). By varying the free-
gauge-field part with respect to ∂0B, one finds that the linearized canonical momentum
conjugate to B is given by

�

Πµ
�B

A ≡
h

αησ(νητ)[0σ
µ]
AC ′ +β η

ντησ[0σ
µ]
AC ′

i

σBC ′

σ σλC A ′σ
C B ′

ν ∂ [τ
�

Bλ]
�A ′

B ′

−δεBCεB ′C ′σ
(µ
AA ′σ

ν )
CC ′ ∂0

�

Bν
�A ′

B ′ . (5.1)

As none of the components of Π vanish in general, this theory, unlike typical gauge
theories, is without primary constraints. Nevertheless, the algebra is complicated
enough that brute-force canonical quantization seems uninviting. Due to the nature of
the dynamical symmetry, Lorentz covariant quantization is far more appealing.

Before one can write down correlation functions in terms of functional integrals,
gauge fixing must be addressed. Letω be the object of anholonomity corresponding to
a frame

�

∂µ
	

. With respect to a gauge transformation ∂µ→
�

Λ−1
�

ν
µ ∂ν ,

Λµν =δ
µ
ν +η

µρ ζρν +O (ζ2) , ζνµ =−ζµν , (5.2)

8 The Lagrangian for the renormalizable higher-derivative model of [6] can be written as

L[g ]≡
�

αHµνHµν +β K 2+
γ

G
K
�

p

−det g

where g is a dynamical spacetime metric, H and K are the corresponding (symmetric) Ricci tensor and curva-
ture scalar, α, β and γ are real parameters, and G is the gravitational constant. Since H and K involve second
derivatives of the metric g , the theory defined by L[g ] is a fourth-order theory.
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with ζ small,ω transforms according to (2.8) like

ωρµν →
�

ω
ρ
ζ

�

µν +O (ζ2) , (5.3)

where

�

ω
ρ
ζ

�

µν =ω
ρ
µν −η

σλζλµω
ρ
σν −η

σλζλνω
ρ
µσ+η

ρλζλσω
σ
λν +η

ρλ∂ [µζν ]λ . (5.4)

Now suppose that
�

∂µ
	

is a coordinate frame (satisfyingω= 0), so that (5.4) reduces to

�

ω
ρ
ζ

�

µν =η
ρλ∂ [µζν ]λ . (5.5)

One can check that (5.5) agrees with (2.6). The coordinate gauge condition can then be
enforced by inserting into functional integrals the unity

1=
∏

ρ

∫

dζδ
�

ω
ρ
ζ

�

det





∂ ω
ρ
ζ

∂ζ



 . (5.6)

Explicitly, one has

∂
�

ω
ρ
ζ

�

µν

∂ζλτ
=δτ[µη

ρλ ∂ν ] , (5.7)

and can therefore write

det





∂ ω
ρ
ζ

∂ζ



∝
∫

d$∗d$ exp

¨

i

∫

d4x ηρλ
�

$∗x
�

λ[µ ∂ν ]$
µν
x

«

, (5.8)

where$∗νµ =−$∗µν and$νµ =−$µν are fermionic Faddeev-Popov ghost fields. As is
the case with Yang-Mills theories in the axial gauge, this determinant is independent
of the dynamical fields and therefore cancels out in correlation functions. Hence the
Faddeev-Popov ghosts may be dropped in the coordinate gauge.

The vacuum expectation value of a gauge invariant time-ordered operator O is given,
up to an unimportant normalization constant, by

〈O〉 ∝
∫

dϕdχ dBdζO exp

¨

i

∫

d4x L[ϕx ,χx ,Bx ]

«





∏

ρ

δ
�

ω
ρ
ζ

�



 . (5.9)

Using the fact that dϕdχ dB and L[ϕ,χ ,B] are gauge invariant and performing the
integration with respect to ζ then yields

〈O〉 ∝
∫

dϕdχ dBO exp

¨

i

∫

d4x L[ϕx ,χx ,Bx ]
�

�

ω=0

«

. (5.10)

Hence the Feynman rules in the coordinate gauge can be derived from the Lagrangian
(4.17) withω set to zero.
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VI. PROPAGATOR

The first step taken to check whether a theory is renormalizable usually involves
power-counting. This amounts to inspecting the asymptotic behaviour of propagators
and the mass-dimensionality of couplings. Since the Lagrangian (4.19) involves only
dimensionless couplings and the Dirac propagator is known, what remains to be found
is the propagator for the gauge field.

As the coordinate gauge condition (2.13) does not place any constraint upon the
gauge field, it is not clear how one should decompose the kinetic matrix and propagator.
A standard approach is to make use of spin-projection operators [6, 18] that emphasize
transversality. Unfortunately, there is no easy way to make use of projectors here since
the two sides of the propagator possess different spacetime indices—one side has
left-handed indices where the other has right-handed ones. However, one can still
construct traceless symbols of the correct valence that are transverse in some indices
and longitudinal in others.

Consider the transverse and longitudinal projectors for vector fields carrying mo-
mentum k ,

tµν ≡ηµν −
1

k 2
kµkν and lµν ≡

1

k 2
kµkν . (6.1)

For the sake of constructing traceless quantities, it is useful to define the following
square root of the transverse projector t ,

�

θµ
�A

B ≡
i
p

2
p

k 2

�

σAA ′

µ σ
ν
BA ′ kν −

1

2
δA

B kµ

�

, (6.2)

which satisfies

θ A
B θ

B
A = t , θ A

A = 0 , k µ
�

θµ
�A

B = 0 , tµν
�

θ ν
�A

B =
�

θµ
�A

B , lµν
�

θ ν
�A

B = 0 . (6.3)

It is now a straightforward matter to construct four linearly independent symbols

