
ACCEPTED VERSION 

 

Zecchin, A., Lambert, M., Simpson, A.R., White, L. 
Parameter identification in pipeline networks: transient-based expectation-maximization 
approach for systems containing unknown boundary conditions 
Journal of Hydraulic Engineering, 2014; 140(6):04014020-1-04014020-12 
 
 
©  ASCE 

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000849  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/85492  

 

PERMISSIONS 

http://dx.doi.org/10.1061/9780784479018.ch03 

p. 12 – Posting papers on the Internet 

Authors may post the final draft of their work on open, unrestricted Internet sites or 
deposit it in an institutional repository when the draft contains a link to the bibliographic 
record of the published version in the ASCE Civil Engineering Database. “Final draft” 
means the version submitted to ASCE after peer review and prior to copyediting or 
other ASCE production activities; it does not include the copyedited version, the page 
proof, or a PDF of the published version. 

 

 

27 January 2015 

http://dx.doi.org/10.1061/(ASCE)HY.1943-7900.0000849
http://hdl.handle.net/2440/85492
http://dx.doi.org/10.1061/9780784479018.ch03


 

Parameter identification in pipeline 
networks: transient-based 

expectation-maximisation approach 
for systems containing unknown 

boundary conditions 
by 

Zecchin, A.C, Lambert, M.F., Simpson, A.R. and White, L. 

Journal of Hydraulic Engineering 

 

 

Citation: 
Zecchin, A.C, Lambert, M.F., Simpson, A.R. and White, L. (2014). “Parameter 
identification in pipeline networks: transient-based expectation-maximisation approach for 
systems containing unknown boundary conditions”. Journal of Hydraulic Engineering, ASCE, 
Feb., Vol. 140, No. 6, 04014020, DOI: 10.1061 /(ASCE) HY. 1943-7900.0000849.   
 

For further information about this paper please email Angus Simpson at angus.simpson@adelaide.edu.au 



PARAMETER IDENTIFICATION IN PIPELINE NETWORKS:1

A TRANSIENT BASED EXPECTATION-MAXIMISATION2

APPROACH FOR SYSTEMS CONTAINING UNKNOWN3

BOUNDARY CONDITIONS4

A. C. Zecchin1, M. F. Lambert2, A. R. Simpson3, L. B. White4,5

ABSTRACT6

The simulation of hydraulic transients within fluid line networks is important for many ap-7

plications (for example, water hammer analysis within distribution networks). However, in8

many instances, modelling efforts are impeded by the fact that the pipeline parameters are9

either unknown, or can vary significantly from their assumed design values. Consequently,10

research efforts have focused on the development of parameter identification techniques,11

mapping from measured transient data to pipeline parameter estimates. A limitation with12

previous works has been the need for systems to have all boundary conditions either measured13

or known (e.g. transient pressure measurements or reservoir boundary conditions). This pa-14

per aims to relax this requirement, and presents a parameter identification method for fluid15

line networks based on transient-state measurements of the hydraulic state variables of pres-16

sure and flow, in the presence of unmeasured and unknown boundary conditions. Utilising17

a Laplace-domain admittance matrix representation of the system, the contribution to the18

hydraulic system dynamics from the measured and unmeasured state variables (i.e. bound-19

ary conditions) is made explicit. This model is then used as the basis for the development20

of a parameter estimation methodology based on the expectation-maximization (EM) algo-21
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rithm. The importance of the EM approach is that it provides a framework for parameter22

estimation in the presence of unmeasured state variables, by effectively integrating out the23

influence of the unmeasured variables. Numerical examples demonstrate the utility of this24

method for a network with a range of pipeline models.25

Keywords: fluid transients; pipeline networks; parameter estimation; expectation-maximization.26

