Modelling environmental turbulent fluids and multiscale modelling couples patches of wave-like system

Meng Cao

Thesis submitted for the degree of
Doctor of Philosophy
in
Applied Mathematics
at
The University of Adelaide
(Faculty of Mathematical and Computer Sciences)

Department of Applied Mathematics

March 29, 2014
Abstract

Many environmental flows of water have large lateral extent compared to the thickness, such as rivers, floods, tides and tsunamis. This dissertation firstly develops a 2D model to more appropriately model large scale simulations, derived from a 3D turbulence model based on the Smagorinski large eddy closure. We explore the implications of changing the theoretical base from depth-averaging to a slow manifold of the turbulent Smagorinski large eddy closure. Centre manifold theory suggests the existence of slow manifold in the system. Embedding the physical problem into a family of problems, computer algebra constructs the slow manifold of the flow in terms of fluid depth and depth-averaged lateral velocities. The model includes the effects and interactions of inertia, advection, bed drag, gravitational forcing and turbulent dissipation with minimal assumptions. Numerical simulations, implemented on staggered grids in space, of channel flows show that the model is reasonable and reliable to describe the dynamics of large scale environmental turbulent fluids.

Sediment transport is important in the environment. Then the dissertation adapts the turbulent modelling and dynamics to include the suspended sediment transport. A slow manifold exists in the system. The evolution of the depth-averaged concentration on the slow manifold governs the dynamics of the suspended sediment in the turbulent fluid flows. The sediment model includes the effects of sediment erosion, advection, dispersion, and also the interactions between the sediment and the turbulent flow. The applications of the suspended sediment model on concentration distributions in channel flows and under large waves indicate that this model is reasonable.

The dissertation secondly develops a gap-tooth scheme to significantly reduce the expensive numerical simulations of complicated waves over large spatial domains. We aim to develop and explore the methodologies for wave dominant dynamics. The gap-tooth scheme is built from given microscale simulations of complicated physical processes such as sea ice or turbulent shallow water. Our long term aim is to enable macroscale simulations obtained by coupling small patches of simulations together over large physical distances.
A staggered grid is used for the microscale simulation of the fields of depth h and velocity u in the wave-like systems. We introduce a macroscale staggered grid to couple the microscale patches. Linear or cubic or quintic interpolation provides boundary conditions on the field in each patch. Linear analysis of the whole coupled multiscale system establishes that the resultant macroscale dynamics is appropriate. Numerical simulations support the linear analysis.

Eigenvalue analysis suggests that the gap-tooth scheme empowers feasible computation of large scale simulations of wave-like dynamics with complicated underlying physics. As an pilot study, the dissertation implements numerical simulations of dam-breaking waves by the gap-tooth scheme. Comparison among the gap-tooth simulation, the microscale simulation over the whole domain and the published experimental data shows the gap-tooth scheme is feasible to compute large scale wave-like dynamics.

Viscous thin fluid flow has long wave dynamics. The dissertation primarily attempts to use the gap-tooth scheme to explore viscous flow of a layer of fluid. An outstanding issue is the need to create microscale details for each patch appropriate to the macroscale information. The dissertation develops a two-layer model for this viscous layer of fluid, which will have more microscale modes than classic one-layer models, but without the full complexity of fully resolved vertical structures. The two layers are artificial and have no distinguishing physical feature. Linear analysis indicates that an unphysical instability appears for high wavenumber. We introduce a regularising operator to stabilise the model.

The gap-tooth scheme is used to model the viscous layer of fluid with the microscale simulator of the developed two-layer model. To create microscale details for each patch appropriate to the macroscale information, computer algebra leads to the classic one-layer model from the developed two-layer model. The coupling conditions of the gap-tooth scheme are developed by interpolating the macroscale value at the centre of a patch to the boundaries of each neighbouring patch. Numerical simulations of the viscous layer of fluid are successfully implemented by such gap-tooth scheme. Results show that the developed gap-tooth scheme is feasible to model the viscous layer of fluid.

Keywords: Navier–Stokes equation, Smagorinski, suspended sediment, channel flows, gap-tooth scheme, dam-breaking waves, thin fluid flow, two-layer model
Certification of dissertation

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Candidate name: Meng Cao Signature: Date:
Acknowledgements

I wish to sincerely thank the following people:

- Professor Tony Roberts, my supervisor, for his expert guidance, insightful comments and incredible attention-to-detail for this dissertation. I thank Tony for his invaluably mentoring through my candidature.

- Dr Benjamin Binder (associated supervisor), Dr Judith Bunder, Dr Wei Wang, Dr Xiaopeng Chen, Dr Luke Bennetts, Dr Trent Mattner, Dr Yvonne Stokes, for their help and comments in my presentations.

- Dr Trent Mattner and Professor Matthew Roughan, the coordinators of postgraduate studies, for their help during my study.

- The people in the Mathematical School, for their help and attendance to my presentations.

- My parents, my brother and my girlfriend, for their support and encouragement. I thank my parents’ financial support through my Ph.D study.