�

Pµν
�AA ′

B B ′ ≡
�

θ A
B

�

(µ
�

θ ν )
�A ′

B ′ ,
�

Qµν
�AA ′

B B ′ ≡
�

θ A
B

�

[µ
�

θ ν ]
�A ′

B ′ ,

�

Rµν
�AA ′

B B ′ ≡ tµν
�

θρ
�A

B

�

θ ρ
�A ′

B ′ ,
�

Sµν
�AA ′

B B ′ ≡ lµν
�

θρ
�A

B

�

θ ρ
�A ′

B ′ .
(6.4)

One can increase the span of (6.4) by including constructions of the form

σAA ′

ρ σ
σ
B B ′ xµν yρσ and σAA ′

ρ σ
σ
B B ′ x

ρ
{µ y ν}σ , (6.5)

where x , y = t , l and the braces refer to either symmetrization or antisymmetrization.
This provides the combinations

�

Tµν
�AA ′

B B ′ ≡σ
AA ′

ρ σ
σ
B B ′ t

ρ
(µ l ν )σ+σ

AA ′

ρ σ
σ
B B ′ l

ρ
(µ t ν )σ ,

�

Uµν

�AA ′

B B ′ ≡σ
AA ′

ρ σ
σ
B B ′ t

ρ
[µ l ν ]σ−σ

AA ′

ρ σ
σ
B B ′ l

ρ
[µ t ν ]σ ,

(6.6)

which are linearly independent to (6.4). Each of X = P, Q, R, S, T, U is traceless in the
sense that

X AA ′

A B ′ = 0= X AA ′

BA ′ . (6.7)
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To invert a matrix, one must first know the identity matrix. Here

�

Iρµ
�AD

BC ≡δ
ρ
µ δ

A
C δ

D
B −

1

2
δρµ δ

A
B δ

D
C , (6.8)

which satisfies
�

Iρµ
�AD

AC = 0=
�

Iρµ
�AC

BC , (6.9)

serves as the identity. Now, consider the products

�

[X ·Y]ρµ
�AD

BC ≡
�

Xµν
�AA ′

B B ′
�

Yρν
�D B ′

C A ′ , (6.10)

where X , Y = P, Q, R, S, T, U and only vector indices are raised/lowered. One finds that P,
Q, and R are orthogonal to S,

P ·S=Q ·S=R ·S= S ·P= S ·Q= S ·R= 0 , (6.11)

but the remaining pairs have nonzero overlap. If one decomposes an element of the
span of (6.4) and (6.6) in terms of P, Q, R, S, T, and U, then finding the inverse of that
element involves solving the linear system

∑

X ,Y

a X Y X ·Y = I . (6.12)

Explicitly, (6.12) amounts to the six equations

a PP−a PQ−a QP+a QQ+4 a RR+a TT+a TU+a UT+a UU = 4 ,

2 a SS+a TT−a TU−a UT+a UU = 2 ,

5 a PP+3 a PQ+4 a PR+3 a QP+a QQ+4 a RP−a TT−a TU−a UT−a UU = 0 ,

5 a PP+3 a PQ+3 a QP+a QQ+4 a QR+4 a RQ+a TT+a TU+a UT+a UU = 0 ,

2 a ST+2 a SU+a TP−a TQ−2 a TR−a UP+a UQ+2 a UR = 0 ,

a PT−a PU−a QT+a QU−2 a RT+2 a RU+2 a TS+2 a US = 0 .

(6.13)

The action for B, using the Lagrangian (4.17), can be written as
∫

d4x L[Bx ] =

∫

d4x d4y
�

Dµν
x y

�B B ′

AA ′
�

Bx
µ

�A
B

�

B y
ν

�A ′

B ′ +O (B3) , (6.14)

where the kinetic matrix D is required to be traceless. By moving to momentum space,

�

Dµν
x y

�B B ′

AA ′ =

∫

d4k

(2π)4
exp[i k · (x − y )]

�

Dµν
k

�B B ′

AA ′ , (6.15)

D can be decomposed like

�

Dµν
k

�B B ′

AA ′ =
∑

X

DX
�

Xµν
�B B ′

AA ′ , (6.16)

where

DP =
1

4
(α+2β +4δ)k 2+

γ

G
, DQ =

1

2
βk 2 ,

−2DR = 2DS =−DT =δk 2+
γ

G
, DU = 0 .

(6.17)
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The momentum space propagator∆, which must satisfy
�

∆µν
�AA ′

B B ′
�

Dρν�D B ′

C A ′ =
�

Iρµ
�AD

BC and
�

∆µν
�AA ′

B B ′
�

Dµρ�BD ′

AC ′ =
�

Iρµ
�A ′D ′

B ′C ′ , (6.18)

can now be found by setting a X Y =∆X DY in (6.13) and solving for∆X . It is not difficult
to see that this linear system is well-posed for most values of the parameters and a
straightforward calculation yields

∆P =
2{G [3α+8(β +δ)]k 2+8γ}
αk 2{G [α+3(β +δ)]k 2+3γ}

, ∆Q =−
2{G [5α+16(β +δ)]k 2+16γ}
αk 2{G [α+3(β +δ)]k 2+3γ}

,

∆R = 0 , ∆S =
2[G (α+8δ)k 2+8γ]
αk 2(Gδk 2+γ)

, ∆T =
16

αk 2
, ∆U = 0 ,

(6.19)

which completely determines the propagator given by
�

∆k
µν

�AA ′

B B ′ =
∑

X

∆X
�

Xµν
�AA ′

B B ′ . (6.20)

Separating the propagator coefficients (6.19) into partial fractions gives

∆P =
16

3αk 2
+

2G

3{G [α+3(β +δ)]k 2+3γ}
, ∆S =

16

αk 2
+

2G

Gδk 2+γ
,

∆Q =−
32

3αk 2
+

2G

3{G [α+3(β +δ)]k 2+3γ}
, ∆T =

16

αk 2
.

(6.21)

The quadratic form D is singular when α= 0, α+3(β +δ) = γ= 0, or γ=δ= 0.
From (6.21) it is evident that, as long as δ 6= 0, the propagator behaves like∆k ∼ k−2

for large momenta. This, together with the fact that all self-interactions and interac-
tions with Dirac fields are dimensionless, signifies that the theory is power-counting
renormalizable in the coordinate gauge.

