The In Vivo Evaluation of Coronary Atheroma and Endothelium-Dependent Vasomotor Reactivity in Humans with Coronary Artery Disease: Studies Utilizing Intravascular Ultrasound

A thesis submitted by

Dr. Rishi Puri

M.B.,B.S., F.R.A.C.P.

For the degree of

Doctor of Philosophy

Discipline of Medicine

University of Adelaide

June 2014
TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

THESIS SUMMARY .. 4

DECLARATION .. 7

ACKNOWLEDGEMENTS ... 8

PUBLICATIONS ARISING FROM THIS THESIS .. 11

ABSTRACTS ARISING FROM THIS THESIS ... 13

PRIZES AWARDED FROM THIS THESIS .. 15

CHAPTER 1: EXPLORING CORONARY ATHEROSCLEROSIS WITH INTRAVASCULAR IMAGING .. 16

CHAPTER 2: INTRAVASCULAR IMAGING OF VULNERABLE CORONARY PLAQUE: CURRENT AND FUTURE CONCEPTS .. 50

CHAPTER 3: INVASIVE IMAGING OF CORONARY ENDOTHELIAL VASOMOTOR REACTIVITY – WHAT IS THE RATIONALE AND OPTIMAL REQUIREMENTS? .. 77

CHAPTER 4: CORONARY β₂-ADRENORECEPTORS MEDIATE ENDOTHELUM-DEPENDENT VASOREACTIVITY IN HUMANS: NOVEL INSIGHTS FROM AN IN VIVO INTRAVASCULAR ULTRASOUND STUDY .. 84

CHAPTER 5: CORONARY ENDOTHELUM-DEPENDENT VASOREACTIVITY AND ATEROMA VOLUME IN SUBJECTS WITH STABLE, MINIMAL ANGIOGRAPHIC DISEASE VERSUS NON-ST SEGMENT ELEVATION MYOCARDIAL INFARCTION: AN INTRAVASCULAR ULTRASOUND STUDY ... 117
CHAPTER 6: CORONARY ATEROMA COMPOSITION AND ITS ASSOCIATION WITH SEGMENTAL ENDOTHELIAL DYSFUNCTION IN NON-ST SEGMENT ELEVATION MYOCARDIAL INFARCTION: NOVEL INSIGHTS WITH RADIOFREQUENCY (iMAP) INTRAVASCULAR ULTRASONOGRAPHY ..149

CHAPTER 7: CORONARY ARTERY WALL SHEAR STRESS IS ASSOCIATED WITH ENDOTHELIAL DYSFUNCTION AND EXPANSIVE ARTERIAL REMODELING IN PATIENTS WITH CORONARY ARTERY DISEASE179

CHAPTER 8: LEFT MAIN CORONARY ARTERIAL ENDOTHELIAL FUNCTION AND HETEROGENOUS SEGMENTAL EPICARDIAL VASOMOTOR REACTIVITY IN VIVO: INSIGHTS FROM INTRAVASCULAR ULTRASONOGRAPHY ...208

CHAPTER 9: VARIATIONS IN HUMAN CORONARY LUMEN DIMENSIONS MEASURED IN VIVO: QUANTITATIVE COMPARISONS BETWEEN INTRAVASCULAR ULTRASOUND, FOURIER-DOMAIN OPTICAL COHERENCE TOMOGRAPHY AND THREE DIMENSIONAL QUANTITATIVE CORONARY ANGIOGRAPHY ..242

CHAPTER 10: CONCLUSIONS AND FUTURE DIRECTIONS ..271

BIBLIOGRAPHY ..278
THESIS SUMMARY

Although many consider plaque burden and vasoconstriction as critical components of ‘vulnerable’ coronary atheroma, their intrinsic relationship in vivo remains relatively unexplored. This thesis, presented as a series of experiments conducted in intact humans with coronary artery disease, explores the fundamental in vivo relationships between coronary atheroma volume, composition and topography in relation to underlying segmental epicardial coronary endothelium-dependent vasomotor reactivity. The contributions of segmental wall shear stress (WSS), and the first-in-man assessment of left main coronary arterial endothelium-dependent vasomotor reactivity and its determinants, are also explored. A novel feature was the utility of intravascular ultrasound (IVUS) for all coronary structural and functional assessments. In these experiments, IVUS was pivotal in enabling the first-in-man validation of intracoronary salbutamol as a novel epicardial endothelium-dependent stimulus.

