AQUAPORINS: GATEKEEPERS OF OEDEMA IN TRAUMATIC BRAIN INJURY

Joshua Luke Burton
B.Arts (Psychology), B.HlthSc. (Hons.)

Discipline of Anatomy and Pathology, School of Medical Sciences
University of Adelaide

2014

A thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

Supervisors:
Prof. Robert Vink
Prof. Andrea Yool
DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Joshua Luke Burton

2014
DEDICATION

"How much truth can a spirit endure; how much truth can it dare? This became for me more and more the actual test of value. Error (the belief in the ideal) is not blindness; error is cowardice. Every conquest, every step forward in knowledge is the outcome of courage, of hardness towards one’s self; of cleanliness towards one’s self." - Ecce Homo, Preface, Friedrich Nietzsche

This thesis is dedicated in memory of Lesley Gillian and John Rex Kimber who instilled in me the significance and value of study. For without them I would not have come this far.
ACKNOWLEDGEMENTS

From my earliest recollection I was blessed by Lesley and John by their imparting to me the true value of knowledge. Thus my decision to undertake a PhD was not one of if, but rather when. Indeed Plato’s infamous Allegory of the Cave has remained a key part of my own ideology and in many respects has mirrored the early challenges I have so far faced throughout my life with an undying desire to seek the light.

There is also unquestionably a deep sense of sadness in closing this part of my studies, for not only am I taking a step away from a place of self-growth but so too the presence of those who have inspired me. My mentor and principle supervisor Prof. Robert Vink has not only guided me throughout my candidature academically, but so too has continually inspirited within me my thirst for learning by his vast research experience and unique teaching approach, epitomising the ideal of evolving academia. There is yet so much I could and dearly wish to learn from him in all aspects of my life and so I only hope that I am fortunate enough to one day be in a position to continue my tuition. Thank you Bob, you will always remain to me a pillar of insight.

Next I would like to thank my secondary supervisor Prof. Andrea Yool, for whom without the studies conducted within this thesis would simply not have been possible. With her immense understanding of physiology and great expanse of research to support her claims, she was singularly responsible for having developed \textit{in vitro} the novel pharmaceutical agents used within this research.

I would also like to thank the various members of the Vink laboratory who have either assisted in experimental protocol or provided valued feedback on my work throughout my candidature. Indeed arguably the special maxim of the Vink team is one of comradely and so should be cherished as an example for other research groups to follow.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Apparent diffusion coefficient</td>
</tr>
<tr>
<td>AMDA</td>
<td>A-amino-3-hydroxy-5-methyl-4-isoxazolpropionate</td>
</tr>
<tr>
<td>AQP</td>
<td>Aquaporin</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine-5'-triphosphate</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain-barrier</td>
</tr>
<tr>
<td>CBF</td>
<td>Cerebral blood flow</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CPP</td>
<td>Cerebral perfusion pressure</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>DAI</td>
<td>Diffuse axonal injury</td>
</tr>
<tr>
<td>EAA</td>
<td>Excitatory amino acid</td>
</tr>
<tr>
<td>ECF</td>
<td>Extracellular fluid</td>
</tr>
<tr>
<td>HIF-1α</td>
<td>Hypoxia-inducible factor 1-alpha</td>
</tr>
<tr>
<td>ICP</td>
<td>Intracranial pressure</td>
</tr>
<tr>
<td>ISF</td>
<td>Interstitial fluid</td>
</tr>
<tr>
<td>Kir4.1</td>
<td>Inward-rectifying potassium channel</td>
</tr>
<tr>
<td>MAP</td>
<td>Mean arterial pressure</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinases</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>Na⁺/K⁺-ATPase</td>
<td>Sodium-potassium adenosine triphosphatase pump</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>OAP</td>
<td>Orthogonal array of particles</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>TBI</td>
<td>Traumatic brain injury</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor alpha</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial cell growth factor</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION ... II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

