AGE RELATED CHANGES IN
CORTICOMOTOR AND INTRACORTICAL
EXCITABILITY IN MEN

A thesis submitted for the Degree of

DOCTOR OF PHILOSOPHY

by

ASHLEIGH ELIZABETH SMITH
B.SC (BIOMEDICAL SCIENCE), HONS

in

The Robinson Institute
Discipline Obstetrics and Gynaecology
School of Paediatrics and Reproductive Health

The University of Adelaide

November 2011
TABLE OF CONTENTS

ABSTRACT ...i
DECLARATION ..v
ACKNOWLEDGEMENTS ..vi
LIST OF FIGURES ...viii
LIST OF TABLES ...ix
ABBREVIATIONS ...x
GENERAL INTRODUCTION ...xii

1. LITERATURE REVIEW ..1
1.1 Historical perspective of movement control ...2
1.2 Functional neuroanatomy of the human motor system ...4
 1.2.1 Structures of the human motor cortical system ...4
 1.2.2 The primary motor cortex ..4
 1.2.3 The premotor areas ..5
 1.2.4 The sensory cortex ..6
 1.2.5 The corticospinal tract ...7
 1.2.5.1 Cells in the spinal cord ..8
 1.2.6 Sensory receptors and fibres and afferent input to the cortex ..8
 1.2.6.1 Dorsal column pathway ...9
 1.2.7 Major neurotransmitters ..10
1.3 Age-related changes in cerebral and peripheral structures ...12
 1.3.1 Cortical volumetric changes ...14
 1.3.2 Cortical output cells ...15
 1.3.3 Spinal motor neurons ..16
 1.3.4 Dendritic spines ..17
 1.3.5 Neurotransmitter function, receptors and biochemical brain effects with ageing18
 1.3.6 Age-related differences in functional recruitment ..20
 1.3.7 Peripheral neuromuscular changes ..20
 1.3.8 Sensory receptors ...21
1.3.9 Age related changes in nerve conduction velocity ... 22
 1.3.9.1 Peripheral reflex responsiveness .. 22

1.4 Neurophysiological and neuroimaging assessment of age related changes in the motor system. 24
 1.4.1 Neurophysiological techniques to investigate cortical control of movement 25
 1.4.2 Introduction to transcranial magnetic stimulation (TMS) .. 26
 1.4.3 Corticomotor Excitability - Input output curves .. 28
 1.4.3.1 Age-related changes in corticomotor excitability .. 30
 1.4.4 Short-interval intracortical inhibition (SICI) .. 33
 1.4.4.1 Age related changes in SICI .. 36
 1.4.5 Long-interval intracortical inhibition (LICI) .. 37
 1.4.6 Ageing studies and LICI .. 39
 1.4.7 Afferent modulation of SICI .. 40
 1.4.7.1 Functional importance of afferent modulation of SICI ... 40

1.5 Summary ... 40

2. Male human motor cortex stimulus-response characteristics are not altered by ageing 42
 2.1 Abstract .. 42
 2.2 Introduction ... 43
 2.3 Methods .. 44
 2.3.1 Stimulation and EMG recording .. 45
 2.3.2 Transcranial magnetic stimulation .. 45
 2.3.3 Stimulus-response curve protocol .. 46
 2.3.4 Spinal excitability and M-waves .. 47
 2.3.5 Statistical analysis .. 47
 2.4 Results ... 48
 2.4.1 Resting Motor Threshold (RMT) .. 48
 2.4.2 Stimulus-response characteristics .. 49
 2.4.3 Variability of motor evoked potentials .. 51
2.4.4 M-waves and F-waves..............................53
2.4.5 “Young” old compared with “Old” old..........................

2.5 Discussion ..54
2.5.1 Corticospinal stimulus response curves are unchanged by ageing in men ..54
2.5.2 Age related influences on MEP variability..........................56
2.5.3 Effect of sex and age on MEP excitability..........................58

2.6 Conclusion ...59

3. Age-related changes in short-interval motor cortex inhibition......................60
3.1 Abstract...60
3.2 Introduction ..61
3.3 Methods ..64
3.3.1 Participants..64
3.3.2 Transcranial magnetic stimulation (TMS)64
3.3.3 Experiment 1: Intracortical excitability65
3.3.4 Experiment 2: SICI Recruitment Curves..........................65
3.3.5 Experiment 3: Corticospinal stimulus response characteristics66
3.3.6 Analysis of data66

