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Abstract 

Advanced signal processing techniques are widely used to detect damage in structures. The 

current study proposed a statistical approach to the identification of structural damages using 

guided waves. Various signal processing techniques were applied in order to determine and 

improve the ways in which damage in a structure can be identified for remediation. The 

proposed statistical approach not only provides a quantitative identification of the damages, 

but can also quantify the uncertainties associated with the damage identification results. This 

allows the performance of various signal processing techniques to be evaluated and compared 

in terms of accuracy and the degree of uncertainty associated with the damage identification 

results. Damage identification was initially conducted using time domain guided wave signals 

so that the results could be used as a benchmark. Four signal processing techniques were then 

considered. Hilbert transform was used to extract the signal envelopes. Fast Fourier transform 

was applied to transform the guided wave signals from the time domain to the frequency 

domain. Gabor wavelet transform was employed to extract the wavelet coefficients from 

time-frequency domain. Discrete wavelet transform was used to decompose the guided wave 

signals. The frequency domain signal, signal envelopes, wavelet coefficients and discrete 

wavelet decomposed signals were then employed separately to identify the damages in 

conjunction with the proposed statistical damage identification approach. Laboratory 

experiments were conducted and the data were used to verify the proposed statistical 
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approach. The levels of accuracy and degree of uncertainty associated with the damage 

identification results by each of the signal processing techniques were compared in detail. 

The results reported in this paper show that a suitable signal processing technique combined 

with the proposed statistical approach produces more robust identification of damages in a 

structure. 

 

Keywords: 

Damage identification; statistical approach; signal processing; Fourier transform; Hilbert 

transform; wavelet transform; guided waves; probability density function 
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1. Introduction 

1.1. Overview 

Identifying damage at its early stage is paramount to maintaining the safety and integrity of 

structures and reducing the risk of catastrophic failure. The development of robust and cost 

effective damage identification techniques to guarantee the safety of structures has therefore 

always been of particular interest in engineering. In the last two decades, with the refinement 

of computers and sensors, a variety of sophisticated damage identification techniques has 

been developed to ensure structural integrity and safety [1-4].  

Vibration-based damage identification methods [5-11], which rely on low-frequency 

vibration characteristics of structures to identify damages, have been extensively investigated, 

for example, especially in the fields of civil and mechanical engineering. Although 

low-frequency vibration methods can be used to globally monitor structures, they are 

generally not sensitive to local incipient damages [4], however, which means that damages as 

small as a centimeter and can threaten the safe operation of structures. For example, metal 

corrosions and fatigue cracks are hard to be detected and are potential lead to catastrophic 

failure in the structural components of engineering structures, such as bridges, planes, oil 

platforms and trains. These incipient damages are not easy to identify. Therefore, in recent 

years, high-frequency approaches have been explored, such as guided wave propagation [12], 

acoustic emission [13] and impendence measurements [14]. 

Guided waves have been widely recognized to be promising for damage detection. They 

are elastic waves whose propagation characteristics depend on structural boundaries. The 

excitation frequencies of these waves are at several hundred kilohertz and the corresponding 

wavelengths are of the order of millimeters. Since, in general damage can be identified if the 

wavelengths are of the same order as the damage size, guided waves are sensitive to small 

damages. Furthermore, guided waves can propagate over long distances with little loss of 

energy, making them ideal for large area and cross sectional monitoring of structures and cost 

effective [12]. In recent years a significant amount of research has been carried out to 
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investigate their use [15-20].  

 

1.2. Damage identification using guided waves 

Damage identification can be described as a four-level process [4] that aims to determine (i) 

the existence of damage, (ii) the location of damage, (iii) the type of damage and (iv) the 

severity of the damage.  

In general the existence and location of damage can be identified from guided wave data 

without additional information. For example, damage can be expected when guided wave 

reflected from the damage is observed in the measured signals, and the location of the 

damage can be identified by using the arrival time of the reflected wave [12]. However, 

additional information is essential for determining the type of damage and its severity. In 

practice, the types of damages common to structures of various material compositions can be 

pre-determined by an experienced engineer, and only a limited number of sensors is installed 

on the structural component. 

In terms of actually determining damage location [21-23] and extent [24-26], a number 

of techniques have been developed, particularly in two-dimensional waveguides, such as 

plates and shells. Relatively less research work has focused on quantitative identification of 

damages in one-dimensional waveguides, such as rods and beams. 

For determining the severity of damages in one-dimensional waveguides with a limited 

number of sensors, pattern recognition and optimization are two commonly used approaches. 

Pattern recognition approach, such as supervised learning [27,28], applies prior experience to 

make sense of new data in the damage identification. Optimization approach [29-32] 

minimizes the discrepancy between the numerically predicted structural responses and the 

measured data by altering the damage parameters of a pre-defined model in order to 

determine the location and severity of the damage in the structure being tested. 
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1.3. Signal processing techniques for guided wave-based damage identification 

Pattern recognition, optimization and most other damage identification methods use the 

relationship between the structural condition and the damage information contained in the 

measured data to identify the damage. The process therefore fully relies on information of 

damage contained in the data provided by the sensors. In practice, the number of sensors that 

can be installed on the structure is limited and the measured data is usually contaminated by 

noise. Data pre-processing is necessary to extract the information of damage from the data in 

order to maximize the performance of damage identification. Staszewski [33] discussed the 

importance of applying signal processing techniques in damage identification when using a 

pattern recognition approach. Since pattern recognition has difficulty in dealing with data of 

high dimensionality, signal processing techniques are generally used for feature extraction 

and data compression.  

Different from pattern recognition, signal processing techniques for the optimization 

approach do not aim to compress the data, but to improve the sensitivity of the measured 

guided wave signals to the damage. Yu and Giurgiutiu [34] have demonstrated that the 

application of advanced signal processing techniques, such as Hilbert transform, continuous 

wavelet transform and discrete wavelet transform, improves the performance of using the 

guided waves to locate the damages following a phased-array approach. In general these 

signal processing techniques have not been specifically developed for data compression, they 

are suitable for improving the performance of the optimization approach in damage 

identification. 

The study reported in this paper therefore had two main objectives. The first was to 

enhance the guided wave-based quantitative identification of damage following optimization 

by applying signal processing techniques. The other objective was to evaluate the 

performance of the advanced signal processing techniques, such as Hilbert transform, Fast 

Fourier transform, Gabor wavelet transform and discrete wavelet decomposition, in terms of 

damage identification. This was achieved by comparing the level of accuracy and degree of 

uncertainty associated with the damage identification results by each of the signal processing 
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techniques. All data used in the present study were from actual guided wave signals measured 

in experiments conducted in laboratory. 