ABBREVIATIONS .. V

LIST OF FIGURES AND TABLES... X

1 INTRODUCTION ... 12

1.1 EPIDEMIOLOGY ... 15
 1.1.1 Australia ... 15
 1.1.2 Global .. 15

1.2 NEUROPATHOLOGY ... 16
 1.2.1 Primary injury mechanisms .. 18
 1.2.1.1 Biomechanics of TBI .. 18
 1.2.1.2 Focal and diffuse TBI .. 19
 1.2.1.3 Respiratory depression, hypoxia and oedema ... 19
 1.2.2 Secondary injury mechanisms ... 21
 1.2.2.1 Metabolic alterations and brain bioenergy ... 22
 1.2.2.2 Ionic homeostasis and electrochemical gradients .. 23
 1.2.2.3 Excitatory amino acids and oxidative stress .. 25
 1.2.2.4 Apoptosis and necrosis .. 27
 1.2.2.5 Astrogliosis .. 28

1.3 BRAIN FLUID DYNAMICS AND HOMEOSTASIS .. 30
 1.3.1 Formation, function and resolution of CSF .. 30
 1.3.1.1 CSF Function .. 30
 1.3.1.2 CSF Formation ... 30
 1.3.1.3 CSF formation in TBI .. 31
 1.3.1.4 ICP and the formation of CSF in TBI ... 33
 1.3.1.5 CSF Resolution ... 34
 1.3.1.6 Aquaporins and ECF production at the cerebral vasculature ... 35

1.3.2 Barriers of the CNS ... 35
 1.3.2.1 Blood brain barrier .. 36
 1.3.2.2 Blood CSF barrier ... 40

1.4 CEREBRAL OEDema ... 42
 1.4.1 Classification of brain oedema .. 43
 1.4.1.1 Vasogenic oedema and the role of AQP .. 43
 1.4.1.2 Cytotoxic oedema and the role of AQP .. 46
 1.4.1.3 Osmotic or ionic oedema and the role of AQP .. 48
 1.4.1.4 Hydrocephalic or transependymal oedema and the role of AQP 49
 1.4.1.5 Ischaemia in oedema and the role of AQP .. 50
 1.4.1.6 Traumatic cerebral oedema ... 51
1.4.2 Mixed models of traumatic cytotoxic oedema and the role of AQP4 .. 52
1.4.3 AQP4 and mediators of brain oedema ... 54
1.4.3.1 Hypoxia-inducible factor 1-alpha .. 54
1.4.3.2 Tumour necrosis factor-alpha .. 55
1.4.3.3 Matrix metalloproteinases ... 56
1.5 AQUAPORINS .. 56
1.5.1 Cerebral aquaporins 4 & 1 ... 58
1.5.1.1 Aquaporin 4 .. 58
1.5.2 The role of AQP4s in the brain ... 59
1.5.2.1 Aquaporins and brain fluid movement in pathology .. 59
1.5.2.2 Aquaporins and astrocyte migration .. 60
1.5.2.3 Aquaporins, neuronal activity and Kir4.1 .. 61
1.5.2.4 Aquaporin localisation and alpha-syntrophin .. 62
1.5.2.5 Aquaporin 1 .. 63
1.5.3 Treatment approaches in cerebral oedema .. 63
1.6 SYNOPSIS ... 64

2 MATERIALS & METHODS ... 66

2.1 ANIMALS ... 67
2.1.1 Ethics .. 67
2.1.2 Housing .. 67
2.1.3 Anaesthesia .. 67
2.1.3.1 Isoflurane .. 67
2.1.3.2 Lignocaine ... 68
2.1.3.3 Pentobarbital (Lethobarb) ... 68
2.1.4 Impact-acceleration diffuse TBI ... 68
2.1.4.1 The impact acceleration model of diffuse TBI ... 68
2.1.4.2 Surgery and injury induction .. 69
2.1.4.3 Animal exclusions .. 70
2.1.4.4 Sham controls .. 70
2.1.4.5 Hypoxic period ... 71
2.1.4.6 Post-surgery recovery ... 73
2.1.5 Drug preparation and administration ... 73
2.1.5.1 AQP modulators AqB013 and AqF026 .. 73
2.2 POST TRAUMATIC ASSESSMENTS .. 75
2.2.1 Analyses of oedema ... 75
2.2.2 BBB permeability .. 76
2.2.3 Evaluation of motor deficits ... 77
2.3 HISTOLOGICAL ASSESSMENT .. 78
2.3.1 Transcardial Perfusion ... 78
2.3.2 Paraffin embedding and sectioning .. 78
2.3.3 Haemotoxylin and Eosin Staining ... 79
2.3.4 Immunohistochemistry procedures ... 79
2.3.5 Antibodies .. 81
 2.3.5.1 Aquaporin 4 .. 81
 2.3.5.2 Aquaporin 1 .. 81
 2.3.5.3 Albumin ... 81
2.3.6 Colour Deconvolution .. 81
2.4 STATISTICAL ANALYSES .. 82