3.4 Results ..67
3.4.1 Experiment 1: Intracortical excitability68
3.4.1.1 SICI is increased in ageing men..............................68
3.4.1.2 Influence of conditioning stimulus intensity70
3.4.2 Experiment 2: SICI stimulus-response curves..........................73
3.4.3 Influence of corticospinal stimulus-response characteristics on SICI/ICF76

3.5 Discussion ...76
3.5.1 Is SICI increased with ageing?77
3.5.2 Differences on AMT do not fully explain age-related differences in SICI77
3.5.3 SICI is greatest in the dominant hemisphere..........................79
3.5.4 Corticospinal stimulus-response characteristics do not influence SICI79
3.5.5 Functional significance of age-related increased SICI ... 80
3.5.6 Intracortical facilitation ... 80
3.5.7 Limitations of the study ... 81

3.6 Conclusion ... 82

4. Ageing-related changes in long-interval intracortical inhibition in men 83
4.1 Abstract ... 83
4.2 Introduction .. 84
4.3 Methods .. 86
4.3.1 Subjects ... 86
4.3.2 Stimulation and recording ... 87
4.3.3 Experiment 1: LICI .. 89
4.3.4 Experiment 2: LICI curves ... 89
4.3.5 Analysis of data ... 90

4.4 Results ... 91
4.4.1 Experiment 1: Influence of age on LICI .. 93
 4.4.1.1 Influence of CS intensities on LICI ... 93
 4.4.1.2 Influence of ISI on LICI ... 93
 4.4.1.3 Influence of hemisphere on LICI .. 94
4.4.2 Experiment 2: Influence of age on LICI curves ... 94
 4.4.2.1 Influence of age, hemisphere and conditioning intensity on LICI curves 94
4.4.3 Influence of age on LICI combined data ... 95
 4.4.3.1 Influence of hemisphere and CS Intensity on LICI combined data 95

4.5 Discussion ... 97
4.5.1 The influence of age on LICI ... 97
4.5.2 The influence of gender and age on LICI .. 98
4.5.3 The influence of stimulation parameters on LICI .. 99
4.5.4 What is the functional relevance of ageing-related changes in LICI? 100
5. Cutaneous afferent input does not modulate motor intracortical inhibition in ageing men 101

5.1 Abstract .. 101

5.2 Introduction .. 102

5.3 Methods .. 103

5.3.1 Study design ... 103

5.3.2 Transcranial magnetic stimulation .. 104

5.3.3 Digital stimulation and the cutaneomuscular reflex .. 104

5.3.4 Short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) 105

5.3.5 Data analysis ... 106

5.3.5.1 Cutaneomuscular reflex .. 106

5.3.5.2 MEP data ... 107

5.4 Results .. 108

5.4.1 Cutaneomuscular reflex, perceptual threshold and digital stimulation 108

5.4.2 TMS and unconditioned SICI ... 111

5.4.3 Effect of digital stimulation and ageing on test MEP amplitude 111

5.4.4 Prior conditioning with digital stimulation reduced SICI in young men only 113

5.4.5 No hemispheric differences in SICI responses ... 114

5.4.6 Influence of perceptual threshold on SICI and SICI modulation 115

5.4.7 Influence of E2 latency and amplitude on afferent modulation of SICI 115

5.5 Discussion ... 116

5.5.1 SICI is not altered by ageing ... 117

5.5.2 Age related differences in digital stimulation modulation of SICI 117

5.5.3 Possible influence of test MEP amplitude and other cortical circuits on SICI modula- tion ... 119

5.5.4 Afferent modulation of ICF ... 120

5.5.5 Functional significance ... 121

5.6 Conclusions .. 122

6. General Discussion .. 123
ABSTRACT

Age-related motor deficits manifest in many ways including slowing of movement, increased unwanted movements and difficulties learning new motor tasks. Despite this decline in “motor” brain function, the physiological mechanisms underlying these changes are largely unknown. One brain region innately involved in the control of voluntary movement is the human primary motor cortex. The mono-synaptic corticospinal output cells projecting from the primary motor cortex to the periphery, as well as the intracortical excitatory and inhibitory interneurons that synapse onto the corticospinal output neurons are important for facilitating voluntary movement. Whether or not the efficacy of these neuronal pathways is altered with advancing age has not previously been investigated in depth. Therefore, the overall aim of the studies described in this thesis was to characterise the changes in corticomotor and intracortical inhibitory network excitability that occur with ageing in otherwise neurologically healthy human males.