Of course, I acknowledge the Mathematical School of the Adelaide University providing a good environment for this work.
Contents

Abstract 1

Certification of dissertation 3

Acknowledgements 4

1 Introduction 9
 1.1 Introduction to modelling environmental fluids and suspended sediment 9
 1.1.1 Modelling environmental fluids 9
 1.1.2 Modelling suspended sediment in turbulent flow 12
 1.2 Introduction of gap-tooth scheme and its application on viscous thin film flow 13
 1.2.1 Gap-tooth simulation of wave-like system 13
 1.2.2 Gap-tooth scheme explores viscous flow of a layer of fluid 15

2 Modelling 3D turbulent fluids based upon the Smagorinski large eddy closure 17
 2.1 Introduction 17
 2.2 Detailed equations of the turbulence model 19
 2.2.1 The coordinate system 19
 2.2.2 Turbulent mean variables 21
 2.2.3 Nondimensionalization of the variables 21
 2.2.4 The governing Smagorinski equations 23
 2.2.5 Smagorinski large eddy closure 23
 2.2.6 The boundary conditions 24
 2.3 Centre manifold theory supports the modelling 26
 2.3.1 Embed the physical problem in a family of problems 26
 2.3.2 Linear dynamics of the system 28
 2.4 Reduced model of the fluid dynamics 30
 2.4.1 Computer algebra constructs the slow manifold 30
2.4.2 The order of errors in the construction 31
2.4.3 The low leading model 31
2.4.4 Model the turbulent dispersion 33
2.4.5 Vertical distribution of the velocity 35

2.5 Eigenvalue analysis of the model 40

2.6 Numerical scheme for numerically solving the model 44
2.6.1 Developing the staggered grid scheme 44
2.6.2 Approximation of spatial derivatives 44
2.6.3 Numerical eigenvalue analysis 47

2.7 Modelling fluids along open channels 49
2.7.1 Modelling flows along straight channels 49
2.7.2 Flows along meandering channels 53
2.7.3 Flows along river-like open channels 57

2.8 Conclusion ... 60

3 Modelling suspended sediment transport in turbulent floods 62
3.1 Introduction ... 62
3.2 Detailed equations of suspended sediment 63
3.2.1 The governing equations 63
3.2.2 The falling velocity 65
3.2.3 The diffusion factor 65
3.2.4 The boundary conditions 66
3.2.5 The equilibrium reference concentration 67
3.2.6 The mixing density of the fluid and sediment 68
3.3 Centre manifold theory supports the modelling 69
3.4 Reduced model of the suspended sediment 70
3.4.1 The low dimensional model 70
3.4.2 Model lateral dispersion of the sediment 72
3.4.3 The suspended sediment in steady flow 74

3.5 Vertical distribution of suspended sediment 77
3.5.1 The low order approximation of the suspended sediment concentration 77
3.5.2 Distribution of the suspended sediment in steady flow 78

3.6 Numerical simulations of the suspended sediment in turbulent flow .. 83
3.6.1 The staggered numerical scheme 85
3.6.2 Simulating suspended sediment in open channels 86
3.6.3 Simulating suspended sediment in large waves 94

3.7 Conclusion ... 101
4 Multiscale modelling couples patches of wave-like simulations

4.1 Introduction

4.2 The linear microscale simulator

4.3 Couple microscale patches across gaps
 4.3.1 Develop the coupling conditions
 4.3.2 Numerical simulations verify the coupling conditions

4.4 Linear analysis of the coupled dynamics
 4.4.1 Coupled wave-like equations (4.2)–(4.3)
 4.4.2 Coupled microscale discretisations (4.4)–(4.5)

4.5 Nonlinear analysis of the gap-tooth simulation
 4.5.1 The nonlinear microscale simulator
 4.5.2 Numerical eigenvalue analysis of the nonlinear problem
 4.5.3 Numerical gap-tooth simulation of the nonlinear problem

4.6 Gap-tooth simulation of dam breaking
 4.6.1 Distribute patches of the dam breaking
 4.6.2 Numerical gap-tooth simulation of dam breaking
 4.6.3 Boundary conditions of the dam breaking

4.7 Conclusion

5 Multiscale modelling couples patches of two-layer of fluid film flow

5.1 Detailed equations for two layer thin film flow
 5.1.1 The governing equations
 5.1.2 Boundary conditions

5.2 Centre manifold theory supports the modelling
 5.2.1 Embed physical problem in a family of artificial problem
 5.2.2 The spectrum

5.3 Model the two layer thin fluid flow
 5.3.1 Computer algebra constructs the slow manifold
 5.3.2 The order of errors in the construction
 5.3.3 The low leading order model of the two layer flow
 5.3.4 Derive dispersion terms of the two-layer model

5.4 Eigenvalue analysis of the two-layer model
 5.4.1 Linear analysis of the two-layer model
 5.4.2 Methods of avoiding the instability
 5.4.3 Numerical eigenvalue analysis of the two layer model

5.5 Gap-tooth simulation of the two layer thin fluid flow
 5.5.1 Coupling conditions on the odd patches
 5.5.2 Coupling conditions on the even patches
 5.5.3 The low leading order model of one layer flow
5.5.4 Numerical patches simulations of the two layer thin film flow 166
5.6 Conclusion .. 169

6 Conclusion .. 172
 6.1 Summary of the turbulent flows and sediment transport 172
 6.2 Summary of the gap-tooth simulations 174
 6.3 Future directions .. 175

A Reduce programs ... 176
 A.1 Computer algebra models the turbulent flow and sediment transport ... 176
 A.1.1 Explanation of symbols 176
 A.1.2 Definition of operators 177
 A.1.3 Initial approximation 179
 A.1.4 Truncation of the asymptotic expansion 180
 A.1.5 The iterative loop 181
 A.2 Computer algebra derives the characteristic equation in gap-tooth simulation 185
 A.3 Computer algebra derives the two-layer model 188
 A.3.1 Explanation of symbols 189
 A.3.2 Definition of operators in the algebra 189
 A.3.3 Initial approximation 190
 A.3.4 Truncation of the asymptotic expansion 191
 A.3.5 The iterative loop 191
 A.3.6 The slow manifold of the two-layer model 194

B Matlab codes .. 196
 B.1 Matlab code for the turbulent model 196
 B.2 Matlab code for the suspended sediment model 199
 B.3 Matlab code for the gap-tooth simulation 201
 B.4 Matlab code for the fluid film flow by gap-tooth scheme 204

Bibliography .. 210