INTRODUCTION27

The pipeline parameters of a pipe network can vary significantly from their assumed28

design values due to aging (e.g. corrosion of pipe wall material, or buildup of solids within29

the pipeline), imperfections in installation (e.g. supports not completely restraining the30

pipeline), and issues in manufacturing (e.g. variation pipeline roughness heights). The31

need for accurate simulation of pipeline systems, combined with the outlined parametric un-32

certainty, has led to significant research efforts on pipeline parameter identification methods33

(e.g. Isermann (1984), Liggett and Chen (1994), Nash and Karney (1999)), with a particular34

focus on leak detection (e.g. Liou and Tian (1995), Lee et al. (2005)).35

Many of these methods have focused on approaches tailored for single pipeline systems36

with either measured or known boundary conditions (e.g. see Verde et al. (2007), Wang37

et al. (2002), respectively). Few methods have dealt with fluid line networks of a general38

topology, namely, the time-domain inverse transient method (Liggett and Chen 1994), the39

least squares calibration approach based on the frequency-domain impedance matrix method40

(Kim 2008), and the maximum likelihood estimation approach (Zecchin et al. 2013) based41

on the Laplace-domain network admittance matrix model (Zecchin et al. 2009; Zecchin et al.42

2010). The complexities of parameter estimation within a pipeline network are associated43

with the large number of parameters, and the difficulty in developing an estimation algo-44

rithms to correctly use the measured transient data and the, sometimes uncertain, boundary45

condition information. As such, to date, a limitation with previous works has been the need46

for networks to have all boundary conditions either measured (through transient pressure, or47

flow, measurements) or known (e.g. a reservoir, junction or valve boundary condition). An48
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example of such situations of uncertain boundary conditions are when the pipe network of49

interest is connected to a broader network through unmonitored connection points (allowing50

for the transient dynamics of the broader network to influence the dynamic behaviour of the51

network of interest), or when the network of interest is connected to hydraulic components52

whose properties are unknown.53

This paper proposes the use of the expectation-maximisation (EM) algorithm to provide a54

rigorous way of dealing with the case of pipe network parameter identification in the presence55

of uncertain boundary conditions. The EM algorithm (Dempster et al. 1977), is a general56

statistical parameter estimation method used in situations where the data is incomplete, or57

there exist hidden state variables upon which the system dynamics depend (Michiko and58

Kazunori 2004).59

The proposed approach utilises the Laplace-domain network admittance matrix model60

of Zecchin et al. (2009) to develop the identification method in the frequency-domain. The61

primary advantage of the frequency-domain approach is that it enables an analytic repre-62

sentation of the influence of the measured and unmeasured nodal states on the network63

dynamics, which is a critical first step for the application of the EM algorithm. Additional64

advantages of frequency-domain methods are that they are very computationally efficient,65

and they do not suffer from the grid generation difficulties associated with parameter esti-66

mation using time-domain methods (Kim 2008) (i.e. for the inverse transient method, the67

computational grid of the inverse model is dependent on the pipeline wave speed parameter,68

which is itself an unknown parameter requiring estimation).69

As frequency-domain methods deal with linear dynamics, they provide only an approx-70

imation to the true nonlinear network behaviour, where the accuracy of the approximation71

is dependent on the magnitude of the flow perturbation about the steady-state (or the set-72

point about which the linear approximation is made) (Wylie and Streeter 1993). Despite73

this limitation, typically only small flow perturbations are required to an achieve adequate74

excitation in the pressure response of the system, meaning that frequency-domain methods75

3 Zecchin et al.



have been successfully utilised for both single line (e.g. Lee et al. (2005), Mohapatra et al.76