Examining the poles of (6.21) suggests that there are excitations with masses µ0 and
µ1 satisfying

µ2
0 =−

3γ

G [α+3(β +δ)]
and µ2

1 =−
γ

Gδ
. (6.22)

Analysis of the linearized radiation shows that µ0 and µ1 correspond to spin-0 and
spin-1 bosons, as their notation suggests. If either µ0 or µ1 is imaginary, the theory
contains tachyons9. Vacuum stability then requires the occurrence of spontaneous
symmetry breaking (tachyon condensation) to a configuration free of tachyons, if such
a configuration exists. These circumstances have yet to be investigated, and will not be
dealt with in this paper. Here only values of the parameters α, β , γ, and δ for which µ0

and µ1 can be chosen to be real and non-negative are considered.
It is interesting that, while analogues of the massive spin-0 excitation of the renormal-

izable higher-derivative modification of general relativity10 [6] exist here, counterparts

9 The term “tachyon” here refers to an instability rather than a violation of causality. A well-known example is the
uncondensed Higgs boson.

10 The renormalizable higher-derivative theory defined by the Lagrangian in Footnote 8 and discussed in [6] con-
tains spin-0 and spin-2 particles with masses given by

µ2
0 =−

γ

2G (α+3β )
and µ2

2 =
γ

Gα
.

The massive spin-2 particle is necessary for renormalizability, but poses a major obstacle towards the theory’s
acceptance because of its negative-definite energy.
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of the problematic massive spin-2 ghost are conspicuously absent—in their place are
massive spin-1 excitations.

Both of the masses (6.22) can be eliminated, without ruining renormalizability, by set-
ting γ= 0. One configuration of parameters for which the propagator takes a particularly
simple form is α= 16, β =−3, γ= 0, and δ=−2. Then one has

�

∆k
µν

�AA ′

B B ′ =
1

k 2

�

Pµν
�B B ′

AA ′ +
1

k 2

�

Tµν
�B B ′

AA ′ , (6.23)

which suggests that there are no tachyons or ghosts.

VII. PLANE WAVES

Since the propagator cannot be written as a linear combination of spin projection
operators, the most straightforward way to determine the particle content of the present
theory is to analyse plane wave solutions. Gauge ambiguity is again eliminated by
imposing the coordinate gauge condition (2.13), which also simplifies the algebra.

Varying the quadratic part of the Lagrangian (4.17) with respect to B, and making
use of the formulae (4.7) and (4.16) for T and U , yields the linearized vacuum field
equations

�

Lµ
�B

A ≡
h

αητ(λη
σ)[ρ
σ
µ]
C A ′ +β η

σλη
τ[ρ
σ
µ]
C A ′

i

σC B ′

τ σνAC ′σ
BC ′

λ ∂ρ∂ [σ
�

Bν ]
�A

B

− εBCεB ′C ′σ
(µ
AA ′σ

ν )
CC ′

�

δ∂ 2�Bν
�A

B −
γ

G

�

Bν
�A

B

�

= 0 . (7.1)

One should note that the first term in (7.1) involves the linearized field strength in the
coordinate gauge,

�

G(1)µν
�A

B = ∂ [µ
�

Bν ]
�A

B , (7.2)

and is reminiscent of the second-derivative terms that appear in Yang-Mills equations.
The second term resembles a system of Klein-Gordon equations. It is natural to seek
plane wave solutions of the form

�

Bµ
�A

B =
�

Σµ
�A

B exp(i k ·x ) ,
�

Σµ
�2

2 =−
�

Σµ
�1

1 , (7.3)

where Σ and k are constant. Suppose that the momentum is directed in the direction of
∂3, so that k1 = k2 = 0 and k0, k3 > 0.

Consider first the case when γ= 0. Then both of the masses (6.22) vanish and, from
the form of the propagator (6.21), one can expect that all excitations are massless. One
finds that nontrivial plane waves (7.3) satisfy the field equations (7.1) only if k3 = k0, as
expected, and

�

Σ1
�1

2 =
�

Σ2
�1

2 = 0 ,
�

Σ2
�1

1 = i
�

Σ1
�1

1 ,
�

Σ3
�1

1 =
�

Σ0
�1

1 ,
�

Σ3
�1

2 =
�

Σ0
�1

2 . (7.4)

Five coefficients are eliminated by (7.4) and the seven that remain can be chosen to be

�

Σ0
�1

1 ,
�

Σ0
�1

2 ,
�

Σ0
�2

1±
�

Σ3
�2

1 ,
�

Σ1
�1

1 , and
�

Σ1
�2

1± i
�

Σ2
�2

1 . (7.5)
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With respect to a rotation of an angle θ about the direction of propagation11, the coeffi-
cients (7.4, 7.5) transform like

�

Σ0
�1

1→
�

Σ0
�1

1 ,
�

Σ1
�2

1+ i
�

Σ2
�2

1→
�

Σ1
�2

1+ i
�

Σ2
�2

1 ,
�

Σ0
�1

2→ e iθ �Σ0
�1

2 ,
�

Σ0
�2

1±
�

Σ3
�2

1→ e−iθ
�

�

Σ0
�2

1±
�

Σ3
�2

1

�

,
�

Σ1
�1

1→ e−iθ �Σ1
�1

1 ,
�

Σ1
�2

1− i
�

Σ2
�2

1→ e−2iθ
�

�

Σ1
�2

1− i
�

Σ2
�2

1

�

.

(7.6)

Recalling that a plane wave with helicity h gains a factor of e i hθ with respect to such a
rotation, and that the conjugate field B contributes excitations with opposite helicity,
one can conclude that the theory with γ = 0 contains a total of fourteen dynamical
degrees of freedom: it describes four massless spin-0 bosons, four massless spin-1
bosons, and a massless spin-2 boson.

