

# Nutrient Removal and Recovery by the Precipitation of Magnesium Ammonium Phosphate

By

Guangan Jia

School of Chemical Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide Adelaide South Australia

A Thesis Submitted for the Degree of

**Master of Philosophy** 

## DECLARATION

### NAME: Guangan JIA

PROGRAM: Master of Philosophy

This work contains no materials which have been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references have been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright ACT 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNATURE:

DATE:

#### ACKNOWLEDGEMENTS

I have to say it has been a long and windy journey to get to the completion of this project. At times, there were huge obstacles that I had to deal with and without help and support from the research group and The School of Chemical Engineering, this thesis would not have been possible. I would like to extend my gratitude to the following people for their contribution throughout this project:

- My supervisors Associate Professor Bo Jin (The School of Chemical Engineering, The University of Adelaide), Associate Professor Joerg Krampe (South Australia Water Corporation), Dr. Hu zhang (The School of Chemical Engineering, The University of Adelaide) and Associate Professor Sheng Dai (The School of Chemical Engineering, The University of Adelaide). Thank you for your patience with and faith in me.
- This project would not have been possible without support from South Australia Water Corporation and United Water in Bolivar, thanks very much for providing centrate and data of wastewater.
- I also want to thank research group members: Lijuan Wei, Ming Dai, Dr Guiseppe Laera, Frank Fan, Xing Xu, and Cuong Tran from The School of Chemical Engineering, The University of Adelaide, thank you for your sincere help and useful suggestions.
- The staff at School of Chemical Engineering who would happily assist with my queries.
- Fellow post-graduate colleagues at School of Chemical Engineering, I appreciated the time spent with these great research students, it was a real pleasure doing research in this university.

- The staff at Adelaide Microscopy, in particular Ken.
- My parents, my wife, and my two sons for their patience and emotional support and constant faith in me, without their support, I would go nowhere.

### ABSTRACT

Phosphate and ammonium are the main nutrient sources in wastewater, contributing to eutrophication of water bodies. Removal of these nutrients from wastewater using conventional technologies is a challenge in water industry. Many processes have been developed to remove these two nutrients. On the other hand, phosphorus from nature is not infinite, which will be running out in about 50 - 100 years. Therefore recycling phosphorus is becoming an issue, as well as a challenge, for researchers all over the world.

This research is to investigate a chemical process technology to recover the nutrients by the precipitation of magnesium ammonium phosphate (MAP), which is valuable product and nutrient fertiliser. This is a new process based on the chemical equilibrium, which is greatly affected by pH of the solution, concentrations of  $Mg^{2+}$ ,  $NH_4^+$ ,  $PO_4^{3-}$ , and other ions and organic matters included in the wastewater. In order to implement this process, the optimal pH, and the best molar ratio of  $Mg^{2+}$ ,  $NH_4^+$ and  $PO_4^{3-}$  must be adequately studied.

In this thesis, the optimal pH and optimization of the molar ratio of  $Mg^{2+}:NH_4^+:PO_4^{3-}$ , were studied based on synthetic wastewater. It was found that the best pH range was 9-9.5, and the best molar ratio was  $Mg^{2+}:NH_4^+:PO_4^{3-}=1.3:1:1.1$  Visual MINTEQ 3.0 software was then introduced to predict the possible solids precipitated and additional alkaline required in order to maintain the optimal pH value during experiments. Laboratory scale experiments were carried out under the same conditions of model input. Struvite yielded from laboratory experiments was tested and confirmed by SEM and X-ray diffraction. The results indicated that the experimental results agreed well with that of model prediction within the error deviation. Reagent addition rate and temperature were also tested in terms of removal

efficiency and morphology of the precipitates. These two factors can affect size and morphology of crystals, but have limited impact on the removing efficiency compared to pH and concentration.

The main advantages of this technology are to recover nutrients and to prevent eutrophication. Preliminary results of operational factors of laboratory scale MAP system have been discussed and presented. Conclusions and recommendations were also made in this work.

