Hypergraph Modeling for Saliency Detection and Beyond

Yao Li School of Computer Science The University of Adelaide

A thesis submitted for the degree of Master of Engineering Science 20/12/2013

Contents

Co	Contents					
\mathbf{Li}	List of Figures					
1	Intr	roduction				
	1.1	Saliency detection	1			
	1.2	Scene text detection	2			
	1.3	Overview of contributions	4			
	1.4	Outline	6			
2	Bac	Background				
	2.1	Saliency detection	8			
		2.1.1 Local approaches	9			
		2.1.2 Global approaches	9			
	2.2	Scene text detection	10			
		2.2.1 Texture-based approaches	10			
		2.2.2 Region-based approaches	12			
		2.2.3 Scene text detection aided by saliency	14			
3	Con	ntextual hypergraph modeling for salient object detection	15			
	3.1	Cost-sensitive SVM saliency detection	15			
	3.2	Hypergraph modeling for saliency detection	17			
		3.2.1 Hypergraph modeling	18			
		3.2.2 Adaptive hyperedge construction	20			
		3.2.3 Hyperedge saliency evaluation	21			

CONTENTS

Re	efere	nces			63
5	Con	clusio	ıs		61
		4.4.5	Compariso	on with other approaches	53
		4.4.4		n of characterness cues	52
		4.4.3		n of Bayesian multi-cue integration	51
		4.4.2		ersus MSER	51
		4.4.1		ntal setup	49
	4.4			proposed scene text detection approach	49
		4.3.2	-	on with other approaches	48
		4.3.1	Experimen	ntal setup	47
	4.3				46
		4.2.2	Text line f	formulation	45
			4.2.1.3	The design of pairwise potential \ldots \ldots \ldots \ldots	44
			4.2.1.2	The design of unary potential \ldots \ldots \ldots \ldots	44
			4.2.1.1 I	Labeling model overview	43
		4.2.1	Character	$labeling \ldots \ldots$	43
	4.2	Labeli	ng and grou	uping	43
			4.1.2.2 I	Bayesian multi-cue integration	42
			4.1.2.1	Characterness cues	39
		4.1.2	Character	ness evaluation	39
		4.1.1	Candidate	e region extraction	37
	4.1	Chara	cterness mo	odel	37
4	Cha	racter	ness: an i	ndicator of text in the wild	37
		3.4.6	Applicatio	on to image retargeting	29
		3.4.5	Compariso	on with other approaches	29
		3.4.4	Evaluation	n of saliency fusion \ldots \ldots \ldots \ldots \ldots \ldots	27
		3.4.3	Evaluation	n of different parameter settings	26
		3.4.2	Evaluation	n of individual approaches	25
		3.4.1	Experimen	ntal setup	23
	3.4	Exper	iments		23
	3.3	Salien	cy fusion		23

Abstract

Salient object detection aims to locate objects that capture human attention within images. Previous approaches often pose this as a problem of image contrast analysis. In this work, we model an image as a hypergraph that utilizes a set of hyperedges to capture the contextual properties of image pixels or regions. As a result, the problem of salient object detection becomes one of finding salient vertices and hyperedges in the hypergraph. The main advantage of hypergraph modeling is that it takes into account each pixel's (or region's) affinity with its neighborhood as well as its separation from image background. Furthermore, we propose an alternative approach based on center-versus-surround contextual contrast analysis, which performs salient object detection by optimizing a cost-sensitive support vector machine (SVM) objective function. Experimental results on four challenging datasets demonstrate the effectiveness of the proposed approaches against the state-of-the-art approaches to salient object detection.

In addition to a novel method for salient object detection, we tackle scene text detection, a challenging research problem in the both vision and document analysis community, from the saliency detection prospective. Motivated by the need to consider the widely varying forms of natural text, we propose a bottom-up approach to the problem which reflects the 'characterness' of an image region. In this sense our approach mirrors the move from saliency detection methods to measures of 'objectness'. In order to measure the characterness we develop three novel cues that are tailored for character detection, and a Bayesian method for their integration. Because text is made up of sets of characters, we then design a Markov random field (MRF) model so as to exploit the inherent dependencies between characters. We experimentally demonstrate the effectiveness of our characterness cues as well as the advantage of Bayesian multi-cue integration. The proposed text detector outperforms state-of-the-art methods on a few benchmark scene text detection datasets. We also show that our measurement of 'characterness' is superior than state-of-the-art saliency detection models when applied to the same task.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature

Date

Acknowledgements

First I would like to thank Dr. Chunhua Shen, my principal supervisor during my master study years. His dedication to research inspired me a lot, and will definitely influence me throughout my research career in the coming years. Under his supervision, not only have I learnt specific knowledge in the field, but I also know how to think as a mature researcher, including the ability to find unsolved challenges and address them in novel ways.