To check whether any excitations are ghostlike, one can compute the linearized
canonical energy density. Modulo a boundary term, the canonical energy density is
given by

E ≡
�

Πµ
�B

A ∂0
�

Bµ
�A

B +h.c.+
�

Lµ
�B

A

�

Bµ
�A

B , (7.7)

where Π denotes the canonical momentum (5.1) conjugate to B and L (7.1) vanishes on
shell. Substituting the plane wave solution (7.3, 7.4) into (5.1) and (7.7) yields

E =−4δk 2
0

�

�

�

Σ0
�1

2

�

�

2−4δk 2
0

�

�

�

Σ1
�1

1

�

�

2−δk 2
0

�

�

�

Σ0
�2

1−
�

Σ3
�2

1

�

�

2

−
1

2
(α+8δ)k 2

0 Re
h

�

�

Σ0
�2

1−
�

Σ3
�2

1

�

�

Σ1
�1′

1′

i

. (7.8)

This is not bounded from below unless δ=−α/8 and α> 0, in which case

E =
α

2
k 2

0

�

�

�

Σ0
�1

2

�

�

2
+
α

2
k 2

0

�

�

�

Σ1
�1

1

�

�

2
+
α

8
k 2

0

�

�

�

Σ0
�2

1−
�

Σ3
�2

1

�

�

2 ≥ 0 , (7.9)

which suggests that ghostlike excitations are absent. This agrees with the conclusions
drawn from the propagator (6.23) when α= 16, β = −3, γ= 0, and δ = −2. However,
not all of the excitations (7.5) possess nonvanishing canonical energy. From experience
with general relativity [17, 19] one can infer that the total gravitational energy must
involve a surface integral at spatial infinity, perhaps including the boundary term that
was neglected in (7.7). A rigorous analysis of the energy within this theory has yet to be
performed, however the situation looks promising due to the forms of the propagator
(6.23) and canonical energy (7.9).

When γ 6= 0, exactly two of the spin-0 bosons and two of the spin-1 bosons gain mass,
increasing the number of degrees of freedom from fourteen to sixteen. The masses of
these spin-0 and spin-1 bosons are µ0 and µ1, as given by (6.22). Unfortunately, their
canonical energy densities are

E0 =−
18γ

G

�

�

�

Σ1
�1

2

�

�

2
and E1 =

γ

G

�

2
�

�

�

Σ0
�1

1

�

�

2
+
�

�

�

Σ0
�2

1

�

�

2
+
�

�

�

Σ0
�1

2

�

�

2
�

, (7.10)

11 With respect to a global Lorentz transformation Λ(λ), the plane wave coefficients transform like
�

Σµ
�A

B →
�

Λ−1�ν
µλ

A
C

�

λ−1�D
B

�

Σν
�C

D .

For a rotation about ∂3 by an angle θ , λ and Λ have nonvanishing components

λ1
1 = e iθ/2 , λ2

2 = e−iθ/2 , Λ0
0 =Λ

3
3 = 1 , Λ1

1 =Λ
2
2 = cosθ , −Λ1

2 =Λ
2
1 = sinθ .
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respectively, and so for all values of γ 6= 0, either the massive spin-0 bosons or the
massive spin-1 bosons have negative energy. Hence ghosts seem to be unavoidable
unless γ= 0.

VIII. WEAK-FIELD POTENTIAL

If the present theory is to compete with general relativity as a theory of gravity, it must
first pass the usual weak-field experimental tests. Since the formulation is quite different
from that of Einstein’s theory—it is not a metric theory and spacetime is flat—direct
comparison of the field equations is difficult and can even be misleading. Therefore, the
most straightforward way to check whether the theory can be accurate in the weak-field
regime is to independently find and analyse spherically symmetric solutions of the
linearized vacuum equations (7.1).

The most general (traceless) static isotropic form for B is
�

B0
�A

B = g 1σ
AA ′

j σ0
BA ′ x

j ,

�

Bi
�A

B = f 0σ
AA ′

i σ0
BA ′ + f 1

�

σAA ′

j σi
BA ′ x

j −
1

2
δA

B x i

�

+ f 2σ
AA ′

j σ0
BA ′ x

i x j ,
(8.1)

i = 1,2,3, where j is summed over 1 to 3 and g 1, f 0, f 1, and f 2 are functions of the
rotational invariant r =

p
x ·x.

It is easiest to solve the linearized field equations (7.1) for g 1, f 0, f 1, and f 2 in spheri-
cal coordinates,

x 1 = r sinθ cosφ , x 2 = r sinθ sinφ , x 3 = r cosθ . (8.2)

In the following, quantities expressed in the coordinates [�x ] = [t , r,θ ,φ] are denoted
with a ring over them like �B and�Γ. In particular, �η and �σ denote the Minkowski metric
and vector-spinor translation symbols in these coordinates and �∂ denotes the Levi-
Civita connection corresponding to �η. Explicit formulas are given in Appendix B.

Substituting (8.1) into the linearized field equations and converting to spherical
coordinates leads to the four ordinary differential equations

0=G [α+2(β +δ)]r g ′′1 +4G [α+2(β +δ)]g ′1+2γr g 1

−G [α+4(β +δ)]r f ′′1 −4G [α+4(β +δ)] f ′1−4γr f 1 , (8.3a)

0=G [α+4(β +δ)]r g ′′1 +4G [α+4(β +δ)]g ′1+4γr g 1

−G [3α+8(β +δ)]r f ′′1 −4G [3α+8(β +δ)] f ′1−8γr f 1 , (8.3b)

0= 6Gδr f ′′0 +G [α+12δ] f ′0+6γr f 0

+2Gδr 3 f ′′2 +12Gδr 2 f ′2+ r [2γr 2−G (α−12δ)] f 2 , (8.3c)

0=G (α+12δ)r f ′′0 +G (α+24δ) f ′0+12γr f 0

+4Gδr 3 f ′′2 −G (α−24δ)r 2 f ′2+ r [4γr 2−2G (α−12δ)] f 2 . (8.3d)

Consider again the massless γ= 0 case. One finds that (8.3a) and (8.3b) are solved by

g 1 =
C1

r 3
and f 1 =

C2

r 3
, (8.4)
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and that (8.3c) and (8.3d) are solved by

f 2 =
1

r
f ′0 and f 0 =

C3

r 3
+

C4

r
, (8.5)

where C1, C2, C3, and C4 are constants. Additional constant terms have been neglected
to obtain solutions that vanish at spatial infinity. One should note that, even though
the Lagrangian (4.17) closely resembles that of higher-derivative generally covariant
theories, the field equations (7.1) with γ= 0 do not admit solutions that increase with r .