## **Table of Contents**

| Declaration                                                                                |
|--------------------------------------------------------------------------------------------|
| Acknowledgements                                                                           |
| AbstractIV                                                                                 |
| List of FiguresX                                                                           |
| List of TablesXVII                                                                         |
| List of Abbreviations                                                                      |
| List of EquationsXX                                                                        |
| Chapter 1 Introduction1                                                                    |
| 1.1 Background2                                                                            |
| 1.2 Aim and objectives5                                                                    |
| 1.3 Thesis outline6                                                                        |
| Chapter 2 Literature review                                                                |
| 2.1 Introduction                                                                           |
| 2.2 Wastewater treatment process                                                           |
| 2.2.1 Physical treatment10                                                                 |
| 2.2.2 Biological treatment10                                                               |
| 2.2.3 Tertiary treatment15                                                                 |
| 2.3 $NH_4^+$ and $PO_4^{3-}$ recovery by the precipitation of magnesium ammonium phosphate |
| 2.4 Factors influencing struvite precipitation process                                     |
| 2.5 Characteristics of struvite                                                            |

| 2.6 Economic value of struvite41                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------|
| 2.7 Modelling of precipitation process of magnesium ammonium phosphate45                                                        |
| 2.8 Summary                                                                                                                     |
| Chapter 3 Materials and experiments                                                                                             |
| 3.1 Experiment setup53                                                                                                          |
| 3.2 Materials                                                                                                                   |
| 3.3 Preparation of solutions required54                                                                                         |
| 3.3.1 Ammonium preparation54                                                                                                    |
| 3.3.2 Magnesium (Mg <sup>2+</sup> ) preparation54                                                                               |
| 3.3.3 Phosphate (PO <sub>4</sub> <sup>3-</sup> ) preparation55                                                                  |
| 3.4 Wastewater from Bolivar wastewater treatment plant55                                                                        |
| 3.5 Analysis methods and procedure56                                                                                            |
| 3.5.1 Analysis methods56                                                                                                        |
| 3.5.2 Analysis procedure57                                                                                                      |
| 3.5.3 Instruments used57                                                                                                        |
| 3.6 Experiments60                                                                                                               |
| 3.6.1 Sample preparation60                                                                                                      |
| 3.6.2 Experiments without pH control61                                                                                          |
| 3.6.3 Experiments with pH control61                                                                                             |
| 3.6.4 Feeding rate                                                                                                              |
| Chapter 4 Optimisation of pH and molar ratio of Mg <sup>2+</sup> : NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup> |
|                                                                                                                                 |

| 4.1 Introduction64                                             |
|----------------------------------------------------------------|
| 4.2 Materials and methods67                                    |
| 4.2.1 Materials67                                              |
| 4.2.2 Struvite precipitation system and its operation          |
| 4.2.3 Characterization of crystals precipitated69              |
| 4.2.4 Analysis of chemicals and data69                         |
| 4.3 Results and discussion70                                   |
| 4.3.1 Optimization of operation pH70                           |
| 4.3.2 Magnesium and phosphate sources78                        |
| 4.3.3 Effect of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-}$ molar ratio |
| 4.3.4 The effect of feeding rate94                             |
| 4.3.5 The effect of temperature96                              |
| 4.4 Conclusions100                                             |
| References102                                                  |
| Chapter 5 Modelling of struvite precipitation process          |
| 5.1 Introduction110                                            |
| 5.2 Materials and methods112                                   |
| 5.2.1 Materials112                                             |
| 5.2.2 Struvite precipitation test113                           |
| 5.2.3 Characterization of precipitated crystals113             |
| 5.2.4 Analytical methods and procedures113                     |
| 5.3 Chemical modelling114                                      |

| 5.4 Visual MINTEQ3.0 setup and Model revising116              |
|---------------------------------------------------------------|
| 5.4.1 Thermodynamic chemical equilibrium116                   |
| 5.4.2 Model revising116                                       |
| 5.4.3 Model operation conditions118                           |
| 5.5 Results and discussion122                                 |
| 5.5.1 Model output122                                         |
| 5.5.2 Experimental results126                                 |
| 5.5.3 Mass balance analysis131                                |
| 5.5.4 X-ray diffraction results132                            |
| 5.6 Comparison of experimental data with modelling results135 |
| 5.7 Summary139                                                |
| References140                                                 |
| Chapter 6 Conclusions and recommendations146                  |
| 6.1 Conclusions147                                            |
| 6.2 Recommendations                                           |
| References151                                                 |
| <b>Appendix 1</b> 170                                         |
| <b>Appendix 2</b> 172                                         |