(2006)) and network applications (e.g. (Zecchin et al. 2012)).77

PROBLEM FORMULATION78

To explain the objective of the paper, an example is first given, afterwhich the system of79

network equations that govern the hydraulic state variables is outlined, and the parameter80

estimation problem is formally explained.81

Example. Consider the network depicted in Figure 1(a) with 13 pipes, eight junctions, a82

surge vessel (capacitive element), an emitter, and a reservoir. Say that the prior information83

for this system only describes the topology of the subnetwork comprising the first seven nodes,84

and 11 links of the network as depicted in Figure 1(b). The prior information indicates that85

there is an additional connection at node 7, but the structure of the network beyond this node86

is unknown (that is, as depicted in Figure 1(b), the nodal pressure and flow for this node is87

unknown). Each pipe within the known 11-pipe network of Figure 1(b) has a set of unknown88

parameters that require estimation ( e.g. roughness, diameter, wavespeed), symbolised by the89

sets ϑ1, . . . ,ϑ11. Consider that the network is excited into a transient state by a measured90

flow perturbation θ4(t) at node 4 (denoted θd(t) in Figure 1), and the pressure response of91

the network is measured at nodes 2, 3, 4 and 6. The parameter identification consists of92

estimating the pipeline parameter values ϑ1, . . . ,ϑ11 given the pressure measurements ψ2(t),93

ψ3(t), ψ4(t), ψ6(t) at nodes 2, 3, 4 and 6, and θ4(t) at t = ∆t, . . . N∆t, and the known94

boundary conditions of the pipeline interactions at the six junctions and the reservoir.95

What separates this work from previous pipe network parameter estimation methodolo-96

gies (Kim 2008; Zecchin et al. 2013) is the presence of boundary nodes within the network for97

which neither the pressure or flow are measured, creating an uncertain boundary condition98

(e.g. node 7 in this case).99

Network Equations100

Following the notation of Zecchin et al. (2013), it is convenient to describe a network as101

a connected graph G (N ,Λ) (Diestel 2000) consisting of the node set N = {1, 2, ..., nn}, and102
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the link set Λ = {λ1, λ2, ..., λnΛ
} (λj = (i, k) where i and k are the upstream and downstream103

nodes of link j). Each node is associated with a junction that is connected to a number of104

links, and each link is associated with a distributed pipe element where the directed nature105

of the link describes the positive flow direction sign convention of the element. With the106

given notation, a fluid line network is defined as the pair (G(N ,Λ),P) where G(N ,Λ) is107

the network graph of nodes N and links Λ, and P = {Pj : λj ∈ Λ} is the set of pipeline108

coefficients and operators that describe the dynamics of each pipe j.109

The state space of the network (G(N ,Λ),P) is given by the distributions of pressure and110

flow along each line of the network, and the imposed nodal states of pressure and flow. The111

distributed line states are given by112

p (x, t) =


p1 (x1, t)

...

pnΛ
(xnΛ

, t)

 , q (x, t) =


q1 (x1, t)

...

qnΛ
(xnΛ

, t)

 , (1)

respectively, where x = [x1 · · ·xnΛ
]T is the vector of spatial coordinates, (i.e. x ∈ X =113

X1 × · · · XnΛ
where Xj = [0, lj]), t ∈ R is time, and nΛ is the number of links. The nodal114

states (imposed by the connected pipelines) are given by115

ψ(t) = [ψ1(t) · · · ψnn(t)]T , θ(t) = [θ1(t) · · · θnn(t)]T . (2)

where ψi and θi are the pressure at node i and the flow into node i respectively (for reasons

of passivity, the flow sign convention is taken as positive when directed into the network).

As outlined in Zecchin et al. (2009), the states (1) and (2) are governed by the following
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system of equations

∂p

∂x
+Ro

(
∂q

∂t
+ R (q)

)
= 0, x ∈ X (3)

∂q

∂x
+Co

(
∂p

∂t
+ C (p)

)
= 0, x ∈ X (4)

(
Nu −N d

) q(x = 0)

q(x = l)

 = θ (5)

 p(x = 0)

p(x = l)

 =

(
Nu N d

)T
ψ (6)

whereRo = diag [R1 · · ·RnΛ
] is the matrix of resistance coefficients, R(q) = diag [R1(q1) · · ·RnΛ