If γ 6= 0, then the analysis is similar but a little more complicated. Eliminating f ′1 and
f ′′1 from (8.3a) and (8.3b) gives

f 1 =−
3

2µ2
0

1

r

�

r g ′′1 +4g ′1
�

+
1

2
g 1 , (8.6)

where µ2
0 is given by (6.22). Inserting (8.6) into (8.3a) and (8.3b) then yields

G r 3 g (iv)1 +8G r 2 g ′′′1 −
�

Gµ2
0r 3−8G r

�

g ′′1 −
�

4Gµ2
0r 2+8G

�

g ′1 = 0 , (8.7)

which is solved by

g 1 =
D1

r 3
+

D2

r 3
e−µ0r +

D2µ0

r 2
e−µ0r . (8.8)

Similarly, from (8.3c) and (8.3d), one obtains

f 2 =
1

r
f ′0 and f 0 =

D3

r 3
+

D4

r 3
e−µ1r +

D4µ1

r 2
e−µ1r , (8.9)

where µ2
1 is the other mass from (6.22). Constant and rising exponential terms have

been omitted, however it should be noted that, unlike the γ= 0 case, solutions which
blow up at spatial infinity are now possible. This is common among theories containing
massive excitations. It is also interesting that the mass µ0 only appears in g 1 and f 1,
while µ1 only appears in f 0 and f 2. Taking the limit µ0 → 0 (γ→ 0) in (8.8) and (8.6)
reproduces the γ= 0 solutions (8.4). On the other hand, taking the limit µ1→ 0 (γ→ 0)
in (8.9) and comparing with (8.5) indicates a mass discontinuity: f 0 contains a term
proportional to 1/r in the γ= 0 case that does not appear in the limit γ→ 0. So in both
the γ= 0 and γ 6= 0 cases the static isotropic solutions that vanish at spatial infinity are
four-parameter families, but in the limit γ→ 0 a parameter is lost.

IX. TEST PARTICLE TRAJECTORIES

One way to examine the physical consequences of the solutions found in Section
VIII is to analyse the equations of motion for a test particle. Then one can determine
whether the classical experimental tests of gravitational theory can be satisfied. In this
section, only the γ= 0 solution (8.1, 8.4, 8.5) will be studied because it was shown in
Section VII that ghosts are unavoidable in the γ 6= 0 theory, and the analysis in the
γ 6= 0 case is merely more complicated. For the corresponding study of test particle
trajectories in general relativity, see [20].

Let u = u (s ) be a family of vectors tangent to a test particle world line parametrized
by s . Suppose that u is normalized so that, given a frame

�

∂µ
	

, one has d /ds = u µ ∂µ
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along the world line. IfB were to vanish with respect to
�

∂µ
	

in a neighbourhood of some
point along the particle’s trajectory, then consistency with the special theory of relativity
would require that, in that neighbourhood, the particle satisfies the equations of motion
du /ds = 0. With respect to a gauge transformation ∂µ→

�

Λ−1
�ν

µ ∂ν , u transforms like

u µ→Λµν u ν , and therefore

du µ

ds
→Λµν

du ν

ds
+u ρ �∂ρΛµν

�

u ν . (9.1)

Inspecting the transformation law (3.7), one finds that

Γµ(ρσ)u
ρuσ→ΛµλΓ

λ
(ρσ)u

ρuσ−
�

∂ρΛµσ
�

u ρuσ. (9.2)

Hence the equations
du µ

ds
+Γµ(ρσ)u

ρuσ = 0 (9.3)

are covariant while reducing to the correct relativistic equations of motion when B= 0.
Since curves in spacetime and their tangent vectors are geometric objects completely
independent of coordinates, the equations (9.3) are valid even in anholonomic frames.
One should also note that the equations (9.3) do depend on all of the dynamical degrees
of freedom possessed by the gauge field since one can write Γρ(µν ) in terms of Γρ[µν ] (3.19)
and Γ, B in terms of one another (3.6, 3.10).

In a coordinate frame where ∂ = ∂ /∂x , some coordinate system
�

xµ
	

, one can refer
to points on the trajectory like x (s ) and write u = dx/ds to obtain equations of the same
form as the familiar geodesic equations of Riemannian geometry. For a slowly moving
particle one can neglect dx/ds with respect to dt /ds and divide (9.3) out by (dt /ds )2 to
obtain

d 2x i

dt 2
=−Γi

00 . (9.4)

One can now substitute the general static isotropic solution (8.1) into (9.4) and compare
with the Newtonian result for a gravitating spherical body of mass M at the origin,

d 2x i

dt 2
=−

G M

r 3
x i . (9.5)

The correct Newtonian limit is achieved if, for large r ,

Γi
00 =−K Re(g 1)x i ≈

G M

r 3
x i . (9.6)

This can be used to fix the real part of the constant of integration C1 in (8.4),

Re(C1) =−
G M

K
. (9.7)

One can check that (9.7) is of the correct mass dimensionality by inspecting (8.1) and
recalling that B has mass dimensionality 1.