Previous studies have provided some limited evidence of age-related changes in corticomotor excitability in humans. However interpretation of these data is complicated by the fact that all the studies were performed on both men and women; there is increasing evidence that post-menopausal loss of neuroactive estrogen in women alters cortical excitability and may have confounded the findings of previous studies where sex-specific changes have not been considered. Therefore in chapter 2 I investigated whether corticomotor excitability differed when a group of ageing men was compared with a group of young adult men. I found that corticomotor excitability was not influenced by age in either hemisphere, suggesting that in men aged less than 75 years, the efficacy of the corticomotor projection is preserved when examined in the absence of voluntary activation.

The excitability of the corticospinal output neurons is highly influenced by the net balance of excitatory and inhibitory inputs onto them by cortical interneurons. In the absence of voluntary activation, the excitability of the intracortical inhibitory networks is high. This so-called intracortical inhibition is principally mediated by the neurotransmitter gamma-aminobutyric acid (GABA) acting at different
classes of GABA receptors, probably on different neuronal populations. The two main GABA receptor types mediating motor intracortical inhibition are GABA receptor type A (GABA_A) and GABA receptor type B (GABA_B). Studies using paired pulse transcranial magnetic stimulation (TMS) techniques to examine these different types of inhibition in the motor cortex have shown that inhibition mediated by GABA_A receptors tends to occur at short interstimulus intervals (1 – 5 ms) and is therefore commonly termed short-interval intracortical inhibition (SICI). Conversely, motor cortex inhibition mediated by GABA_B receptors tends to occur at longer interstimulus intervals (100 – 200 ms) and is therefore commonly termed long-interval intracortical inhibition (LICI). There have been few investigations of the possible influence of ageing on SICI and the results have been equivocal with no consensus on whether SICI is increased, decreased or unchanged by ageing. Only one previous study has examined the effects of ageing on LICI in males and females, and reported it to be increased. Therefore, I investigated the influence of ageing on GABA_A (Chapter 3) and GABA_B (Chapter 4) mediated motor cortex inhibition when ageing and young adult men were compared. In chapter 3, I show that SICI is unchanged by ageing in men. I also present evidence of how the findings of previous studies are likely to have been confounded by several methodological aspects, particularly the TMS parameters used to study SICI, specifically the intensity of the conditioning stimulus. In chapter 4, I present evidence that suggests that LICI is increased in ageing men when compared with young adult men. While statistically significant, the magnitude of this increase in GABA_B mediated inhibition was very small and required a relatively large sample size to elucidate. However, the functional influence of this increase in LICI with age was not investigated, and whether or not this change is of sufficient magnitude to be behaviourally relevant is yet to be confirmed.

On balance, the studies described in Chapters 2-4 inclusive provide little evidence of major changes in either corticomotor excitability or intracortical inhibitory network efficacy with age. However, these three studies were all performed in the absence of voluntary activation of the motor cortex or corticospinal tract, i.e. “at rest”. It may be that ageing alters the ability to modulate the excitability of these networks (e.g. by afferent input from the periphery) rather than their absolute level of excitability. Indeed, afferent
input has been shown to be a powerful modulator of intracortical inhibition, particularly SICI, and this interaction appears to be important for motor control during an ongoing movement or preparation for movement. Therefore, in chapter 5 I describe a study where SICI was compared in young and ageing men under two conditions; firstly in the absence of voluntary activation and, secondly, in the presence of cutaneous afferent stimulation of the skin overlying a finger controlled by a muscle in whose cortical representation SICI was being examined. In several previous studies of young adults by others, this afferent input has been shown to reduce the amount of motor cortex inhibition subsequently evoked. Confirming the findings reported in Chapter 3, when assessed in the absence of voluntary activation or afferent input, SICI did not differ when young and old men were compared. However, with appropriately timed afferent input the subsequent degree of inhibition evoked was only reduced in the young men, but not in the old men. Using a process of elimination, I concluded that this reduced modulation of inhibition in the old men was most likely due to altered cortical sensorimotor integration of afferent input with age, as the peripheral afferent volley to the cortex appeared preserved and the level of SICI in the absence of afferent input was not different between the two age groups. It is probably not possible to confirm the exact cortical site and mechanism underlying this alteration in vivo in humans. However, my findings suggest that it is likely to involve neural projections (originating either within the motor cortex, or from elsewhere) that probably synapse with motor cortex inhibitory interneurons and are responsible for the modulation of their activity via afferent input from the periphery.