The paper is organized as follows. A statistical framework for damage characterization 

is first presented in Section 2. The framework was developed using a Bayesian approach, 

which not only provides quantitative identification of the damage but also allows the 

uncertainty associated with the damage identification results to be quantified. The 

experimental setup used to collect the guided wave signals in damaged beams is then 

described in detail in Section 3. In Section 4 a computationally efficient spectral finite 

element method is described. The proposed method is used to model damaged beams for 

damage identification using the proposed statistical approach. Various advanced signal 

processing techniques for enhancing damage identification are presented in the Section 5. 

The results of the damage identification and the performance of each advanced signal 

processing technique are then compared and discussed in detail. Conclusions are presented in 

Section 6. 

 

2. Statistical framework for damage identification 

The current study employed a statistical damage identification framework in conjunction with 

the damaged beams modeled by the spectral finite element method. The model was able to 

describe the relationship between the condition of the structure and the information about the 

damage provided by the guided waves. The damage is identified by changing the damage 

parameters to minimize the discrepancy between the predicted and the measured guided wave 

signals. In reality no numerical model can be expected to offer perfect predictions, the 

number of sensors that can be installed on the structures is always limited and the measured 

data usually contaminated by noise. Hence any damage identification will produce 

uncertainties. In addition to quantifying the damages, it is also important to explicitly 

quantify the uncertainties associated with the damage identification results, which provides 

valuable information for engineers attempting to undertake appropriate remedial work. In this 



Page 7 of 38 

study the performance of the signal processing techniques was assessed not only in terms of 

how accurate the results were, but also in terms of the uncertainties in the damage 

identification. 

 

2.1. Bayesian statistical framework 

The proposed statistical framework was based on the Bayesian statistical framework [35]. 

Different from most of the existing optimization approaches, the Bayesian statistical 

framework identifies damages by maximizing the posterior probabilistic density function 

(PDF) of a damage scenario, conditional on the measured data. The Bayesian statistical 

framework consists of a set of probability models ( | , )p D Mα  that describes the data of a 

structure with uncertain parameters 1[ , ] pNTσ += ∈Θ⊂α θ °  and a prior probability model 

( | )p Mα  that represents the initial probability of each model. This arrangement allows for 

predictions of guided wave signals and modeling of prediction error ( , )e t θ . The prediction 

error ( , )e t θ  is defined as the difference between the prediction and the measurement, which 

may be the result of measurement noise and modeling error. pN  is the dimension of θ  

which represents the parameters used to describe the damage scenario. Prior probability 

incorporates existing knowledge of the structure, such as the locations more likely to be 

damaged. D  is the available data relating to excitation and the measured guided wave 

signals. M  is the class of the model defined by the value of the uncertain parameters α . 

The fundamental idea of the Bayesian statistical framework is to use data D  to update the 

probability distribution over the uncertain parameters α  to give the posterior PDF 

( | , )p D Mα  based on the Bayes’ theorem [35] 

 ( ) ( ) ( )1| , | , |p D M c p D M p M−=α α α  (1) 

where ( | ) ( | , ) ( | )c p D M p D M p M d
Θ

= = ∫ α α α . ( | )p Mα  is the prior PDF specified by 

M  to quantify the initial plausibility of each model defined by the value of α . The prior 

PDF is assumed to be ( ),π σθ  which is a slowly varying PDF that roughly reflects the 

engineer’s judgments regarding the relative plausibility of different values of α  and is 
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mathematically convenient.\ It is common that the signal-to-noise ratio of the measured 

guided wave signals is improved by averaging the signals over number acquisitions. Hence 

the measurement nosie is generally small and the prediction error ( , )e t θ  is mainly due to 

the modeling error. It is assume that the prediction error ( , )e t θ , which is the discrepancy 

between predicted signals simulated by the numerical model and experimentally measured 

signals, is norally distributed and can be approximated by Gaussian distribution. In this cse 

the likelihood ( | , )p D Mα  that represents the probability of getting data based on a given 

model with α  and model class M  is defined as  

 
( )

( )2

1( | , ) exp ; ,
22

t o

o t
N N

N Np D M J D M
σπσ

⎡ ⎤= −⎢ ⎥⎣ ⎦
α θ  (2) 

where oN  and tN  are the total number of measurement points and time steps. σ  is the 

variance. The function ( ; , )J D Mθ  is the contribution of the measured data, and is given by 

 ( ) ( ) ( ) ( ) ( )
2

1 1

1 ˆ; , ; ,
o tN N

j j

j to t

J D M q t q t M
N N = =

⎡ ⎤= −⎣ ⎦∑∑θ θ  (3) 

where ( )ˆ ( )jq t  is the measurement at j -th location and time t . ( ) ( ; , )jq t Mθ  is the 

prediction given by the value of θ . When a uniform prior PDF (non-informative prior) is 

chosen, the most probable parameter θ% is obtained by maximizing the posterior PDF in Eqs. 

(2), which is equivalent to minimizing ( ; , )J D Mθ  in Eqs. (3). 

The main objective of the Bayesian statistical framework is to obtain the posterior PDF 

of θ , which is used to describe the damage scenario for a given set of measured data D  

and a given model class M . This can be calculated from Eq. (1) by integrating the posterior 

PDF with respect to the σ  and it can be approximated as [36] 

 ( ) ( ) ( )( )
1

2
1| , ; , ,

o tN N

p D M c J D M π σ
−

=θ θ θ θ%  (4) 

where 2 ( ) ( ; , )J D Mσ =θ θ%  and 1c  is a normalizing constant. For identifiable situation [35], 

( )| ,p D Mθ  becomes negligible everywhere, except for a finite number of locations in the 

parameter space where the corresponding values of ( ; , )J D Mθ  are globally minimized. 

 

2.1.1. Optimization algorithm 
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As ( ; , )J D Mθ  is known only implicitly and is highly nonlinear, a robust numerical 

optimization algorithm plays an important role in determining the most probable parameter 

θ%. In this study a hybrid optimization algorithm composed of the particle swarm 

optimization algorithm (PSO) and simplex search method was proposed to determine the 

global optimal solution. The hybrid optimization algorithm minimizes ( ; , )J D Mθ , which is 

equivalent of maximizing ( )| ,p D Mθ , by changing the value of the parameters θ  that 

represent the damage scenario. In the proposed hybrid optimization algorithm, the PSO 

algorithm is first used to determine the local potential space in Θ  and then the simplex 

search method is used to accurately determine the global optimal solution. As the simplex 

search method is more computationally efficient than the PSO algorithm in its manner of 

local exploitation, it adds improved efficiency to the proposed method for determining the 

global optimal solution. 