3 A HISTOLOGICAL ANALYSIS OF AQP4 & 1 IN TRAUMATIC BRAIN INJURY 83
3.1 INTRODUCTION ... 84
3.2 METHODS .. 87
 3.2.1 Surgery and injury induction .. 87
 3.2.2 Drug preparation and administration ... 87
 3.2.3 Immunohistochemistry .. 88
 3.2.4 Statistical Analysis .. 88
3.3 RESULTS .. 89
 3.3.1 AQP4 immunoreactivity post diffuse TBI .. 89
 3.3.2 AQP1 immunoreactivity post diffuse TBI .. 94
3.4 DISCUSSION ... 98

4 THE EFFECT OF AQP MODULATION ON CEREBRAL OEDEMA: A TIME COURSE STUDY 103
4.1 INTRODUCTION .. 104
4.2 METHODS .. 107
 4.2.1 Surgery and injury induction .. 107
 4.2.2 AQP modulators AqB013 and AqF026 .. 107
 4.2.3 Analyses of oedema ... 108
 4.2.3.1 Brain moisture content .. 108
 4.2.4 Statistical Analysis .. 109
4.3 RESULTS .. 110
 4.3.1 Cerebral oedema in treated animals post diffuse TBI 111
4.4 DISCUSSION ... 112

5 THE EFFECT OF AQP MODULATION AT OPTIMAL TIME POINTS ON CEREBRAL OEDEMA, BRAIN ALBUMIN CONTENT & MOTOR FUNCTIONAL OUTCOME 116
5.1 INTRODUCTION .. 117
5.2 METHODS .. 120
 5.2.1 Surgery and injury induction .. 120
 5.2.2 AQP modulators AqB013 and AqF026 .. 120
 5.2.3 Immunohistochemistry .. 120
 5.2.4 Brain albumin content .. 121
 5.2.4.1 EvansBlue ... 121
LIST OF FIGURES AND TABLES