I would also like to thank staffs and visitors in the Australian Center for Visual Technologies (ACVT). As a non-native English speaker, I made grammar errors in academic manuscripts now and then. I would like to thank my co-supervisor, Prof. Anton van den Hengel, for his time and effort in revising those manuscripts. I also want to thank him for providing living cost to me for a year. In addition, I would like to thank Dr. Xi Li, a research fellow in our research center. A paper accepted by the International Conference on Computer Vision this year indicates that our cooperation is very successful. The paper is also a cornerstone of this thesis. Dr. Wenjing Jia is a lecturer from the University of Technology Sydney, who visited our lab for several months. She helped me a lot when I arrived in Adelaide. I would like thank her for her selfless help and our cooperation on research topic of scene text detection. Other staffs in the ACVT, such as Prof. Ian Reid and Dr. Anthony Dick, have given me thoughtful suggestions on research. In a word, I am very lucky to be a member of the ACVT.

As a master by research student, I spent most time with PhD students. Guosheng Lin, Zhen Zhang, Josh Boys, Fayao Liu, Zhenhua Wang, Quoc Huy Tran, Trung Thanh Pham, Julio Zaragoza, Anh Tuan Ngo all have helped me a lot on both research and life. Having friends with different culture backgrounds really enriches my life experience.

Finally, thanks go to the excellent support from staffs in the School of Computer Science at the University of Adelaide. Pru Carter, Julie Mayo, Sharyn Liersch and Jo Rogers are administrative staffs of our school. They have offered me enormous support within the school such as booking flight and accommodation for conferences, which enables me focusing my main effort on research. Thanks also go to our Head of School, David Suter, and our Postgraduate Coordinator Frank Neumann. I am really grateful for what they have done.

List of Figures

1.1	Illustration of our approaches to salient object detection. \ldots	2
3.1	Illustration of cost-sensitive SVM for saliency detection. The saliency	
	score is computed using based on the SVM classification results.	16
3.2	Illustration of hypergraph modeling for saliency detection using	
	nonparametric clustering	18
3.3	Illustration of salient object detection using two different types of	
	graphs (i.e., hypergraph and standard pairwise graph). Clearly,	
	our hypergraph saliency measure is able to accurately capture the	
	intrinsic structural properties of the salient object. \ldots \ldots \ldots	20
3.4	Illustration of the gradient magnitude information for hyperedge	
	saliency evaluation. The left subfigure shows the original image,	
	and the middle subfigure displays the gradient magnitude map	
	I_g^* obtained by binarizing I_g using the adaptive threshold \mathfrak{T} , as	
	illustrated in the right subfigure	20
3.5	Illustration of M_g and $I_g^* \circ M_g$ for hyperedge saliency evaluation.	
	The top row shows the multi-scale hyperedges; the middle row	
	displays the scale-specific M_g that indicates the pixels (within a	
	narrow band) along the boundary of the scale-specific hyperedge;	
	and the bottom row exhibits the filtered gradient magnitude map	
	$I_g^* \circ M_g$	22