Since the transformation from Cartesian to spherical coordinates x → �x does not
preserve the Minkowski metric, η→ �η, the equations (9.3) must be modified accordingly.
In spherical coordinates, the particle trajectory�x (s )must satisfy

d 2�xµ

ds 2
+�Γµ(ρσ)

d�xρ

ds

d�xσ

ds
= 0 , (9.8)
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where
�Γ≡�Ξ+�Γ , (9.9)

and�Ξ refers to the Christoffel symbols (B4) corresponding to the metric �η. Analysis of
the equations (9.8) within the static isotropic field configuration (8.1) is quite difficult for
general g 1, f 0, f 1, and f 2. However, the equations simplify considerably if it is assumed
that g 1, f 1 are real (i.e., C1,C2 ∈R) and that f 0, f 2 vanish (i.e., C3 =C4 = 0). In that case,
�Γ has the following nonvanishing symmetrized components12:

�Γt
(t r ) =−

1

2
K r g 1 , �Γr

t t =−K r g 1 , �Γr
θθ =

1

sin2θ
�Γr
φφ =−r −K r 3 f 1 ,

�Γθ(rθ ) =
1

r
+

1

2
K r f 1 , �Γθφφ =−cosθ sinθ , �Γφ(rφ) =

1

r
+

1

2
K r f 1 , �Γφ(θφ) = cotθ .

(9.10)
Inserting (9.10) into the equations (9.8) gives

d 2t

ds 2
−K r g 1

dt

ds

dr

ds
= 0 , (9.11a)

d 2r

ds 2
−K r g 1

�

dt

ds

�2

− (r +K r 3 f 1)
�

dΩ
ds

�2

= 0 , (9.11b)

d 2θ

ds 2
+
�

2

r
+K r f 1

�

dr

ds

dθ

ds
− cosθ sinθ

�

dφ

ds

�2

= 0 , (9.11c)

d 2φ

ds 2
+
�

2

r
+K r f 1

�

dr

ds

dφ

ds
+2 cotθ

dθ

ds

dφ

ds
= 0 , (9.11d)

where
dΩ2 = dθ 2+ sin2θ dφ2 . (9.12)

Since the field configuration is isotropic, one can assume that the particle trajectory
governed by (9.11) is confined to some plane through the origin; θ =π/2 automatically
satisfies (9.11c). Substituting (8.4) into (9.11) and dividing (9.11a) and (9.11d) by dt /ds
and dφ/ds , one finds

d

ds

�

ln
dt

ds
+

K C1

r

�

= 0 , (9.13a)

d

ds

�

ln
dφ

ds
+ ln r 2−

K C2

r

�

= 0 . (9.13b)

From (9.13a) one can deduce that the parameter s may be normalized by choosing

dt

ds
= exp

�

−
K C1

r

�

. (9.14)

12 One should compare this to the Levi-Civita connection�Γ corresponding to a static isotropic metric g with nonva-
nishing components

�g t t =b , �g r r =−a , �g θθ =−r 2 , �gφφ =−r 2 sin2 θ ,

where a = a (r ) and b =b (r ). It has nonvanishing components

�Γt
t r =�Γ

t
r t =

b ′

2b
, �Γr

t t =
b ′

2a
, �Γr

r r =
a ′

2a
, �Γr

θθ =
1

sin2 θ
�Γr
φφ =−

r

a
,

�Γθrθ =�Γ
θ
θ r =

1

r
, �Γθφφ =−cosθ sinθ , �Γφrφ =�Γ

φ
φr =

1

r
, �Γφθφ =�Γ

φ
φθ = cotθ .
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The other equation (9.13b) yields a constant of the motion J ,

r 2 exp

�

−
K C2

r

�

dφ

ds
= J . (9.15)

Finally, using (9.14) and (9.15) in (9.11b), multiplying by 2dr /d s , and integrating yields
the last constant of the motion E ,

�

dr

ds

�2

−exp

�

−
2K C1

r

�

+
J 2

r 2
exp

�

2K C2

r

�

=−E . (9.16)

Using (9.14), (9.15), and (9.16), the proper time is given by

�ηµν d�xµd�x ν
�

�

θ=π/2 = dt 2−dr 2− r 2dφ2 = E ds 2 , (9.17)

so that for light E = 0, and for massive test particles E > 0. Dividing (9.16) by the square
of (9.15) gives the equation governing the shape of orbits,

1

r 4

�

dr

dφ

�2

−
1

J 2
exp

�

−
2K (C1+C2)

r

�

+
1

r 2
=−

E

J 2
exp

�

−
2K C2

r

�

. (9.18)

Taking the square root of (9.18) and integrating then yields

φ =±
∫

dr

r 2

�

1

J 2
exp

�

−
2K (C1+C2)

r

�

−
E

J 2
exp

�

−
2K C2

r

�

−
1

r 2

�−1/2

. (9.19)

Similarly, the equation governing the radial time history of orbits is given by dividing
(9.16) by the square of (9.14),

�

dr

dt

�2

+
J 2

r 2
exp

�

2K (C1+C2)
r

�

−1=−E exp

�

2K C1

r

�

. (9.20)

Its solution is

t =±
∫

dr

�

1−
J 2

r 2
exp

�

2K (C1+C2)
r

�

−E exp

�

2K C1

r

��−1/2

. (9.21)

It is now a simple matter to calculate two standard predictions of relativistic gravita-
tion: the deflection and delay of light passing by a spherically symmetric gravitational
source. From (9.17) it was deduced that for light E = 0. If r0 is the distance of closest
approach, where dr /dφ vanishes, then (9.18) yields

J 2 = r 2
0 exp

�

−
2K (C1+C2)

r0

�

. (9.22)

According to (9.19), the total angle swept by a lightlike trajectory passing by the origin is

∆φ = 2

∫ ∞

r0

dr

r

¨

�

r

r0

�2

exp

�

(2K C1+2K C2)
�

1

r0
−

1

r

��

−1

«−1/2

. (9.23)
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Using the approximation

�

r

r0

�2

exp

�

(2K C1+2K C2)
�

1

r0
−

1

r

��

−1

=

�

�

r

r0

�2

−1

�

�

1+
2K (C1+C2)r

r0(r + r0)