The PSO algorithm is a population-based optimization technique based on the idea of a 

particle swarm. The algorithm's behavior simulates coordinated social behavior among living 

organisms [37]. In PSO a set of particles is randomly initialized in the search space under 

consideration Θ . Each individual of a particle swarm consists of three pN  dimensional 

vectors, which are the current location iθ , previous best location iθ  and velocity iv  of the 

particle. The current location of each particle is used to evaluate ( ; , )J D Mθ  and the best 

position identified up to that point is stored in the vector gθ  for comparison with the results 

of later iterations. The velocity and location of each particle are then updated based on its 

own current and the best location so far with some random perturbations. Each run of the new 

algorithm can be considered complete after the velocities and locations of all particles have 

been updated. The equations used to update the velocities and locations of the particles are 

shown in Fig. 1. 

 

[Fig. 1. Flowchart of PSO algorithm] 

 

In the PSO algorithm the inertia weight iw  at i -th iteration was employed to update the 
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particle velocities as shown in Fig. 1. In the present study, the inertia weight at the ( i +1)-th 

iteration was chosen as the dynamic variation, with a linear decrease in each iteration [38] as 

 1
I F

i I
I

w ww w i
N+
−= −  (5) 

where Iw = 0.9 and Fw =0.4 are the initial weight and final weight satisfying the stability 

condition 1 2 10.5( ) 1 1iwλ λ ++ − < < . In Fig. 1 1R  and 2R  are random numbers calculated 

from a uniform distribution on interval [0,1]. 1λ  and 2λ  are the cognitive and social 

coefficients for reflecting the degree of confidence in the best solution found by each 

individual particle and by the swarm as a whole. 1 0.5λ =  and 2 1.25λ =  were chosen in this 

study to satisfy the stability condition 1 20 ( ) 4λ λ< + <  [38].  

Iteration continues until the maximum number of iterations IN  or sufficient goodness 

of fit is observed. Fig. 1 shows a summary of the PSO algorithm. The simplex search method 

is then applied to accurately determine the global optimal solution by using the local potential 

space identified from the PSO algorithm as the initial trials. 

 

2.1.2. Approximation of the posterior probability density function 

Once all the finite number of optimal points kθ%, 1,...,k K= , is determined using the hybrid 

optimization algorithm, the posterior PDF ( )| ,p D Mθ  can be approximated as a weighted 

sum of a Gaussian distribution centered at K  optimal points [37] as 

 ( ) ( )( )1

1
| , ,

K

k k k
k

p D M w −

=

≈∑θ N θ A θ% %  (6) 

where kθ%  and 1( )k
−A θ%  are the mean (optimal point) and covariance matrix of a 

multivariate Gaussian distribution N . The covariance matrix 1( )k
−A θ%  is the Hessian 

matrix of the function ln ( ; , )JN J D Mθ , where ( 1) / 2J o tN N N= − , evaluated at kθ%. The 

weighting coefficients in Eq. (6) can be calculated as 

 ( )
( )

1
1 2

1
1 2

1

( )

( )

k k
k K

k k
k

w
π

π

−−

−−

=

=

∑

θ A θ

θ A θ

% %

% %
 (7) 

While calculating the posterior PDF ( )| ,p D Mθ  of the parameter θ , which describes the 
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damage, and the associated uncertainties can be quantified to provide valuable information 

for engineers who are making decision about remediation. Sections 3 and 4 describe the 

experimental setup for collecting the actual guided wave signals and a computationally 

efficient spectral finite element model, respectively. The experimentally collected data were 

processed by the signal processing techniques described in Section 5. The data and the 

spectral finite element model were then used in the proposed statistical framework to quantify 

the damage. In this study the accuracy of the results and the uncertainty were used as 

reference points by which to assess the performance of the Hilbert transform, Fast Fourier 

transform, Gabor wavelet transform and discrete wavelet decomposition in the damage 

identification. 

 

3. Experiments 

In this study the experimentally measured guided wave signals were used to demonstrate the 

capability of the proposed statistical approach in the damage identification and assess the 

performance of each of the signal processing techniques described in Section 5. The guided 

wave signals were collected using the experimental setup shown in Fig. 2. Three aluminum 

beams with a cross-section of 12×6 mm2 and a length of 2 m were used in the experiments. 

Each aluminum beam contained a step damage that was used to simulate corrosion. As shown 

in Fig. 2, each of the beams had a rectangular piezoceramic transducer (Ferroperm Pz27) 

bonded to the beam end to generate the longitudinal guided wave. A 4 mm thick rectangular 

backing mass was attached to the piezoceramic transducer to improve the excitability of the 

longitudinal wave.  

The excitation signal was a narrow-band eight-cycle sinusoidal tone burst pulse 

modulated by a Hanning window. The excitation frequency was 80 kHz as this frequency 

signal displayed the best signal-to-noise ratio. The excitation signal was generated by a 

computer controlled function generator (Stanford Research DS345) with 10 V peak-to-peak 

output voltages. The generated signal was then amplified by a power amplifier (Krohn Hite 
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model 7500) by a factor of 10-50 before sending it to the piezoceramic transducers. The 

longitudinal guided wave was then measured using a Laser Doppler vibrometer (OFV 

303/OFV 3001, Polytech GmbH). The laser head of the Laser Doppler vibrometer was 

positioned by a computer controlled positioning system (Newport ESP 300).  

As the longitudinal guided wave propagation induced an out-of-plane motion due to the 

Poisson effect, the longitudinal wave was measured through the out-of-plane displacement 

using the Laser Doppler vibrometer. As shown in Fig. 2 the measurement point was at the 

mid-plane of the shorter side of the beam cross-section since the out-of-plane motion of the 

longitudinal wave was more pronounced at the shorter side and the flexural wave induced due 

to the effect of mode conversion at the step damage has zero magnitude at the mid-plane of 

this side. Hence the magnitude of the measured longitudinal wave signals can be maximized 

and the mode conversion from incident longitudinal wave to flexural wave at the step damage 

can be excluded in the measurements. This ensures the spectral element method developed 

based on the Love theory in Section 4 is able to well predict experimental measurements. The 

measured location was 450 mm from the piezoelectric transducer. The signal-to-noise ratio 

was improved by averaging the signals over a number of acquisitions. Finally the measured 

signals were fed into a computer via an oscilloscope (Tektronix TDS420A).  

 

[Fig. 2. Schematic diagram of the experimental setup] 

 

The step damage in each of the three beams was described by the damage location 1L , 

length 2L  and depth d  as shown in Fig. 2. The step damages were manufactured using a 

milling machine, having been marked out manually. Hence, the measured uncertainty was 

±1.0 mm for the damage location and length, and ±0.5 mm for the damage depth. All the 

cases are summarized in Table 1.  