# List of figures

| Figure 1.1 Eutrophication problems (Algae)4                                         |
|-------------------------------------------------------------------------------------|
| Figure 1.2 Consequences of eutrophication problems4                                 |
|                                                                                     |
| Figure 2.1 A typical large scale sewage treatment plant10                           |
| Figure 2.2 Process diagram of anaerobic digestion (Gerardi et al., 2003)14          |
| Figure 2.3 Nitrogen cycle in WWTP (Starmen et al., 2009)16                          |
| Figure 2.4 Nitrogen shortcut in enhanced BNR (Starmen et al., 2009)16               |
| Figure 2.5 Air stripping process                                                    |
| Figure 2.6 Cone aerators19                                                          |
| Figure 2.7 Draft aerator19                                                          |
| Figure 2.8 Cascade aerator20                                                        |
| Figure 2.9 Spray aerator20                                                          |
| Figure 2.10 Scheme of the $A^2/O$ simulated plant for simultaneous C/N/P            |
| removal. Javier Guerrero et al.,                                                    |
| (2010)22                                                                            |
| Figure 2.11 Representative integrated constructed wetland system 11 in winter 2006: |
| (a) sedimentation tank; (b) site overview; and (c) inlet arrangement to             |
| the first ICW cell                                                                  |
| Figure 2.12 Reactor used by Jaffer et al., (2001)24                                 |
| Figure 2.13 Reactor fabricated by Etter et al.,(2011)27                             |
| Figure 2.14 Reactor used by Korchef (2011)dissolved carbonate removal technique     |
| Figure 2.15 Crystallization pilot plant developed by Martí et al., (2010)28<br>X    |

| Figure 2.16 Reactor designed by Münch et al., (2001)29                                       |
|----------------------------------------------------------------------------------------------|
| Figure 2.17 Picture of pure struvite crystals                                                |
| Figure 2.18 SEM Images of struvite obtained by Korchef et al.,(2011) in his experiments      |
| Figure 2.19 SEM Image of struvite obtained by Ye et al., (2010) in his experiments           |
| Figure 2.20 SEM Image of struvite recovered from swine wastewater by Rahman et al., (2011)40 |
| Figure 2.21 SEM Image of struvite recovered from landfill leachates by Zhang et al., (2009)  |
| Figure 2.22 Reactor designed by Rahman et al., (2011) to recover N and P42                   |
| Figure 2.23 A model flow designed by Harada et al., (2006)48                                 |
| Figure 2.24 Model procedure developed by Gadekar et al., (2010)49                            |
| Figure 3.1 Experiment process setup53                                                        |
| Figure 3.2 SHIMADZU, AA-6300, Atomic absorption spectrophotometer58                          |
| Figure 3.3 LIUV-201 UV/Vis spectrometer                                                      |
| Figure 3.4 Colorimeter HACH                                                                  |
| Figure 3.5 X-ray Diffraction, Miniflex 60059                                                 |

- Figure 3.6 Philips XL 30 Scanning electron microscopy ......60
- Figure 4.1 pH variation from 8 to 11 during the course of precipitation reaction without pH control. The molar ratio of  $Mg^{2+}$ :  $NH_4^+$ :  $PO_4^{3-}$  was 1:1:1.....71

| Figure | 4.2 | Impact                | of                | MAP      | formation  | and   | ammonium     | removal  | efficiency  | in                |
|--------|-----|-----------------------|-------------------|----------|------------|-------|--------------|----------|-------------|-------------------|
|        | la  | boratory              | sca               | ale exp  | eriments w | ithou | t pH control | (molar 1 | ratio of Mg | g <sup>2+</sup> : |
|        | Ν   | $\mathrm{H}_4^+$ : PO | 4 <sup>3-</sup> V | vas 1:1: | :1)        |       |              |          |             | 72                |