�

+O (K 2) , (9.24)

one finds that

∆φ =π−
2K (C1+C2)

r0
+O (K 2) . (9.25)

The correct deflection is obtained if one sets

C2 =C1 (9.26)

and uses the value for C1 obtained from the Newtonian limit (9.7),

∆φ−π'
4G M

r0
. (9.27)

The delay is found in a similar fashion. As dr /dt = 0 at r0, from (9.20) one has

J 2 = r 2
0 exp

�

−
2K (C1+C2)

r0

�

. (9.28)

The solution (9.21) then gives the time taken for light to travel from r = r0 to r = r1,

δt =

∫ r1

r0

dr

�

1−
�r0

r

�2

exp

�

2K (C1+C2)
�

1

r
−

1

r0

���−1/2

. (9.29)

Using the approximation

1−
�r0

r

�2

exp

�

2K (C1+C2)
�

1

r
−

1

r0

��

=
�

1−
�r0

r

�2
��

1+
2K (C1+C2)r0

r (r + r0)

�

+O (K 2) ,

(9.30)
one finds that

δt =
p

r 2
1 + r 2

0 −K (C1+C2)
�

r1− r0

r1+ r0

�1/2

+O (K 2) . (9.31)

Inserting (9.26) and (9.7) then yields the delay

δt −
p

r 2
1 + r 2

0 ' 2G M

�

r1− r0

r1+ r0

�1/2

. (9.32)

If r1� r0, then (9.32) suggests a constant delay of 2MG , independent of r1. In particular,
if a radar signal were to graze the sun, reflect off Mercury, and then pass by the sun
again on its way back to Earth, (9.32) would suggest a total delay of 8M�G ' 12 km.
Unfortunately, this disagrees with the delay of 4M�G (11+1)' 72 km predicted by the
Einsteinian formula [20],

δt −
p

r 2
1 + r 2

0 ' 2G M ln





r1+
p

r 2
1 − r 2

0

r0



+G M

�

r1− r0

r1+ r0

�1/2

. (9.33)
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Since (9.33), and particularly its logarithmic dependence, has been experimentally
verified [21], this discrepancy suggests that (9.32) is inaccurate. However, this could
indicate a problem with the simplifying assumptions C3 =C4 = 0 and C1,C2 ∈R rather
than a shortcoming of the field equations (7.1) and equations of motion (9.3).

It remains to be seen if general solutions (8.1, 8.4, 8.5) with the correct Newtonian
limit (9.7), but involving all of Im(C1), C2, C3, and C4, can model weak-field gravitational
phenomena accurately. Since the general equations of motion are difficult to solve
analytically, numerical methods could prove fruitful. Of course, one would first need
to determine the constants of integration C1, C2, C3, C4 by, for instance, including a
compact spherically symmetric source in the field equations (7.1).

X. CONCLUSION

All accepted theories of gravity up to now have been either nonrenormalizable,
like Einstein’s original theory, or renormalizable but involving higher derivatives and
therefore negative energy excitations, such as the theory studied in [6]. In the present
paper it has been demonstrated that there exist power-counting renormalizable gauge
theories with massless spin-2 bosons that do not involve higher derivatives. A gauge
invariant action with dimensionless couplings was proposed in Section IV and the
gauge boson propagator was derived in the coordinate gauge (2.13) in Section VI to
reach this conclusion. It has also been shown, in Section VII, that some of these theories
have non-negative linearized canonical energy on shell. However, several theoretical
difficulties have yet to be addressed before one can claim that these developments can
lead to a consistent quantum field theory.

First of all, it must be checked that the theory presented here can actually be renor-
malized. After all, there is more to renormalizability than power-counting. Gauge
invariance places restrictions on the allowed interactions and, typically, constrains the
divergences that can occur in the full quantum theory. Investigating renormalizability
in gauge theories entails checking that these constraints are strong enough that the
allowed divergences can be cancelled by a renormalization of the fields in the action.
This tends to work best if the action involves terms proportional to all possible power-
counting renormalizable invariants. For instance, scalar electrodynamics requires a
quartic scalar interaction for renormalizability. In Section IV, terms likely to produce
ghostlike excitations were left out of the Lagrangian. It has yet to be proven that this
constraint can be maintained under renormalization.

Another concern is that non-negative canonical energy does not necessarily guaran-
tee the absence of negative-energy ghosts. In Section VII it was found that a number of
excitations have vanishing canonical energy like the spin-2 boson of general relativity.
This probably means that, as in Einstein’s theory, the total energy depends on a surface
integral at spatial infinity. It has yet to be decided whether this total energy of all the
excitations is positive definite. And even if the linearized theory does have positive
energy, the full nonlinear theory might not—the massive version of Einstein’s theory, for
example, suffers from a nonlinear ghost [22].

Finally, it remains to be seen whether the present theory can provide an accurate
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macroscopic description of gravitation. In Sections VIII and IX it was shown that
spherically symmetric field configurations in the vacuum are compatible with Newton’s
theory in the weak-field nonrelativistic limit. It was also shown that the correct result
for the deflection of light about the sun can be obtained. However, the test-particle
trajectories examined in Section IX appear to fall short as far as some of the other
standard relativistic tests of gravity are concerned—the predicted delay of light about
the sun disagrees with that of Einstein’s theory. A more general analysis of the field
equations and/or test particle equations of motion is required to determine whether
this is a consequence of the theory or the simplifying assumptions that were made to
obtain the trajectories.

On the other hand, there are several clear advantages of the present theory over
general relativity. For instance, it does not require curved spacetime. It is also derived
from a polynomial action that suggests simple interactions between gravitation and
fermionic matter. One can hope that this work provides insight towards the ultimate
gravitational theory.
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Appendix A: Chiral representation

Recall that, as the connected Lorentz group is not simply connected, not all repre-
sentations of the Lorentz algebra o1,3(R) correspond to linear representations of the
group. However, every representation of o1,3(R) corresponds to a representation of the
corresponding spin group, which is isomorphic to SL 2(C). Since SL 2(C) is endowed with
a natural complex structure, one can construct spinors which transform according to
both its standard (left-handed) and conjugate (right-handed) representations.