Case A considered damage located at 1 807.50L =  mm with damage length and depth 

equal to 25.00 mm and 2.50 mm, respectively. Case B considered damage with greater 

damage length ( 2L = 65.50 mm) but smaller damage depth ( d = 1.50 mm). The damage was 
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located at 1L = 1097.25 mm. The last case, Case C, had the greatest damage length but the 

smallest damage depth. The damage was located at 1L = 915.00 mm with 2L = 90.00 mm and 

d = 1.10 mm. 

  

[Table 1. Summary of all the damage cases in the experimental case studies] 

 

The collected data from the experiments were used as the measured data in Eq. (3) of the 

proposed statistical framework. To achieve damage identification following the statistical 

framework, it requires a numerical model to predict the behavior of the guided wave signals 

in the damaged beams. Section 4 describes a computationally efficient spectral finite element 

model in detail. 

 

4. Frequency domain spectral finite element method 

4.1. Formulation of the spectral finite element 

A computationally efficient spectral finite element method was used to model the 

longitudinal guided wave propagation in the damaged aluminum beams. The predicted 

longitudinal guided wave signals were then used in Eq. (3) of the proposed statistical 

framework for damage identification. The frequency domain spectral finite element method is 

essentially a finite element method formulated in the frequency domain. It significantly 

improves the computational efficiency of wave propagation simulation while retaining the 

same modeling flexibility as conventional finite element methods, and was used in the current 

study for identifying the damage using the proposed statistical framework. 

In longitudinal wave propagation, beams not only deform longitudinally but also 

contract in transverse direction due to Poisson effect. The relationship between the transverse 

strain yε  and the axial strain xε  is described by y xε νε= −  where ν  is the Poisson’s 

ratio of the material. Love theory improves the elementary theory by accounting for this 

effect but still retains its simplicity. It is assumed that the kinetic energy is affected by the 
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transverse displacement due to the Poisson effect, but the strain energy still remains the same 

as the elementary theory.  

 

[Fig. 3. Spectral element based on Love theory] 

 

In the Love theory, a j -th beam element with length jL  as shown in Fig. 3 has two nodes 

with one longitudinal degree of freedom per node. The governing differential equation is [39] 

 
2 2 22

2
2 2 2 2 0j j j

j j j j j j j

u u u
E A J A

x x t x
ν ρ ρ

⎛ ⎞∂ ∂ ∂∂+ − =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (8) 

where ( , )ju x t=  is the longitudinal displacement within the j -th beam element. jE  and 

jρ  are the Young’s modulus and density of the material, respectively. jJ  is the polar 

moment of inertia of the beam cross-section and jA  is the cross-sectional area. Based on the 

frequency spectral finite element method, the spectral representation of the longitudinal 

displacement is 

 ( ) ( ),
1

ˆ, , n

N
i t

j n j n
n

u x t u x e ωω
=

=∑  (9) 

where ,ˆn ju  is the Fourier coefficients associated with the longitudinal displacement variable

ju  at n-th angular frequency nω . i  is the imaginary unit. The summation is carried out up 

to the Nyquist frequency Nω . By substituting Eq. (9) into Eq. (8), the partial differential 

equations are reduced to an ordinary differential equation with the time variation removed as 

 
2 2

, ,2 2 2
,2 2

ˆ ˆ
ˆ 0 for 1,...,n j n j

j j j j j n j j n n j

d u u
E A J A u n N

dx x
ν ρ ω ρ ω

∂
− + = =

∂
 (10) 

The general longitudinal displacement variable in frequency domain is 

 ( ) ( )
, ,ˆ , j ni k x t
n j n n ju x U e ωω − −=  (11) 

where ,n jU  is the amplitude of Fourier coefficients in spatial domain. Using Eqs. (10) and 

(11), the wavenumber ,n jk  is given by the relation 

 , 2 2
j j

n j n
j j j j j n

A
k

E A J
ρ

ω
ν ρ ω

= ±
−

 (12) 
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The general longitudinal displacement at frequency nω  is assumed in the form [39] 

 ( ),,
, , ,ˆ n j jn j k L xk x
n j j ju C e C eα β

− −−= +  (13) 

where , jCα  and , jCβ  are unknown coefficients to be determined from the boundary 

conditions at the left and right ends of the spectral element, where the longitudinal 

displacements as shown in Fig. 3 are 

 ( ) ( ), , , ,ˆ ˆ ˆ ˆ0 ,n j j n j j ju u u L uα β= =  (14) 

The relation between the longitudinal displacement and the unknown coefficients can be 

expressed in matrix form as 

 
,

,

, , ,
,

, , ,

ˆ 1
ˆ 1

n j j

n j j

k L
j j j

n jk L
j j j

u C Ce
u C Ce

α α α

β β β

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

Γ  (15) 

The nodal forces at left and right ends of the spectral element are 

 , ,2 2
,

ˆ ˆˆ j j
j j j j j j j

u u
F E A J

x x
α α

α ν ρ ω
∂ ∂⎛ ⎞

= − −⎜ ⎟∂ ∂⎝ ⎠
 (16) 

 , ,2 2
,

ˆ ˆˆ j j
j j j j j j j

u u
F E A J

x x
β β

β ν ρ ω
∂ ∂

= −
∂ ∂

 (17) 

These nodal forces can be related to the unknown coefficients as 

 ( ) ( )
( ) ( )

,

,

2 2 2 2
, ,, , ,

,2 2 2 2 , ,, , ,

ˆ

ˆ

n j j

n j j

k L
n j j j j j j j n j j j j j j jj j j

n jk L
j jj n j j j j j j j n j j j j j j j

ik E A J ik E A J eF C C

C CF ik E A J e ik E A J

α α α

β ββ

ν ρ ω ν ρ ω

ν ρ ω ν ρ ω

−

−

⎡ ⎤− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

Τ (18) 

Using Eqs. (15) and (18), the relation between the nodal forces and the nodal displacements 

is given as 

 , ,1
, ,

,,

ˆ ˆ

ˆ ˆ
j j

n j n j
jj

F u

uF
α α

ββ

−
⎡ ⎤ ⎡ ⎤
⎢ ⎥ = ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

Τ Γ  (19) 

The dynamics stiffness matrix ,n jK  can be obtained by 1
, ,n j n j

−Τ Γ . 

In guided wave-based damage identification problems, the guided wave is generated 

from the excitation location and then propagates through the beams. If the beam length (e.g. 2 

m long) is much longer than the wavelength of the excited guided wave (usually in the order 



Page 16 of 38 

of millimeters), the wave reflected from the beam end can be neglected because of 

attenuation after a long travel distance or the reflected wave does not reach the desired 

location within the timeframe of the observation. In this situation the beam can be modeled as 

a semi-infinite or infinite beam.  