In summary, the studies described in this thesis contribute two main general findings. Firstly, when investigated without voluntary activation and/or significant afferent input, the efficacy of the corticospinal tract and the main inhibitory interneurons acting upon corticospinal output cells, is not altered by ageing in otherwise neurologically healthy men. However, the “at rest” condition may mask ageing-related changes in the neural mechanisms that modulate corticomotor excitability and GABAergic intracortical inhibition. Therefore, future studies probing the neural mechanisms underlying ageing-related changes in human motor cortex function should not only be sex-specific, but also need to be undertaken under
conditions that include input to the motor cortex from the periphery (i.e. afferent input) or other brain regions involved in voluntary motor system activation.
DECLARATION

I Ashleigh Elizabeth Smith certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief contains no material previously published or written by another person except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made for loan and photocopying, subject to the previsions of the Copyright Act 1968.

I acknowledge that copyright of published works contained in this thesis (as listed in appendix 7.1) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: ... Dated: ...
Acknowledgements

The completion of a PhD and the thesis is never just an individual effort, and requires the co-operation and input from numerous people. It is for this reason that I am extremely grateful to each of the following individuals who, without each of their support I would not have submitted a completed thesis.

Firstly, I am grateful to both of my supervisor’s Dr Julia B. Pitcher and Associate Professor Michael C. Ridding who not only read many of the preliminary drafts of this document, but, also provided constructive criticism and feedback during every stage of the PhD journey from planning each of the studies, to statistical analysis and especially during the write up phase. Furthermore, I thank both of you for providing me with the opportunity to explore my scientific thinking and future career opportunities by not only funding overseas travel but also introducing me to key influential people in the field.

I would also like to thank Professor Gary Wittert, Mr Sean Martin and the members of the Florey Adelaide Male Ageing Study (FAMAS) cohort as well as all of the young study participants who were involved in my PhD studies. Without your participation there would be no studies or results. Thank you for everything.

Behind the scenes, individuals in the laboratory such as Mr Ryan Higgins, Mr Nisan (Sly) Tuazon, Mr John Drysdale and Dr Luke Schneider were instrumental in helping me not only with experiments but also maintaining my motivation throughout the early Developmental Neuromotor Physiology (DNP) days and later when joining The Robinson Institute. Specifically, special thank you to Luke for reading my literature review and adding constructive and sometimes amusing comments and Ryan for contributing many hours of your life both during work time, after hours and on weekends to help run my experiments. Other members of the NeuroPAD group such as Mr Mitchell Goldsworthy, Miss Suzanne McAllister, Dr Sebastian Doeltgen, Miss Lisa Kurylowicz and Mrs Jo Cole have provided me with much needed
support especially during the PhD lows. I know I have truly made some lifelong friends in each and every one of you.

I know that this thesis would never have been completed without the consistent support of my close family and friends. In particular, I thank my Mum (Susie) and Dad (Ian) for their unwavering belief in my abilities, their willingness to read thesis drafts and their attempts to understand what I do. I am also extremely grateful to Tanya and Marc for always being there to support me as well as mow the lawn, clean the house and wash my clothes especially when my head was stuck in thesis mode. To the best Nan and Pop in the world (Sally and John) I am thankful for having you (almost weekly) cook me dinner, read drafts, store my electronic back-ups and always boosting my mood especially when I was down in the dumps. I also thank my two puppies Ollie and Mattie for always providing an ear to listen and a shoulder to cuddle when everything seemed impossible.

Most importantly, last of all, I would like to thank and dedicate this thesis to my beautiful lifelong partner and wife Kylee von Ohle. Every step of the way you have been there to steer me in the right direction, whether that is patiently listening to every seminar presentation over and over until it was perfect, reading every paper and the overall thesis with a fine tooth editorial comb, designing a thesis template and formatting the entire document to make it professional or just being there to hold my hand and at times my luggage throughout the whole experience, including the trips to Germany, the United Kingdom and Japan for my conference presentations. You are my rock and I know that I would have thrown this PhD in long ago if it was not for your unwavering support. We can now move forward with the next stage of our lives together and I am excited by the new challenges on the horizon.
LIST OF FIGURES

Figure 1.1 The stimulus response curve relationship

Figure 1.2 The SICI curve relationship

Figure 2.1 Representative stimulus response curves and raw data trace

Figure 2.2 Mean MEP amplitudes and sample sizes for young/old stimulus response curves

Figure 2.3 Coefficient of variation for stimulus response curves

Figure 2.4 Age-related differences in stimulus response curves expressed relative to M_{max}