Of the 3 introductory chapters, chapters 1 and 2 outline the utility of IVUS for exploring coronary atherosclerosis and ‘vulnerable’ plaques. Chapter 3 draws specific attention to the nature of endothelium-dependent stimulus required to safely explore, with greater precision, the coronary structure-function relationship in humans in vivo.

Chapters 4-9 comprise the results sections of this thesis. Chapter 4 outlines the utility of ‘provocation intravascular imaging’ [IVUS-upon-Doppler Flowire imaging during simultaneous intracoronary (IC) infusions] to validate IC salbutamol as a novel endothelium-dependent epicardial coronary and microvascular stimulus.
Chapter 5 describes the coronary structure-function relationship in patients with stable, minimally diseased coronary arteries (i.e. the population studied in chapter 4) compared with patient with non ST-segment elevation myocardial infarction (NSTEMI). Irrespective of the nature of clinical presentation, the magnitude of segmental lumen vasoreactivity, controlled for by the degree of atheroma volume, did not differ. Our results also suggested possible interactions between systemic inflammation and coronary atheroma in mediating coronary vasomotor reactivity.

Utilizing a custom-built IVUS console to deliver radio-frequency IVUS signals, Chapter 6 outlines the relationship between plaque composition and segmental vasomotor reactivity in the NSTEMI population evaluated in chapter 5. Both the volumes of lipidic and necrotic core composition predicted vasoconstriction, whereas greater fibrotic plaque predicted vasodilatation.

Chapter 7 describes a unique investigation into in vivo relationships between segmental WSS, arterial remodeling and vasomotor function in patients with stable, minimally diseased coronaries (population studied in chapter 4). Independent of plaque burden, WSS directly related to vasomotor reactivity, and inversely to arterial remodeling. Regions of high plaque burden associated with lower WSS, expansive remodeling and greater plaque eccentricity, thus providing a novel link between these known individual features of plaque vulnerability.

Chapter 8 outlines the first-in-man description of left main coronary arterial (LMCA) vasomotor reactivity, in comparison to downstream epicardial segments. The study population comprised of all patients across study protocols who underwent left-
sided coronary imaging with evaluable matched LMCA images. LMCA and proximal epicardial segments were least reactive, compared to more distal conduit segments, which may relate to higher WSS in smaller caliber distal segments. These results may also explain the propensity for culprit plaques to cluster proximally in humans.

Chapter 9 describes a unique comparison of in vivo lumen dimensions measured with IVUS, Fourier-domain optical coherence tomography (FD-OCT) and 3D quantitative coronary angiography (3D-QCA). Lumen dimensions were greater with IVUS compared to FD-OCT and 3D-QCA, and were magnified within smaller coronary segments. We concluded that specific cut-off values validated with IVUS should not be arbitrarily translated into the OCT hemisphere for clinical decision making.
DECLARATION

Name: Rishi Puri Program: Doctor of Philosophy

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this thesis will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date: 3rd Dec 2013
ACKNOWLEDGEMENTS

Seduced by the field of Interventional Cardiology during my first year of Cardiology training, the concept of undertaking PhD research was the farthest thing from my mind. Following a few months involving countless discussions with numerous colleagues, mentors and family, I eventually embraced the concept of a PhD program. Little did I realize the enormous future impact this would make on my life, both professionally, and personally.

