Diversity and Distribution of Limno-Terrestrial Microfauna from Antarctica

ALEJANDRO VELASCO-CASTRILLÓN

Presented for the Degree of Doctor of Philosophy
School of Earth and Environmental Sciences
The University of Adelaide, South Australia

May 2014
This page has been left blank intentionally
TABLE OF CONTENTS

ABSTRACT... vi
DECLARATION .. vii
ACKNOWLEDGEMENTS ... viii
Notes on chapter format .. x

CHAPTER I.

General Introduction: A review of current Antarctic limno-terrestrial microfauna 1
 Statement of authorship ... 2
 Abstract ... 3
 Keywords ... 3
 Introduction .. 3
 Current state of knowledge ... 6
 Microfauna community ... 6
 Tardigrada ... 6
 Rotifera .. 9
 Nematoda .. 11
 Microfauna dispersal and occurrence .. 14
 Establishing diversity and distribution ... 15
 Future directions in biodiversity assessment and species discovery in Antarctica 16
 Acknowledgements .. 18
 References ... 18

CHAPTER II.

Distribution and diversity of microfauna from east Antarctica: assessing the link
between biotic and abiotic factors .. 30
 Statement of authorship ... 31
 Preamble ... 33
 Abstract ... 34
 Introduction .. 35
CHAPTER III.
Morphological and molecular diversity at a continental scale: a step closer to understanding Antarctic nematode biogeography .. 77
Statement of authorship .. 78
Preamble ... 79
Abstract .. 80
Introduction .. 81
Methods .. 85
 Sampling areas .. 85
 Sampling methods ... 86
 Nematode sorting and identification .. 86
 Abiotic habitat parameters .. 87
 DNA sequencing .. 87
 Sequence analysis .. 89
Results .. 90
 Nematode diversity ... 90
 Order Rhabditida .. 92
 Order Plectida ... 93
 Order Dorylaimida .. 94
 Order Monhysterida .. 94
 Order Tylenchida .. 95
 Linking species presence and abiotic parameters ... 95
Discussion .. 96
 Species boundaries ... 96
 Order Rhabditida .. 97
 Order Plectida ... 99
 Order Dorylaimida .. 101
 Order Monhysterida .. 102
 Order Tylenchida .. 103
Conclusions ... 104
Acknowledgements ... 105
CHAPTER IV.

Mitochondrial DNA reveals hidden diversity for tardigrades and rotifers from across the Antarctic realm ... 114

Statement of authorship ... 115
Preamble .. 118
Abstract .. 119
Introduction .. 119

Methods .. 126
 Sampling areas .. 126
 Sampling methodology .. 127
 Rotifer and tardigrade sorting and identification 128
 DNA sequencing .. 129
 Sequence analyses .. 130

Results .. 131
 Tardigrada .. 131
 Tardigrade molecular diversity ... 131
 Order Parachela .. 131
 Order Apochela .. 134
 Order Echiniscoidea .. 134
 Rotifera .. 137
 Rotifer molecular diversity ... 137
 Genus Adineta .. 137
 Genus Philodina ... 138
 Unidentified bdelloids .. 139

Discussion ... 141
Acknowledgements .. 145
References ... 146
CHAPTER V.

General Discussion ... 156
Synthesis ... 156
Future directions .. 160
References ... 162

APPENDIX 1 ... 168
APPENDIX 2 ... 174
APPENDIX 3 ... 178
APPENDIX 4 ... 195
ABSTRACT

Antarctic terrestrial life has been described as some of the simplest on Earth. The terrestrial animals that have survived the harsh Antarctic environment are composed mostly of microfauna, such as rotifers, tardigrades and nematodes. Numerous studies have hypothesised about the lack of diversity, but few have examined this using empirical data. Molecular studies have been shown to be useful in determining relationships among populations, delineating species boundaries, dispersal patterns, and biogeographic connectivity. However, such studies of these ecologically-important animals are still limited because original taxonomic work has not been revised broadly across Antarctica. It is apparent that species diagnoses are difficult in many cases due to the minute size and conservative morphology of these animals. Here I compile a species diversity list from the microfaunal groups (Chapter I), and also examine morphological and molecular (using the mitochondrial cytochrome c oxidase I gene) data from 371 nematodes (Chapter III), 438 tardigrades and 526 bdelloid rotifers (Chapter IV). These data suggest that a molecular strategy is vital to discern among cryptic species and to delineate species boundaries for microfaunal groups from Antarctica compared to the sub-Antarctic and global distributions. Sequence comparisons showed local endemic and widespread distributed species, even beyond the Antarctic continent. Those widespread species and the wider range of habitats in which they were found may reflect the ability to withstand environmental stresses. Correlations of soil geochemistry and environmental variables were also established with abundance and distribution data for sites as far as 2000 km from Framnes Mountains (67.78° S- 62.79° E) to Bailey Peninsula (66.28° S-110.54° E) in East Antarctica. These data reveal bdelloid rotifers as the most diverse and widespread group inhabiting a broader range of habitats followed by tardigrades and nematodes. In this study I have uncovered potential new species as well as revealing abiotic habitat requirements and distribution levels for Antarctic limno-terrestrial microfauna. Such information is vital in future conservation and land management plans, and in identifying new putative species and detecting exotic introductions. By using the current knowledge on microfaunal diversity together with the species delimited and the distributional records presented in this study, it will help to better understand biogeography and to provide information on the species mobility in short and long term climatic changes.
DECLARATION