Within the context of the frequency domain spectral finite element method, a throw-off 

element can be formulated to substantially reduce the computational cost of modeling the 

semi-infinite or infinite beam. This can be easily achieved by modifying Eq. (13). For 

example, if the wave is assumed to be propagating in a forward direction toward a 

non-reflecting boundary, the unknown constants , jCβ  that represent the reflected wave 

component travelling in a backward direction can be ignored to formulate the throw-off 

element. Following the same derivation procedure as Eqs. (15) to (19), the dynamic stiffness 

of the throw-off element is ( )2 2
, ,n j n j j j j j j jik E A Jν ρ ω= −K% . 

 

4.2. Modeling of the damaged beam 

The spectral finite elements formulated in Section 4.1 were used to model the damaged 

beams in the experiments discussed in Section 3. The damaged beam model was used to 

generate the predicted data in the statistical framework in Section 2. The quantitative damage 

identification was achieved by minimizing the discrepancy between the predicted and 

measured guided wave signals by changing the damage parameters of the damaged beam 

model. This section describes the modeling of the damaged beam. 

The 2 m long damaged beams used in the experiment as described in Section 3 were 

modeled as spectral finite element models with three spectral finite elements and a throw-off 

element. The longitudinal guided wave was generated by applying the excitation in 

longitudinal direction using the same 80 kHz narrow-band excitation signal as discussed in 

Section 3. The length of the first spectral finite element was 450 mm; that is, the same as the 

measurement location, and hence, the longitudinal wave signals could be predicted by the 

nodal displacement of the element. The inspection region was 1 m from the measurement 

location.  
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The summation of the length of the first and second spectral finite elements represents 

the distance between the excitation location and the left end of the step damage, and it was 

defined as the damage location 1L . The third spectral finite element was used to simulate the 

step damage by reducing the beam depth, in which the length and depth reduction of the 

element were defined as the damage length 2L  and damage depth d . Finally the throw-off 

element was modeled as the end of the beam to simulate the semi-infinite condition.  

It should be noted that although this study focuses on the step damage, the statistical 

framework is general and can be applied to identify different types of damages by employing 

different damage models in the spectral finite element method. As discussed in the Section 1, 

one of the objectives of the present study was to evaluate the accuracy and uncertainty of the 

signal processing techniques in the damage identification. Section 5 describes these signal 

processing techniques in detail. 

 

5. Advanced signal processing techniques 

Four signal processing techniques, Hilbert transform, Fourier transform and Gabor wavelet 

transform and discrete wavelet decomposition, were employed to process the guided wave 

data. These data were then used in the proposed statistical framework for damage 

identification. The damage identification results and the associated uncertainties were then 

compared and discussed in detail. The following sub-sections describe these signal 

processing techniques. 

 

5.1. Hilbert transform 

The Hilbert transform [3] of a guided wave signal in time domain ( )u t  is defined as 

 ( ) ( )1 u
h t d

t
τ

τ
π τ

∞

−∞
=

−∫  (20) 

where ( )h t  is the Hilbert transform guided wave signal which is a signal with a 90° phase 

shift of ( )u t . An analytic signal can be constructed by using the time signal ( )u t  and the 

Hilbert transform signal ( )h t  as 
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 ( ) ( ) ( ) ( ) ( )i t
A hh t u t ih t u t e φ= + =  (21) 

where i  is the imaginary unit. ( )hu t  and ( )tφ  are the envelope and the instantaneous 

phase, respectively, and are defined as 

 ( ) ( ) ( ) ( ) ( )
( )

2 2 , arctanh

h t
u t u t h t t

u t
φ

⎡ ⎤
= + = ⎢ ⎥

⎢ ⎥⎣ ⎦
 (22) 

In this study the signal envelope was used as the data in the proposed statistical framework in 

Eq. (3) for damage identification. 

 

5.2. Fourier transform 

Fourier transform enables the analysis of a signal in the frequency domain. The spectral 

amplitude was employed for damage identification [29,30]. The continuous Fourier transform 

of a guided wave signal ( )u t  is defined as  

 ( ) ( )ˆ i tu u t e dtωω
∞ −

−∞
= ∫  (23) 

where ω  is the angular frequency. As the guided wave in time domain ( )u t  is measured at 

tN  discrete sampling points as lu  for ( 1,2,..., tl N= ), the discrete Fourier transform was 

used as an alternative way of mathematically representing the continuous Fourier transform 

and is defined as 

 ( )
2

1

ˆ
iN nl

N
n l

n
u u e

π

ω
−

=

=∑  (24) 

In this study the Fourier transform was carried out using the Fast Fourier transform and the 

spectral amplitude ˆ( )nu ω  was used as the data in Eq. (3) to identify the damages. 

 

5.3. Gabor wavelet transform 

Different to Fourier analysis, continuous wavelet transform provides a tool for 

time-frequency analysis of a signal. In wavelet transform the signal is broken down into local 

functions or wavelets. This is completely different from classical signal processing 

techniques, in which the signal is decomposed into global functions or harmonics. The 
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continuous wavelet transform [40,41] is defined as 

 ( ) *1( , ) t bCWT a b u t dt
aa

ψ
∞

−∞

−⎛ ⎞= ⎜ ⎟⎝ ⎠∫  (25) 

where a  and b  are the scaling parameter and translation parameter, respectively. ( )tψ  is 

the mother wavelet function. The asterisk denotes the complex conjugate. In this study the 

Gabor function [40,41] is chosen as the mother wavelet because it provides the balance 

between time and frequency resolution in the continuous wavelet transform. The Gabor 

function is defined as 

 ( ) ( )20 20
04

/1 exp
2

t t i t
ω λωψ ω

λπ

⎡ ⎤
= − +⎢ ⎥

⎢ ⎥⎣ ⎦
 (26) 

where λ  and 0ω  are the Gabor shaping factor and wavelet centre frequency, respectively. 

They influence the resolution in the time-frequency analysis and are usually chosen as 

2 / ln 2λ π=  and 2π  [40,41]. The Gabor wavelet transform of the signals represents the 

guided wave signals in the time-frequency domain with t b=  and 0 / aω ω= . In this study 

the absolute value of the continuous wavelet transform coefficient using the Gabor function 

at the excitation frequency is used as the data in Eq. (3) of the proposed statistical framework 

to identify the damages. 