Figure 2.1 Impact acceleration model of diffuse TBI in rats as illustrated by the author............................... 72
Figure 3.1 AQP4 immunoreactivity anatomical regions of interest... 90
Figure 3.2 AQP4 stained section from uninjured sham Sprague-Dawley rats.. 91
Figure 3.3 AQP4 stained section from injured Sprague-Dawley rats at 5 h post diffuse TBI......................... 91
Figure 3.4 AQP4 stained section from injured Sprague-Dawley rats at 48 h post diffuse TBI....................... 91
Figure 3.5 Colour deconvolution of AQP4 immunoreactivity in sham and injured rats at 5 and 48 h post diffuse TBI.. 93
Figure 3.6 AQP1 immunoreactivity anatomical regions of interest... 95
Figure 3.7 AQP1 stained section from uninjured sham Sprague-Dawley rats... 96
Figure 3.8 AQP1 stained section from injured Sprague-Dawley rats at 5 h post diffuse TBI....................... 96
Figure 3.9 AQP1 stained section from injured Sprague-Dawley rats at 48 h post diffuse TBI....................... 96
Figure 3.10 Colour deconvolution analyses of AQP1 immunoreactivity in sham and injured rats at 5 and 48 h post TBI.. 97
Figure 4.1 Cerebral oedema after diffuse TBI... 111
Figure 5.1 AQP4 stained section of Sprague-Dawley rats treated with an AQP4 & 1 antagonist at 5 h post diffuse TBI... 125
Figure 5.2 AQP4 stained section of Sprague-Dawley rats treated with an AQP4 agonist at 48 h post diffuse TBI.. 125
Figure 5.3 Colour deconvolution analyses of AQP4 immunoreactivity in injured and AQP modulator treated rats at 5 and 48 h post diffuse TBI.. 126
Figure 5.4 AQP1 stained sections from Sprague-Dawley rats administered an AQP4 & 1 antagonist at 5 h post diffuse TBI... 128
Figure 5.5 AQP1 stained sections from Sprague-Dawley rats administered an AQP4 agonist at 48 h following TBI.. 128
Figure 5.6 Colour deconvolution of AQP1 immunoreactivity in injured and treated rats at 5 h after drug administration. No statistical difference was seen between either of the AQP modulator groups and vehicle controls at any time point. ... 129
Figure 5.7 Albumin stained section from uninjured sham Sprague-Dawley rats.. 132
Figure 5.8 Albumin stained section from vehicle treated Sprague-Dawley rats, at 5 h post diffuse TBI........ 132
Figure 5.9 Albumin stained section from vehicle treated Sprague-Dawley rats, at 48 h post diffuse TBI....... 132
Figure 5.10 Albumin stained section of Sprague-Dawley rats treated with an AQP4 & 1 antagonist at 5 h post diffuse TBI... 133
Figure 5.11 Albumin stained section of Sprague-Dawley rats treated with an AQP4 agonist at 48 h post diffuse TBI.. 133
Figure 5.12 Colour deconvolution analyses of albumin immunoreactivity in injured and treated rats.......... 135
Figure 5.13 Brain albumin post diffuse TBI as assessed by EB extravasation.. 137
Figure 5.14 Brain Evans blue content post diffuse TBI as assessed by autofluorescence.............................. 138
Figure 5.15 Effects of aquaporin modulators on motor outcome as assessed by the rotarod test............... 140
Figure 5.16 Anatomical regions of interest as assessed by H&E...142

Figure 5.17 H&E stained section from uninjured sham Sprague-Dawley rats. ...143

Figure 5.18 H&E stained section from vehicle treated Sprague-Dawley rats, at 5 h post diffuse TBI.............143

Figure 5.19 H&E stained section from vehicle treated Sprague-Dawley rats, at 48 h post diffuse TBI..........143

Figure 5.20 H&E stained section of Sprague-Dawley rats treated with an AQP4 & 1 antagonist at 5 h post diffuse TBI...144

Figure 5.21 H&E stained section of Sprague-Dawley rats treated with an AQP4 agonist at 48 h post diffuse TBI..144

Figure 6.1 Measures of cerebral oedema formation post diffuse TBI in response to AQP modulation.158

Figure 6.2 AQP4 immunoreactivity in Sprague-Dawley rats sequentially treated with the AQP 4 & 1 antagonist and the AQP4 agonist at 5 and 48 h post diffuse TBI, respectively ...160

Figure 6.3 Colour deconvolution analyses of AQP4 immunoreactivity in sham, injured and treated rats162

Figure 6.4 AQP1 stained sections from sequentially treated Sprague-Dawley rats at 53 h post diffuse TBI...164

Figure 6.5 Colour deconvolution analyses of AQP1 immunoreactivity in sham, injured and treated rats at 5 and 48 h post TBI ..166

Figure 6.6 Albumin stained section of sequentially treated Sprague-Dawley at 5 h after agonist administration. ..168

Figure 6.7 Colour deconvolution analyses of Albumin immunoreactivity in sham, injured and treated rats...170

Figure 6.8 Brain EB extravasation after diffuse TBI ..171

Figure 6.9 Measures of brain EB extravasation after diffuse TBI as assessed via EB autofluorescence.....172

Figure 6.10 Rotarod performance in animals treated with AQP modulators after TBI173

Figure 6.11 H&E stained sections of sequentially treated Sprague-Dawley rats at 53 h post diffuse TBI......175