3.6	PR curves based on three different configurations: 1) using the	
	SVM saliency approach only; and 2) using the hypergraph saliency	
	approach only; 3) combining the SVM and hypergraph saliency ap-	
	proaches. Clearly, the saliency detection performance of using the	
	third configuration outperform that of using the first and second	
	configurations. From left to right: MSRA-1000, SOD, SED-100,	
	and Imgsal-50	25
3.7	Illustration of our saliency detection approach based on different	
	parameter settings. (a) shows the PR curves of using different	
	settings of λ ; (b) displays the PR curves with different configura-	
	tions of the scale space (determined by γ); and (c) exhibits the PR	
	curves in different cases of scale numbers	26
3.8	Evaluation of two different saliency fusion configurations on the	
	MSRA-1000 dataset: 1) varying the hypergraph saliency approach	
	while keeping the SVM saliency approach fixed; and 2) changing	
	the SVM saliency approach while fixing the hypergraph saliency	
	approach. (a) shows the PR curves of the saliency detection ap-	
	proaches associated with the first configuration while (b) displays	
	the PR curves of the saliency detection approaches corresponding	
	to the second configuration.	28
3.9	Saliency detection examples of our different approaches on the	
	MSRA-1000 dataset. Clearly, the SVM saliency approach is able to	
	locate the salient objects while the hypergraph saliency approach	
	is capable of capturing the intrinsic structural information on the	
	salient objects.	31
3.10	Quantitative PR curves of all the thirteen approaches on the four	
	datasets. The rows from top to bottom correspond to MSRA-1000,	
	SOD, SED-100, and Imgsal-50, respectively. Clearly, our approach	
	achieve a better PR performance than the other competing ap-	
	proaches in most cases.	32

3.11	Quantitative ROC curves of all the thirteen approaches on the four	
	datasets. The rows from top to bottom correspond to MSRA-1000,	
	SOD, SED-100, and Imgsal-50, respectively. Clearly, our approach	
	achieve a better ROC performance than the other competing ap-	
	proaches in most cases.	33
3.12	Quantitative F-measure performance of all the thirteen approaches	
	on the four datasets. The columns from left to right correspond to	
	MSRA-1000, SOD, SED-100, and Imgsal-50, respectively. Here,	
	GS is a shorthand form of GS_SP. It is clear that our approach	
	achieve a good F-measure performance on the four datasets	34
3.13	Salient object detection and segmentation examples on the MSRA-	
	1000 dataset. For each example, the top row shows the input	
	image and its corresponding saliency maps obtained by different	
	approaches, and the bottom row displays the ground truth and the	
	salient object segmentation results associated with the saliency	
	maps. It is clear that our approach obtains the visually more	
	consistent saliency detection and segmentation results than the	
	other competing approaches	35
3.14	Qualitative image retargeting performance comparison between [1]	
	and ours. From left to right: images, our results, results of $[1]$.	
	Clearly, the performance of our approach is better than that of [1].	36
4.1	Overview of our good text detection approach. The characterings	
4.1	Overview of our scene text detection approach. The characterness model consists of the first two phases.	38
4.2	-	30
4.2	Cases that the original MSER fails to extract the characters while the modified eMSER succeeds.	20
4.3	Efficient stroke width computation [2] (best viewed in color). Note	39
4.0	the color variation of non-characters and characters on (c). Larger	
	color variation indicates larger stroke width variance	40
4.4	Sample text (left) and four types of edge points represented in	40
4.4	four different colors (right). Note that the number of edge points	
	in blue is roughly equal to that in orange, and so for green and	
		42
	crimson.	42

LIST OF FIGURES

4.5	Observation likelihood of characters (blue) and non-characters (red)	
	on three characterness cues <i>i.e.</i> , SW (top row), PD (middle row),	
	and eHOG (bottom row). Clearly, for all three cues, observa-	
	tion likelihoods of characters are quite different from those of non-	
	characters, indicating that the proposed cues are effective in dis-	
	tinguishing them. Notice that 50 bins are adopted. \ldots \ldots \ldots	56
4.6	Quantitative precision-recall curves performance of all the eleven	
	approaches. Clearly, our approach achieves significant improve-	
	ment compared with state-of-the-art saliency detection models for	
	the measurement of 'characterness'	57
4.7	Quantitative F-measure performance of all the eleven approaches.	
	Clearly, our approach achieves significant improvement compared	
	with state-of-the-art saliency detection models for the measure-	
	ment of 'characterness'	57
4.8	Visual comparison of saliency maps. Clearly, the proposed method	
	highlights characters as salient regions whereas state-of-the-art saliency	7
	detection algorithms may be attracted by other stuff in the scene.	58
4.9	Sample outputs of our method on the ICDAR datasets and OSTD	
	dataset. Detected text are in yellow rectangles	59
4.10	False negatives of our approach. Clearly, there are two kinds of	
	characters that our approach cannot handle, (i) characters in ex-	
	tremely blur and low resolution (top row), (ii) characters in un-	
	common fonts (bottom row).	60