A fundamental reason for the success of my PhD program has been the superb nature and quality of academic mentorship that I have received during this time. Associate Professor Matthew Worthley and Professor Stephen Worthley were instrumental in guiding me along this career path. Each had a genuine vision for my academic development and for eventual transition back to the cath lab as a well-trained academic Interventional Cardiologist. I especially want to single out Matthew Worthley, who not only conceptualized the general topic of my PhD, but has been there for me on a night and day basis, throughout this entire PhD journey and beyond. I wish that all PhD students would be so lucky as to experience the caliber and nature of supervisor that is Matt! Matt was also instrumental in fostering an early collaboration with Professor Stephen Nicholls, who at the time, directed the IVUS Core Laboratory and co-directed clinical research at the Cleveland Clinic Coordinating Center for Clinical Research. It was indeed Matt’s vision for me to complete a hybrid PhD and Post-Doctoral Fellowship program between the University of Adelaide, and the Cleveland Clinic. This key collaboration with Steve Nicholls and other senior academic
cardiologists here at the Cleveland Clinic (most notably Professors Steven E. Nissen, E. Murat Tuzcu and Samir R. Kapadia) has been fundamental in enabling me to thrive here in Cleveland as a post-doctoral Fellow. I am truly grateful to each of these named individuals for their mentorship over the last two-and-a-half years here in Cleveland. In particular, the mentorship, friendship, and ongoing guidance of Stephen Nicholls and his family has been truly special, and one that I will continue to cherish for many years to come.

My PhD journey has enabled me to collaborate with many exceptional individuals both in Adelaide and in Cleveland. I would particularly like to thank Professor John Beltrame for his additional PhD supervision, Dr Gary Liew, Dr Adam Nelson, Mr Angelo Carbone, Mrs Barbara Copus (and all nursing staff of the Cardiovascular Investigation Unit, Royal Adelaide Hospital), Dr Dennis Wong, Dr Darryl Leong, Mr Claudio LaPosta (and Radiography staff at the Cardiovascular Investigation Unit, Royal Adelaide Hospital), and all of the staff Interventional Cardiologists of the Cardiovascular Investigation Unit, Royal Adelaide Hospital. In Cleveland, I have been honored to work with the likes of Mrs Kathy Wolski, Mrs Danielle Brennan and Mr Craig Balog from the CSR statistical team, Ms Jordan Andrews, Mrs Karilane King, Mr William Magyar and Mr Tim Crowe from the IVUS Core Laboratory, and Mrs Suzanne Turner, Mrs Mary Ann Citraro and Ms Charlene Surace from the graphics team who’ve all offered their kind support at various times.

I am who I am, and what I am, because of my parents, Vinod and Veena, and my sister Richa. Their undivided love and support has strengthened me enormously, and
whatever success I achieve in life has largely been due to the sacrifices my parents have made to provide my sister and me with a better opportunity to succeed than they ever had.

And last but not least, I wanted to thank all of the patients who participated in these research studies. Throughout this journey in research, I have never forgotten the kindness and co-operation of patients that consent for clinical research protocols. All of the findings listed in this thesis, their clinical and scientific implications, and the personal accolades I attained from publishing such data, are because of them!
PUBLICATIONS ARISING FROM THIS THESIS

ABSTRACTS ARISING FROM THIS THESIS

PRIZES AWARDED FROM THIS THESIS

1. FINALIST (and 2nd place) Young Investigator Awards Competition, American College of Cardiology Annual Scientific Sessions, New Orleans, Louisiana, USA, April 2011

2. Cardiac Society of Australia & New Zealand Travelling Fellowship (American College of Cardiology Meeting, New Orleans, Louisiana, USA), April 2011

3. National Heart Foundation of Australia Overseas Travelling Fellowship (American College of Cardiology, New Orleans, Louisiana, USA), April 2011

4. Cardiac Society of Australia & New Zealand Travelling Fellowship (American Heart Association Meeting, Chicago, Illinois, USA), November 2010

5. 1st Prize (Best Poster Prize), Pfizer Cardiovascular Lipid Annual Symposium, July 2010