| Figure 4.11 SEM image of crystal precipitated by using MgO as resource at pH 9,<br>molar ratio of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-} = 1:1:182$                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 4.12 Removal efficiency of ammonium and phosphate at different molar ratio of $Mg^{2+}$ : $NH_4^+$ : PO <sub>4</sub> <sup>3-</sup> with pH at 984                                                                                                               |
| Figure 4.13 Mass of crystals at different molar ratio of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-}$ under pH at 9 at stirring rate of 200 rps                                                                                                                                  |
| Figure 4.14 Removal efficiency of ammonium and phosphate at different molar ratio of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-}$ with pH at 9 and the stirring rate was 200 rps                                                                                                 |
| Figure 4.15 Mass of crystals at different molar ratio of Mg <sup>2+</sup> : NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup> under pH at 9 at stirring rate of 200 rps                                                                                     |
| Figure 4.16 Removal efficiency of ammonium and phosphate at different molar ratio of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-}$ with pH at 9                                                                                                                                   |
| Figure 4.17 Mass of crystals at different molar ratio of Mg <sup>2+</sup> : NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup> under pH<br>9                                                                                                                 |
| Figure 4.18 Comparison of ammonium removal efficiency obtained by different researchers with different molar ratio of Mg <sup>2+</sup> : NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup> at pH 9 with MgCl <sub>2</sub> •6H <sub>2</sub> O as Mg resource |
| Figure 4.19 XRD pattern of the struvite precipitated at Mg <sup>2+</sup> : NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup> molar ratio<br>1:1:1 at initial pH 9 with pH control. 1. Standard pattern PDF# 15-<br>0762                                     |
| Figure 4.20 XRD of struvite obtained at pH 9 with molar ratio of 1:1:1.2 (Mg <sup>2+</sup> : $NH_4^+$ : PO <sub>4</sub> <sup>3-</sup> ). 1. Standard pattern PDF# 15-076292                                                                                            |
| Figure 4.21 SEM image of struvite obtained at room temperature with the molar ratio of $Mg^{2+}$ : $NH_4^+$ : PO <sub>4</sub> <sup>3-</sup> = 1:1:1.2 at pH 9, stirring rate was 200rps                                                                                |
| Figure 4.22 Mass of Crystals and removal efficiency of ammonium and phosphate at different feeding rate                                                                                                                                                                |

| Figure 4.23 XRD of struvite obtained at pH 9 with molar ratio of 1.3:1:1.1 |    |
|----------------------------------------------------------------------------|----|
| $(Mg^{2+}: NH_4^+: PO_4^{3-})$ and reagent addition rate at 7.1 mL/min. 1. |    |
| Standard pattern PDF# 15-0762                                              | 95 |
|                                                                            |    |

- Figure 4.28 SEM image of struvite obtained at 35 °C with the molar ratio of  $Mg^{2+}$ : NH<sub>4</sub> <sup>+</sup>: PO<sub>4</sub> <sup>3-</sup> = 1.3:1:1.1 at pH 9, stirring rate was 200rps......100

| Figure | 5.1 | The | main | page | of | Visual | MINTEQ | 3.0. | 1 | 19 | 9 |
|--------|-----|-----|------|------|----|--------|--------|------|---|----|---|
|--------|-----|-----|------|------|----|--------|--------|------|---|----|---|

| Figure 5.5 Crystals different shape and size in stage A and stage B detected by Sun et al., (2011)                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 5.6 XRD of struvite-K studied by Zhang et al (2011)131                                                                                                                                                                                                                                                    |
| <ul> <li>Figure 5.7 XRD pattern of struvite, struvite-(K), monetite, and magnesite confirmed under Condition 3. (1. Struvite, Standard pattern PDF# 15-0762; 2. Struvite-(K), Standard pattern PDF# 35-0812; 3. Monenite, Standard pattern PDF# 09-0080; 4. Magnesite, Standard pattern PDF# 08-0479.)</li></ul> |
| Figure 5.8 SEM image of struvite under Condition 3133                                                                                                                                                                                                                                                            |
| Figure 5.9 SEM image of struvite-(K) under Condition 4134                                                                                                                                                                                                                                                        |
| Figure 5.10 Comparison of ammonium removal efficiency obtained by different researchers with different molar ratio of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-}$ at pH 9 with $MgCl_2 \bullet 6H_2O$ as Mg resource                                                                                                      |
| Figure A1.1 Standard curve of PO <sub>4</sub> <sup>3-</sup> by LIUV-201 UV/vis spectrometer170                                                                                                                                                                                                                   |
| Figure A1.2 Standard curve of NH <sub>4</sub> <sup>+</sup> by DR/890 colorimeter HACH,<br>Amver <sup>TM</sup> HACH Test 'N Tube High Range Ammonium Reagent<br>Set                                                                                                                                               |
| Figure A1.3 Standard curve of Mg <sup>2+</sup> by SHIMADZU, AA-6300, Atomic absorption                                                                                                                                                                                                                           |

spectrophotometer.....171

| Figure A2.1 SEM image of struvite at pH 8.5 with molar ratio of $Mg^{2+}$ | $:NH_4^+: PO_4^{3-}$ |
|---------------------------------------------------------------------------|----------------------|
| =1:1:1                                                                    | 172                  |
| Figure A2.2 SEM image of struvite at pH 9 with molar ratio of $Mg^{2+}$ : | $:NH_4^+: PO_4^{3-}$ |
| =1.2:1:1                                                                  | 172                  |