Let uppercase Latin indices denote spinor indices and range from 1 to 2, and let
unprimed and primed indices denote left- and right-handed indices, respectively13. For
instance, if ϕ is a left-handed spinor and χ is a right-handed spinor, then with respect
to a transformation λ∈ SL 2(C), ϕ and χ transform like

ϕA →λA
B ϕ

B and χA ′→ λA ′

B ′ χ
B ′ , (A1)

where overline denotes complex conjugation. Note that conjugation maps left-handed
spinors to right-handed ones and vice versa.

Just as the invariant Minkowski metric and a choice of space/time orientation com-
pletely determine the connected Lorentz group, the invariance of the two-dimensional
antisymmetric bilinear form εA B = −εBA , ε12 = 1 (and likewise on the right-handed
space) completely determines the elements of SL 2(C). If one also specifies the con-
travariant version of ε, here given by

εACεBC =δA
B , (A2)

13 This notation has become somewhat standard over the past few decades [15].
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so that ε12 = 1, one can raise and lower spinor indices in an unambiguous and covariant
way. However, since ε is not symmetric, care must be taken when doing so. With the
convention (A2), spinor indices can be lowered (raised) by contracting with the first
(resp. second) index of ε, like ϕA = εBAϕB (resp. ϕA = εA B ϕB ). Although, to avoid
confusion, spinor indices are rarely raised or lowered implicitly within this paper.

One final construction that is needed to make this formulation of chiral spinors
useful is the canonical double covering from SL 2(C) onto the connected Lorentz group.
It is given by

λ 7→Λ(λ)µν =σ
µ

AA ′σ
B B ′

ν λA
B λ

A ′

B ′ , (A3)

whereσ encapsulates the Pauli matrices,




σ
µ

11′ σ
µ

12′

σ
µ

21′ σ
µ

22′



= [σµ] ,

[σ0] =
1
p

2

�

1 0
0 1

�

, [σ1] =
1
p

2

�

0 1
1 0

�

, [σ2] =
1
p

2

�

0 −i
i 0

�

, [σ3] =
1
p

2

�

1 0
0 −1

�

,

(A4)

and indices have been raised and lowered as described above; explicitly,




σ11′
µ σ12′

µ

σ21′
µ σ22′

µ



= [σµ] ,

[σ0] = [σ0] , [σ1] = [σ1] , [σ2] =−[σ2] , [σ3] = [σ3] .

(A5)

These symbols are Hermitian14,
(σ)µAA ′ =σ

µ

AA ′ , (A6)

they satisfy
σ
µ

AA ′σ
AA ′

ν =δµν and σAA ′

µ σ
µ

B B ′ =δ
A
B δ

A ′

B ′ , (A7)

and one can “pull” Lorentz transformations through them like

σAA ′

µ Λ(λ)
µ
ν =σ

B B ′

ν λA
B λ

A ′

B ′ . (A8)

Another useful identity is

εA ′B ′σ
AA ′

(µ σ
B B ′

ν ) =
1

2
ηµν ε

A B . (A9)

It is also easy to see that, due to (A7), one has

Λ(λ)−1 =Λ
�

λ−1� . (A10)

Now one can identify global (metric and orientation preserving) spacetime transforma-
tions with elements of SL 2(C) and relate spacetime indices with left- and right-handed
index pairs usingσ. Notably, one has

εA BεA ′B ′σ
AA ′

µ σ
B B ′

ν =ηµν and ηµνσ
µ

AA ′σ
ν
B B ′ = εA BεA ′B ′ . (A11)

14 Recall that conjugation takes left-handed indices to right-handed ones and vice versa. Due to the convention of
keeping left-handed (unprimed) indices to the left of right-handed (primed) ones, the indices on the left-hand
side of (A6) are conjugated and then reversed. So the left-hand side of (A6) effectively refers to the components of
the conjugate transpose ofσµ.
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Appendix B: Spherical coordinates

In spherical coordinates,

x 1 = r sinθ cosφ , x 2 = r sinθ sinφ , x 3 = r cosθ , (B1)

the Minkowski metric is given by15

[�η] = diag(1,−1,−r 2,−r 2 sin2θ ) . (B2)

In order to differentiate in a consistent manner, one must introduce the Christoffel
symbols corresponding to (B2),

�Ξρµν =
1

2
�ηρσ

�

∂�ηµσ
∂�x ν

+
∂�ηνσ
∂�xµ

−
∂�ηµν
∂�xσ

�

. (B3)

The nonvanishing components of�Ξ are

�Ξr
θθ =−r , �Ξr

φφ =−r sin2θ , �Ξθrθ =�Ξ
θ
θ r =

1

r
,

�Ξθφφ =−cosθ sinθ , �Ξφrφ =�Ξ
φ
φr =

1

r
, �Ξφθφ =�Ξ

φ
φθ = cotθ .

(B4)

For instance, the gradient of a 1-form A, with components in Cartesian coordinates
∂µAν , is given in spherical coordinates by

�∂µ�Aν =
∂ �Aν
∂�x ν

−�Ξρµν �Aρ . (B5)

The components of the vector-spinor translation symbols σ, given in Cartesian
coordinates by (A4) and (A5), are found by contracting with the vector basis likeσµdxµ

and then substituting (B1). One finds that

[�σt ] =
1
p

2

�

1 0
0 1

�

, [�σr ] =
1
p

2

�

cosθ e iφ sinθ

e−iφ sinθ −cosθ

�

,

[�σθ ] =
1
p

2

�

−r sinθ r e iφ cosθ

r e−iφ cosθ r sinθ

�

, [�σφ] =
1
p

2

�

0 i r e iφ sinθ

−i r e−iφ sinθ 0

�

,

(B6)

so that
εA BεA ′B ′ �σAA ′

µ
�σB B ′

ν = �ηµν . (B7)
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