 

5.4. Discrete wavelet signal decomposition 

In discrete wavelet transform, an orthonormal basis of function ( )tψ  can be obtained with 

dyadic translation and binary dilation by discretizing a  and b  in Eq. (25). The 

orthonormal basis of function ( )tψ  is defined as [40] 

 ( ) ( )/2
, 2 2m m
m d wt t dψ ψ= −  (27) 

where the integers m  and wd  are scale and translation indices. Using Eq. (27), the discrete 

wavelet transform can be written as 

 ( ) ( ) ( ),,
wm dDWT m d u t t dtψ

∞

−∞
= ∫  (28) 

The transform integral in Eq. (28) remains continuous but is determined only on a discretized 
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grid of a  and b  locations. The original signal can be reconstructed by summing the DWT 

coefficients to infinity over m  and wd . In the DWT , wm dψ  is an orthonormal dyadic 

discrete wavelet and is associated with scaling functions, which have the same form as the 

wavelet, given by  

 ( ) ( )/2
, 2 2m m
m d wt t dϕ ϕ= −  (29) 

and having property 1,1( ) 1t dtϕ
∞

−∞
=∫ . The scaling function can be convolved with the signal 

( )u t  to produce approximation coefficients ( ) ( ), ,w wm d m dS u t t dtϕ
∞

−∞
= ∫ . A signal ( )u t  can be 

represented using the approximation coefficients and the detail coefficients as 

 ( ) ( ) ( ) ( )
0

0, 0, ,,
w w w

w w

m

m d m d w m d
d m d

u t S t DWT m d tϕ ψ
∞ ∞

=−∞ =−∞ =−∞

= +∑ ∑ ∑  (30) 

where 0m  is an arbitrary scale index. The detail coefficient at scale m  is defined as 

( ) ( ) ( ),,
wm w m dd

Q t DWT m d tψ∞

=−∞
=∑ . The approximation and detail coefficients at scale 

index 1m +  can be calculated based on the coefficients at the previous scale as 

 1, ,2
1
2w wm d q m d q

q
S L S+ += ∑  and 1, ,2

1
2w wm d q m d q

q
Q H S+ += ∑  (31) 

where 1
2 qL  and 1

2 qH  are low-pass and high-pass filter. The decomposition of the 

signal ( )u t  into approximate and detail coefficients allows multi-resolution signal analysis. 

In guided wave problems the decomposed coefficients are commonly used for signal 

de-noising [42] or extracting information for damage identification [28].  

In this study ( )tψ  was selected to be the 8th order Daubechies wavelet as it has been 

shown that its orthogonality and high regularity enables the detection of location properties in 

the signal [42] and has a close similarity to the excitation signal. The signal was decomposed 

into eight levels. The results showed that the sixth level approximation coefficients produce 

optimal complexity of the data while retaining optimum information of arrival time, length 

and magnitudes of the pulses. Hence the sixth level approximation coefficients were used as 

the data in Eq. (3) of the statistical framework for damage identification. 

 

6. Results and discussions 
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6.1. Measured guided wave data and signal processing  

All signals measured by the experimental setup described in Section 3 were normalized to 

have the unit amplitude of the incident wave. In this section the measured guided wave signal 

of Case A is used as an example to demonstrate the guided wave propagation and interaction 

at the damage, and discuss the signals processed using the signal processing techniques. Fig. 

4 shows the measured guided wave of Case A. There were three wave packets after the 

incident wave. The incident wave was generated by the piezoceramic transducer located at 

the beam end. The incident wave passed through the measurement location and then reached 

the step damage. The first wave pulse shown in Fig. 4 is the incident wave. Two wave pulses 

were reflected when the incident wave was entering and leaving the step damage. These 

reflected pulses then propagated back to the beam end with the piezoceramic transducer 

installed and passed through the measurement location on the way. Wave packet 1 in Fig. 4 

was formed by these wave pulses.  

The pulses then rebounded at the beam end and propagated toward the measurement 

location again. Wave packet 2 shown in Fig. 4 was formed by these wave pulses. This wave 

packet then propagated toward the step damage. Similarly, wave reflection occurred at the 

step damage and the reflected pulses then passed through measurement location again and 

propagated toward the beam end where the piezoceramic transducer was installed. This is 

wave packet 3 as shown in Fig. 4. 

 

[Fig. 4. Measured guided wave signal of Case A] 

 

The measured guided wave signal was then processed using the signal processing 

techniques described in Section 5. It should be noted that the proposed damage identification 

method is a highly nonlinear optimization problem. The search space of Eq. (3) has a larger 

number of local optimums if the time domain guided wave signal is used directly in the 

damage identification. The signal processing techniques enhance the damage identification 

not only by extracting the damage information in the signal but also reducing the complexity 
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of the search space, i.e. reducing the number of local optimums. 

Fig. 5 shows the signal envelope extracted by applying the Hilbert transform described 

in Section 5.1. The envelope of the wave signal is a curve that is tangent to every wave 

component of the wave signal. The envelope can be used to simplify the wave signal but it 

still retains the information of the arrival time, amplitude and width of the pulses. Fig. 6 

shows the measured guided wave signal processed by the Fast Fourier transform described in 

Section 5.2. The signal was transformed from time domain to frequency domain. As the 

excitation is a narrow band pulse with a 80 kHz excitation frequency, the frequency of the 

measured guided wave signal shown in Fig. 4 spreads in a finite bandwidth with most 

components around the excitation frequency. Although the damage information is not 

explicitly shown in frequency domain, it still exists in the transformed data. 

 

[Fig. 5. Hilbert transform guided wave signal of Case A] 

 

[Fig. 6. Fast Fourier transformed guided wave signal of Case A] 

 

Different to the Fast Fourier transform, the Gabor wavelet transform represents the 

measured guided wave in both the time and frequency domain. This provides a useful tool for 

analyzing non-stationary signals. Fig. 7 shows the Gabor wavelet transform spectrum of the 

measured guided wave signal as shown in Fig. 4. The horizontal and vertical axes are the 

time and frequency axis, respectively. The magnitude of the wavelet coefficients is 

represented on a color map. The color map indicates the wavelet coefficient distribution of 

the signal in time-frequency domain. As the excitation frequency is 80 kHz, the amplitude of 

the wavelet coefficients at this frequency are higher than those at other frequencies. Therefore, 

they were used in the damage identification. 

 

[Fig. 7. Gabor wavelet transform spectrum of the guided wave signal in Case A (dashed line 

indicates the excitation frequency] 
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The discrete wavelet transform described in Section 5.4 is quite different from the 

continuous wavelet transform. The discrete wavelet transform decomposes the signal into 

different levels. Each level represents different frequency bandwidths. The results show that 

the sixth level approximate coefficient gives the optimal complexity of the data and hence it 

is employed in the damage identification. Fig. 8 shows the discrete wave decomposed 

approximate coefficient at the sixth level. As the data was compressed through discrete 

wavelet decomposition, the approximate coefficient was plotted using a line with markers to 

indicate the number of the data points. The discrete wavelet decomposed signal was then 

employed in the damage identification using the proposed statistical approach. 