Figure 3.1 SICI representative raw data traces

Figure 3.2 Age-related changes in SICI/ICF

Figure 3.3 Correlations of SICI/ICF in young-old AMT matched pairs

Figure 3.4 The influence of age on SICI curves

Figure 3.5 SICI curve interactions

Figure 4.1 The influence of age on LICI

Figure 4.2 The influence of age on LICI curves

Figure 4.3 LICI combined data

Figure 5.1 Cutaneomuscular reflexes in representative young and old subjects

Figure 5.2 The influence of age and digital stimulation on SICI/ICF

Figure 5.3 The influence of age and hemisphere on pooled inhibitory responses

Figure 5.4 The influence of perceptual threshold on SICI/ICF with and without digital stimulation

Figure 7.1 Schematic of main motor and sensory pathways
LIST OF TABLES

Table 1.1 Underlying physiology influencing age-related voluntary movement deficits
Table 2.1 Stimulus response curve characteristics for young and old subjects
Table 3.1 Handedness and corticospinal stimulus response curve characteristics
Table 3.2 Comparison of CS intensity at which peak SICI occurred
Table 4.1 General and stimulus characteristics: experiment 1: LICI
Table 4.2 General and stimulus characteristics: experiment 2: LICI curves
Table 5.1 Cutaneomuscular reflex characteristics
Table 5.2 Corticospinal and stimulus characteristics
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM</td>
<td>abductor digiti minimi muscle</td>
</tr>
<tr>
<td>AMT</td>
<td>active motor threshold</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>analysis of co-variance</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APB</td>
<td>abductor pollicis brevis muscle</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>COV</td>
<td>co-efficient of variation</td>
</tr>
<tr>
<td>CS</td>
<td>conditioning stimulus</td>
</tr>
<tr>
<td>CSICI</td>
<td>conditioned short-interval intracortical inhibition</td>
</tr>
<tr>
<td>D-wave</td>
<td>direct wave</td>
</tr>
<tr>
<td>EMG</td>
<td>electromyography/ electromyograms</td>
</tr>
<tr>
<td>EPSP</td>
<td>excitatory post-synaptic potential</td>
</tr>
<tr>
<td>FAMAS</td>
<td>Florey Adelaide Male Ageing Study</td>
</tr>
<tr>
<td>FDI</td>
<td>first dorsal interosseous muscle</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-amino butyric acid</td>
</tr>
<tr>
<td>GABA_A</td>
<td>γ-amino butyric acid receptor type A</td>
</tr>
<tr>
<td>GABA_B</td>
<td>γ-amino butyric acid receptor type B</td>
</tr>
<tr>
<td>H-reflex</td>
<td>Hoffmann reflex</td>
</tr>
<tr>
<td>ICF</td>
<td>intracortical facilitation</td>
</tr>
<tr>
<td>I-wave</td>
<td>indirect wave</td>
</tr>
<tr>
<td>LICI</td>
<td>long-interval intracortical inhibition</td>
</tr>
<tr>
<td>LQ</td>
<td>laterality quotient (derived from Edinburgh handedness inventory)</td>
</tr>
<tr>
<td>M1</td>
<td>primary motor cortex</td>
</tr>
<tr>
<td>MEP</td>
<td>motor evoked potential</td>
</tr>
<tr>
<td>MEP_{max}</td>
<td>maximum MEP amplitude</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>ms</td>
<td>milliseconds</td>
</tr>
<tr>
<td>MVC</td>
<td>maximum voluntary contraction</td>
</tr>
<tr>
<td>pRMT</td>
<td>predicted resting motor threshold</td>
</tr>
<tr>
<td>RMT</td>
<td>resting motor threshold</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SICI</td>
<td>short-interval intracortical inhibition</td>
</tr>
<tr>
<td>SLOPE(_{10})</td>
<td>slope of the input output curve at 10% of MEP(_{\text{max}})</td>
</tr>
<tr>
<td>SLOPE(_{25})</td>
<td>slope of the input output curve at 25% of MEP(_{\text{max}})</td>
</tr>
<tr>
<td>SLOPE(_{\text{max}})</td>
<td>slope of the input output curve at MEP max</td>
</tr>
<tr>
<td>SO</td>
<td>stimulator output</td>
</tr>
<tr>
<td>TES</td>
<td>transcranial electrical stimulation</td>
</tr>
<tr>
<td>TMS</td>
<td>transcranial magnetic stimulation</td>
</tr>
<tr>
<td>WMH</td>
<td>white matter hyperintensity/hyperintensities</td>
</tr>
</tbody>
</table>
GENERAL INTRODUCTION