| Figure A2.3 SEM image of struvite with molar ratio of $Mg^{2+}$ : $NH_4^+$ : PO <sub>4</sub> <sup>3-</sup>                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| =1.2:1:1.2173                                                                                                                                         |
| Figure A2.4 SEM image of struvite with molar ratio of $Mg^{2+}$ : $NH_4^+$ : $PO_4^{3-}$<br>=1.4:1:1.4173                                             |
| Figure A2.5 SEM image of struvite at pH 9 with molar ratio of $Mg^{2+}$ :NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup><br>=1.6:1:1174  |
| Figure A2.6 SEM image of struvite with molar ratio of $Mg^{2+}$ :NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup><br>=1.6:1:1.4174        |
| Figure A2.7 SEM image of struvite at pH 9.5 with molar ratio of $Mg^{2+}$ :NH <sub>4</sub> <sup>+</sup> : PO <sub>4</sub> <sup>3-</sup><br>=1.3:1:1.1 |

## List of Tables

| Table 2.1 Experiments designed by Kim (2006) to determine the effect of feeding sequence                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.2 The kinetic parameters calculated for MAP formation in different studies                                                                                |
| Table 2.3 Summary of costs for a full-scale plant. Jaffer et al., (2001)44         Table 2.4 Economical comparison of phosphorous removal process (Unitika Japan) |
| Table 3.1 Characteristics of centrate from Bolivar wastewater treatment plant,      Adelaide                                                                      |
| Table 5.1 Characteristics of raw wastewater from Bolivar wastewater treatment plant,      ADELAIDE                                                                |
| Table 5.2 Modelling process to measure the dosage of NaOH needed to reach pH      9                                                                               |
| Table 5.3 Model outputs of different ions, removal efficiency of $NH_4^+$ -N and $PO_4^{3-}$ -P,<br>and solid phase predicted under different conditions124       |
| Table 5.4 Table 5.4 Experimental results of different ions, removal efficiency of N and P, and crystals confirmed under condition 1, 2, and 3128                  |
| Table 5.5 Table 5.5 Experimental results of different ions, removal efficiency of N and P, and crystals confirmed under condition 4, 5, and 6129                  |
| Table 5.6 Mass balance analysis from condition 4132                                                                                                               |
| Table 5.7 Comparison of modelling outputs and experimental results under different conditions                                                                     |

## **List of Abbreviations**

- STPs: Sewage treatment plants
- SDE: Sludge dewatered effluent
- WWTP: wastewater treatment plant
- MAP: Magnesium ammonium phosphate
- SEM: Scanning electron microscopy
- **XRD**: X-ray diffraction
- AD: Anaerobic digestion
- LCFAs: Long chain fatty acids
- **EPA**: Environmental protection agency
- BNR: Biological nutrient removal
- PAOs: Polyphosphate accumulating organisms
- $A^2/O$ : Anaerobic-aerobic-oxic
- ICW: Integrated constructed wetland
- SBRs: Sequencing bench reactors
- **UASB**: Upflow anaerobic sludge blanket
- **RSM**: Response surface technology
- CCD: Central composite design
- **TS**: Total solids

**PS**: Solubility product

HAP: Hydroxyapatite

**OCP**: Octacalcium phosphate

TCP: Tricalcium phosphate

**DCP**: Monetite

**DCPD**: Brushite

CBA: Cost-benefit analysis

# List of Equations

| Equation 2.1 Typical ion-exchange reactions20                   |
|-----------------------------------------------------------------|
| Equation 2.2 Magnesium ammonium phosphate reaction equation30   |
| Equation 2.3 Two ways for ammonium removal reactions            |
| Equation 2.4 The first order reaction expression35              |
| Equation 2.5 The linear first order equation35                  |
| Equation 2.6 The kinetics of chemical process                   |
| Equation 2.7 The first order reaction by Zhang et al., (2009)36 |
| Equation 2.8 The second order reaction by Zhang et al., (2009)  |
| Equation 2.9 The third order reaction by Zhang et al., (2009)   |
| Equation 2.10 The equation to calculate net profit              |
| Equation 2.11 The equation for calculating benefit44            |
| Equation 2.12 Equation to calculate species ionic strength47    |
| Equation 2.13 Equation to calculate species ionic strength47    |
| Equation 4.1 Magnesium ammonium phosphate reaction equation65   |
| Equation 5.1 Magnesium ammonium phosphate reaction equation110  |