 

[Fig. 8. Discrete wavelet decomposed guided wave signal of Case A] 

 

6.2. Damage identification results 

The measured guided wave signals in Cases A to C as shown in Table 1 were processed using 

the signal processing techniques described in Section 5. The processed signals were then 

employed in the proposed statistical framework to identify the damages. Table 2 summarizes 

the results of the damage identification using the time domain signal and the signal processed 

using the Hilbert transform, Fourier transform, Gabor wavelet transform and discrete wavelet 

decomposition in Case A. The corresponding percentages of errors were calculated and are 

shown in the square brackets. The damage identification results of using the time domain 

signal show that although the identified damage location 1L%= 826.16 mm has reasonable 

agreement with the true damage location, the results incorrectly identify the damage length 

and depth.  

As shown in Fig. 4, there was a small additional wave pulse right after the incident wave 

in Case A because the piezoceramic transducer was not attached perfectly parallel to the 

surface of the beam end. In these circumstances, it was found that the use of the time domain 

signal made it difficult to accurately identify the damage parameters, especially the damage 
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length and depth. The total error was calculated by taking the average of the percentage of 

error in the identified damage location, length and depth. These calculations provided a way, 

in which the damage identification results achieved by using different signal processing 

techniques, could be compared. The averaged error for the results of using the time domain 

signal was 57.70% as shown in Table 2. 

Table 2 also lists the damage identification results of the signal processed using Fast 

Fourier transform. But the accuracy was less than when using the time domain signal directly. 

The average percentage of error was 102.82%. The last three columns of Table 2 show the 

results of the signals processed using the Hilbert transform, Gabor wavelet transform and 

discrete wavelet decomposition. These results are similar in terms of accurately identifying 

the damage, and the corresponding averaged percentages of errors are 9.77%, 10.12% and 

9.59%, respectively. The averaged percentage of error is much smaller than the results of 

using the time domain signal.  

The results of Case A show that the signal processing techniques, such as Hilbert 

transform, Gabor wavelet transform and discrete wavelet decomposition, are able to enhance 

the damage identification for guided wave signals collected under imperfect conditions. 

 

[Table 2. Damage identification results of Case A] 

 

[Table 3. Damage identification results of Case B] 

 

The results of Cases B and C are summarized in Tables 3 and 4, respectively. These two 

cases involved damages at different locations with different damage lengths and depths. The 

cases provided the opportunity to conduct a comprehensive study of the performance of the 

signal processing techniques in damage identification. Case B involved a step damage having 

a longer length but less depth than Case A. The damage identification results are shown in 

Table 3.  

Similar to Case A, the damage identification results from using the Fast Fourier 
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transform produced the least accurate identification of the damage. The results of the Hilbert 

transform and discrete wavelet decomposition are not of the same quality as the time domain 

signal in terms of damage identification. However, the results from the Gabor wavelet 

transform produced the most accurate identification of the damage. The identified damage 

parameters were 1L%= 1057.98 mm 2L%= 65.28 mm and d%= 1.59 mm and the corresponding 

percentages of errors were 3.58%, 0.33% and 5.93%. The averaged percentage of error was 

only 3.28%. 

 

[Table 4. Damage identification results of Case C] 

 

Case C considers a step damage with the greatest damage length ( 2L = 90.00 mm) but 

the smallest damage depth ( d = 1.10 mm) among the three damage cases. The same as Cases 

A and B, the results of the signals processed using the Fast Fourier transform displayed the 

largest average percentage of error in the damage identification. It is fair to conclude, 

therefore, that using the Fast Fourier transform to process guided wave signals produces the 

least accurate damage identification in the study.  

In Case C the results from the time domain signal are in good agreement with the true 

damage location, length and depth. However, the accuracy cannot match that achieved by 

using the Hilbert transform, Gabor wavelet transform and discrete wavelet decomposition, 

especially in identifying the damage length and depth. As in Case B, the Gabor wavelet 

transform performed best in terms of damage identification. The averaged percentage of error 

was only 1.63% in Case C. 

Overall the results of Cases A to C show that processing guided wave signals with the 

Fast Fourier transform produces insufficiently accurate results when it comes to damage 

identification. The time domain signal can be used to more accurately identify damages, but 

only if the piezoceramic transducers are installed almost perfectly. The signal processing 

techniques, Hilbert transform, Gabor wavelet transform and discrete wavelet decomposition, 

were all able to enhance the accuracy of damage identification, but overall, it was found that 
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the Gabor wavelet transform performed best.  

 

6.3. Uncertainty analysis 

The uncertainties associated with the damage identification results were also quantified 

using the proposed statistical framework. This analysis provided a further comparison of the 

performance of the signal processing techniques in damage identification. As discussed in 

Section 2, the uncertainties associated with the damage identification results were quantified 

by calculating the posterior PDF of the damage parameters.  

As an example, Fig. 9 shows the normalized marginal PDF of the damage length and 

depth for the signal processed using the Hilbert transform, Gabor wavelet transform and 

discrete wavelet decomposition in Case C. The figure shows that the rate of the PDF value 

drops when one moves away from the identified value of the damage length and depth. The 

figure indicates the level of confidence that can be placed in the identification of the damage 

length and depth. For easier comparison of the results, the marginal cumulative distribution 

of one of the damage parameters can be calculated by integrating the posterior PDF with 

respect to the other damage parameters.  

As an example, Fig. 10 shows the marginal cumulative distribution of the damage depth 

for the signal processed using the Hilbert transform, Gabor wavelet transform and discrete 

wavelet decomposition. The slope of the curve is a measure of the uncertainty associated with 

the identified value. As shown in Fig. 10, the identified damage depth of using the signal 

processed by the discrete wavelet decomposition has the flatter curve, which means it 

exhibits greater uncertainty.  

 

[Fig. 9. Normalized marginal PDF of the damage length and depth for the signal processed 

using a) Hilbert transform, b) Gabor wavelet transform and c) discrete wavelet 

decomposition in Case C] 

 

[Fig. 10. Marginal cumulative distribution of the damage depth for the signal processed 
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using Hilbert transform (solid line), Gabor wavelet transform (dashed line) and discrete 

wavelet decomposition (dotted line)] 

 

To provide a more quantitative comparison of the uncertainties associated with the 

damage identification results, the coefficient of variation (COV) of the identified damage 

location, length and depth were calculated for Cases A, B and C and also listed in the 

brackets of Tables 2, 3 and 4, respectively. Overall the uncertainties of the results using the 

signals processed by the Gabor wavelet transform have smaller COV values in most of the 

situations, especially for the identified damage length and depth. Based on the accuracy of the 

damage identification results and the associated uncertainties, it can be concluded that the 

Gabor wavelet transform offers superior performance, enhancing the ability of the proposed 

statistical approach to damage identification. 