The monosynaptic cortico-motor-neuronal component of the corticospinal system plays an essential role in the control of human movement, and in particular, the control of the intrinsic hand muscles responsible for independent finger movements. In this thesis, the term corticomotor excitability rather than corticospinal excitability is used when interpreting results based on the analysis of motor evoked potentials (MEPs) recorded with surface electromyography, since the corticomotor component of the corticospinal tract is responsible for the MEP, not just the corticospinal tract. Despite a documented decline in “motor” function with “normal” ageing, the underlying physiological mechanisms are unknown. At the level of the primary motor cortex, discharge of pyramidal cells is mediated by a fine balance between inhibitory and excitatory inputs from horizontal interneurons with which they synapse. Disruptions to voluntary movement have been characterised in diseased patient groups when this fine balance between inhibition and facilitation is disturbed (Ridding et al. 1995a; Ridding et al. 1995b; Brown et al. 1996). For example, Parkinson’s disease, focal hand dystonia’s and even some psychiatric disorders are characterised by abnormal levels of corticomotor excitability and inhibition. However, it is still unknown if similar abnormal levels of corticomotor excitability and inhibition occur in the “healthy” ageing motor system. Therefore, the broad aims of the studies described in this thesis were to characterise changes in human corticomotor and intracortical inhibitory pathways that occur with “healthy” ageing.

Previous research demonstrated a rightward shift of corticospinal stimulus response curves occurs with increased age (Pitcher et al. 2003). However, it was suggested that this shift may only be evident in women, and be driven by age-related hormonal changes, rather than by ageing per se. Therefore, the study described in chapter two aimed to determine if these age-related changes in corticomotor excitability are evident in men only. Corticospinal stimulus response curves were constructed for the primary motor cortices of both hemispheres of young and old male subjects, and compared.
The functionally relevant GABA_A mediated cortico-cortical inhibitory circuits have variously been shown to be increased (Kossev et al. 2002), decreased (Peinemann et al. 2001) or not changed with age (Wassermann 2002; Oliviero et al. 2006; Cirillo et al. 2010). However, there is evidence that GABA_A mediated short-interval intracortical inhibition (SICI) in the motor cortex is less variable if conditioning intensities are set relative to active motor threshold (AMT) (Orth et al. 2003). Therefore, in the studies described in chapter 3, I investigated the effect of age on these SICI networks (Kujirai et al. 1993). SICI and facilitation (ICF) was initially investigated in old compared to young men using previously described conditioning and test stimulus parameters. Secondly, the effect of setting CS intensity relative to AMT was examined with age using SICI curves.

Most of the previous work relating to the intracortical inhibitory networks and ageing is focussed on SICI, with few studies investigating the age-related changes in the GABA_B mediated long-interval intracortical inhibitory circuits (LICI) (McGinley et al. 2010). Only one study, conducted in both males and females has reported LICI is increased with age (McGinley et al. 2010). However, this study only investigated LICI at a single interstimulus interval, at a single conditioning intensity and only in the non-dominant hemisphere motor cortex. In young subjects LICI has been shown to be asymmetrical with a lower threshold and faster progression in the dominant compared to the non-dominant hemisphere (Hammond and Garvey 2006). Therefore, the age-related changes may be missed if only investigated at a single conditioning intensity in the non-dominant hemisphere. Experiments detailed in chapter 4 aimed to determine if threshold for LICI, inhibition, or saturation of LICI, is changed with increased age in men, in both the dominant or non-dominant primary motor cortices.

Aside from age-related changes in the excitability of the inhibitory networks, it is possible that ageing is associated with a reduction in the ability to modulate them. It has been previously demonstrated, in young individuals, that precisely timed afferent input can reduce SICI measured with TMS in a topographically specific manner (Ridding and Rothwell 1999; Ridding et al. 2005). This ability to
modulate SICI appears to be important, not only for the control of ongoing movement, but also for facilitating neuroplasticity, since neuroplasticity is enhanced when SICI is reduced (Ziemann et al. 1998b; Ziemann et al. 2001). Evidence from comparing young and old participants, demonstrates an age-related decline in the control of fine movements and a reduced capacity for neuroplasticity occurs, although whether this is due to a decline in modulation of SICI networks is unknown (Cirillo et al. 2010; Todd et al. 2010). Therefore, in chapter 5, I aimed to determine if precisely timed afferent input can modulate the SICI circuits similarly with increased age.