I, Alejandro Velasco Castrillón certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Alejandro Velasco Castrillón
ACKNOWLEDGEMENTS

First of all I would like to thank my supervisors Dr Mark Stevens, Prof Andrew Austin and Prof Steve Cooper. You have all helped in your own way. I would like to express my enormous gratitude to my main supervisor Mark Stevens, who offered me the opportunity to undertake this amazing Antarctic research under his supervision. Thank you, Mark, for sharing with me your wealth of knowledge on Antarctic matters and for giving the privilege of going to one of the most amazing places that this planet (still) has to offer. Thank you for always being supportive and accessible and for the endless time you spent reading drafts, and assisting in the editing and submission of manuscripts. Most of all, thank you for your good character, willingness to make this work possible, and positive attitude all throughout this long journey.

I am extremely grateful to all the funding bodies which made this research possible. Special thanks to the University of Adelaide, South Australian Museum and the Australian Antarctic Division. I also want to thank all the people who collaborated with me during the field trip in Antarctica. Special thanks to Mark Schultz for experiencing the frozen continent with me, assisting in sample collection and giving me valuable feedback on the manuscripts before submission. My gratitude goes to all the personnel at the Australian Antarctic Division, the Aurora Australis and the Antarctic Research Stations with special thanks to the field assistants who showed me the most remote and hidden places in the Antarctic.

I would like to thank every single person who assisted me throughout my lab work at the Waite campus. Special thanks to Federica Colombo for all the hours spent looking down the microscope and sorting out micro-invertebrates. Many thanks to Rebecca Stonor, Maria Manjarrez, Pauline Glocke and Tanya Matic for providing guidance at the lab and for helping me dealing with hundreds of soil bags. I am also grateful to Dr Kerrie Davies for her taxonomic expertise on nematodes and her intellectual input.

I would also like to pass on my sincere appreciation of the external collaborators who contributed to this work. To Dr John Gibson for showing me tardigrades and rotifers for the first time, providing literature and revising manuscripts; to Dr Byron Adams for providing
sequences and extraction protocols; and to Dr Tim Page for providing rotifer sequences. I am enormously grateful for the access to laboratory installations and soil samples given to me by the staff of the British Antarctic Survey; for Chester Sands making possible my two visits to England, giving me access to soil samples, providing sequences, and sharing his invaluable knowledge on molecular matters; and for Dr Sandra McInnes, who provided sequences and expertise in tardigrades. I am also very grateful to Dr Allan Green, Dr Leopoldo Sancho and Dr María Arróniz-Crespo from the Complutense University of Madrid for welcoming me to their lab and providing their precious time, soil samples, and a positive attitude.

I would like to thank Prof Andrew Austin’s lab group for their support and feedback. Special thanks to Javid, Vanesa, Kym, Kate, Rachel, Gary, Michelle, Rebecca, Simon and Paul. I must specially thank my incredible friends Javid and Vanesa who provide me with knowledge, laughter, positive energy and always a smile in their faces which made my PhD live much more enjoyable. I will never forget you my friends. I would also like to thank my bicycle who kept my mental sanity, and of course my Colombian buddies Camilo and Fernando for sharing their University time with me and enjoying coffees, lunches and lots of happiness.

I owe special thanks to my mother, for supporting me in every possible way to come to Australia, coping with my absence, and encouraging me to pursue my studies even in a faraway destination. I am forever grateful to you Lore, not only for all you have given me and for raising me excessively well, but also for gifting me with unimaginable good looks and indescribable talent. Last, and obviously not least, thanks to you Jilarita for your loving support and for understanding my lack of free time and my University priorities.
Notes on chapter format

This thesis is a combination of conventional and publication formats, therefore Chapters have been formatted in different styles. Chapter I is a review paper submitted to the journal *Polar Biology* and thus follows the journal format. Chapter II is a research article published in the journal *PLoS ONE*, and follows precisely the formatting required for the journal. Chapter III is also a research article published in the journal *Soil Biology and Biochemistry* and thus follows the style of the journal. Chapter IV compiles two research manuscripts (rotifer and tardigrade). The rotifer manuscript has been accepted in the journal *Biodiversity*, and the tardigrade manuscript has been submitted to the journal *Invertebrate Systematics*. The style used in Chapter IV follows the guidelines required by the journal *Biodiversity*. Chapter V is the General Discussion of thesis and it has not been submitted to any journal.

Statements declaring Co-Author contributions preludes each chapter published, accepted or submitted for publication.