 

7. Conclusions 

The current study reported in this paper applied advanced signal processing techniques for 

damage identification in beams using longitudinal guided waves. The proposed statistical 

approach provides quantitative identification of the damages based on the longitudinal guided 

wave signal measured at a single location. One of the attractive advantages of the proposed 

statistical approach is that it also quantifies the uncertainties associated with the damage 

identification results, which provides essential information for engineers in making 

judgments on the remedial work.  

Four signal processing techniques, including the Fast Fourier transform, Hilbert 

transform, Gabor wavelet transform and discrete wavelet decomposition, were used to 

process the guided wave signals for damage identification. The accuracy and uncertainty of 

the damage identification results using each of the signal processing techniques were 

compared and discussed in detail.  

The experimental investigation verified that frequency domain guided wave signals 

processed by the Fast Fourier transform are not suitable for damage identification in the 
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context of the proposed statistical approach. On the other hand, the results demonstrated that 

the Hilbert transform, Gabor wavelet transform and discrete wavelet decomposition are able 

to enhance the results produced by the guided wave signals. Overall, however, the damage 

identification results provided by the signals and processed by the Gabor wavelet transform, 

in combination with the statistical analysis of the results, proved superior to other signal 

processing techniques in terms of accurately identifying the location, length and size of the 

damage, as well as the level of uncertainty inherent in the damage identification. 
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Fig. 1. Flowchart of PSO algorithm 
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Fig. 2. Schematic diagram of the experimental setup 

 
 

 

Fig. 3. Spectral element based on Love theory 
 

 
Fig. 4. Measured guided wave signal of Case A 
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Fig. 5. Hilbert transformed guided wave signal of Case A 

 

 
Fig. 6. Fast Fourier transformed guided wave signal of Case A 
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Fig. 7. Gabor wavelet transform spectrum of the guided wave signal in Case A (dashed line 

indicates the excitation frequency) 
 

  
Fig. 8. Discrete wavelet decomposed guided wave signal of Case A 
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Fig. 9. Normalized marginal PDF of the damage length and depth for the signal processed 
using a) Hilbert transform, b) Gabor wavelet transform and c) discrete wavelet decomposition 
in Case C 
 

 

Fig. 10. Marginal cumulative distribution of the damage depth for the signal processed using 
Hilbert transform (solid line), Gabor wavelet transform (dashed line) and discrete wavelet 
decomposition (dotted line) 
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Table 1. Summary of all the damage cases in the experimental case studies 

 Case A Case B Case C 
Damage location ( 1L ) (mm) 807.50±1 1097.25±1 915.00±1 
Damage length ( 2L ) (mm) 25.00±1 65.50±1 90.00±1 
Damage depth ( d ) (mm) 2.50±0.5 1.50±0.5 1.10±0.5 

 
 

Table 2. Damage identification results of Case A 
 Time domain 

signal 
Fast 

Fourier 
transform 

Hilbert 
transform 

Gabor 
wavelet 

transform 

Discrete 
wavelet 

decomposition  
1L% (mm) 
[error] 
(COV) 

826.16 
[2.31%] 
(0.01%) 

794.36 
[1.63%] 
(0.19%) 

798.74 
[1.09%] 
(0.04%) 

799.81 
[0.95%] 
(0.05%) 

799.19 
[1.03%] 
(0.29%) 

2L% (mm) 
[error] 
(COV) 

59.53 
[138.13%] 
(0.16%) 

87.78 
[251.12%] 
(1.22%) 

28.55 
[14.18%] 
(0.09%) 

28.58 
[14.33%] 
(0.08%) 

28.55 
[14.20%] 
(0.49%) 

d% (mm) 
[error] 
(COV) 

1.68  
[32.68%] 
(1.46%) 

1.11 
[55.70%] 
(11.70%) 

2.85 
[14.04%] 
(0.42%) 

2.88 
[15.09%] 
(0.38%) 

2.84 
[13.53%] 
(2.63%) 

Averaged 
error 

57.70% 102.82% 9.77% 10.12% 9.59% 

 
 

Table 3. Damage identification results of Case B 
 Time domain 

signal 
Fast 

Fourier 
transform 

Hilbert 
transform 

Gabor 
wavelet 

transform 

Discrete 
wavelet 

decomposition  
1L% (mm) 
[error] 
(COV) 

1118.26 
[1.92%] 
(0.01%) 

1057.01 
[3.67%] 
(0.11%) 

1055.52 
[3.80%] 
(0.05%) 

1057.98 
[3.58%] 
(0.05%) 

1055.50 
[3.81%] 
(0.33%) 

2L% (mm) 
[error] 
(COV) 

68.12 
[4.01%] 
(0.18%) 

33.76 
[48.46%] 
(0.90%) 

79.51 
[21.39%] 
(0.17%) 

65.28 
[0.33%] 
(0.16%) 

79.50 
[21.38%] 
(1.12%) 

d% (mm) 
[error] 
(COV) 

1.67 
[11.14%] 
(1.39%) 

3.00 
[100.00%] 
(6.21%) 

1.39 
[7.50%] 
(0.60%) 

1.59 
[5.93%] 
(0.77%) 

1.38 
[7.83%] 
(4.03%) 

Averaged 
error 

5.69% 50.71% 10.90% 3.28% 11.01% 
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Table 4. Damage identification results of Case C 

 Time domain 
signal 

Fast 
Fourier 

transform 

Hilbert 
transform 

Gabor 
wavelet 

transform 

Discrete 
wavelet 

decomposition  
1L% (mm) 
[error] 
(COV) 

933.82 
[2.06%] 
(0.01%) 

1076.75 
[17.68%] 
(0.11%) 

895.42 
[2.14%] 
(0.03%) 

896.17 
[2.06%] 
(0.03%) 

894.37 
[2.26%] 
(0.23%) 

2L% (mm) 
[error] 
(COV) 

93.28 
[3.65%] 
(0.16%) 

66.33 
[26.30%] 
(0.77%) 

90.64 
[0.72%] 
(0.12%) 

90.17 
[0.19%] 
(0.07%) 

90.49 
[0.55%] 
(0.57%) 

d% (mm) 
[error] 
(COV) 

1.02 
[6.97%] 
(1.99%) 

2.55 
[131.41%] 
(5.68%) 

1.07 
[2.78%] 
(0.55%) 

1.07 
[2.66%] 
(0.34%) 

1.06 
[3.23%] 
(3.02%) 

Averaged 
error 

4.23% 58.46% 1.88% 1.63% 2.01% 

 
 

 