(qnΛ
)]116

is the matrix of resistance operators, Co = diag [C1 · · ·CnΛ
] is the matrix of compliance co-117

efficients, C(p) = diag [C1(p1) · · · CnΛ
(pnΛ

)] is the matrix of compliance operators, and Nu118

and N d are upstream and downstream incidence matrices that describe the connectivity of119

the network, and are given by120

{Nu}i,j =


1 if λj ∈ Λu,i

0 otherwise

, {Nd}i,j =


1 if λj ∈ Λd,i

0 otherwise

,

where the sets Λui = {(i, k) , k ∈ N : (i, k) ∈ Λ} and Λdi = {(k, i) , k ∈ N : (k, i) ∈ Λ}121

correspond to the set of links directed from and to node i respectively.122

Equations (3) and (4) describe the mass and momentum conservation for the flow within123

a fluid line, respectively, and (5) and (6) describe the interaction between the link end points124

and the nodal states through the nodal mass and nodal pressure conservation equations,125

respectively (note that x = 0 symbolises the upstream point in each of the lines, and x = l126

symbolises the downstream point).127

The parametric dependency of the dynamics for pipeline j are characterized through128

the pipeline coefficients and operators Pj = {(Rj,Rj), (Cj, Cj)}. These are dependent129
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on the parameter set ϑj which includes the physical parameters such as pipe diameter,130

length, wavespeed, and roughness (that is Rj = Rj (ϑj), Rj = Rj (ϑj), Cj = Cj (ϑj), and131

Cj = Cj (ϑj)). The operators Rj and Cj are typically integrodifferential (and possibly non-132

linear) and many different forms exist based on different assumptions about the underlying133

partial differential equation (PDE) system (Rieutord and Blanchard 1979; Stecki and Davis134

1986; Vardy and Brown 2007). Two different forms for R are used within the numerical135

experiments outlined later.136

Definition of Parameter Identification Problem137

The entire parameter set requiring estimation for the network (G(N ,Λ),P) is given by138

the set ϑ = ϑ1∪· · ·∪ϑnΛ
. The parameter identification problem can be formally outlined as139

follows. Given a network (G(N ,Λ),P) with unknown parameter values ϑ = ϑ∗, the network140

parameter identification problem is defined as identifying the most likely parameter estimate141

ϑ̂ within the parameter space Υ, from the measurement set142

{
ψ̃m(t), θ̃m(t) : t = 0,∆t, . . . , N∆t

}
(7)

where each measurement is given by143

 ψ̃m(t)

θ̃m(t)

 =

 ψm(t)

θm(t)

+

 eψ(t)

eθ(t)

 (8)

where eψ and eθ are measurement error terms, and ψm and θm are the true values of the144

measured states related to the state vectors ψ and θ by145

ψm = Aψψ, θm = Aθθ (9)

where Aψ and Aθ are binary matrices (that pick out the relevant measured nodes from the146

state vectors), and ψ and θ are governed by the system (3)-(6), where Ro, R, Co, and C147
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are dependent on the unknown parameter value ϑ = ϑ∗.148

The parameter space Υ represents the a priori knowledge of the parameter values and is149

taken as bounded intervals on the real line (as the pipeline parameters are typically known150

to lie between upper and lower bounds), and the error terms eψ(t) and eθ(t) for t = 0,∆t, . . .151

are stationary processes (i.e. the error statistics do not change with time) with power spectra152

Sψ(ω) and Sθ(ω), respectively.153

As outlined in the sections below, the uncertain boundary conditions serve to complicate154

this process as the system from which the measurements are taken possess unmeasured and155

unaccounted for dynamic inputs. This is further outlined in the following sections.156

NETWORK REPRESENTATION157

A physical model must be adopted in order to map the measurements ψ̃m and θ̃m to158

an estimate of the parameter set ϑ, through the minimisation of an error function that159

indicates the goodness of fit between the model and the measurements. Typical approaches160

have adopted a least squares fitting of numerical models of (3)-(6) directly [e.g. the method161

of characteristics model adopted in the inverse transient method (Liggett and Chen 1994)],162

or the use of transformed linearised approximations of (3)-(6) for either a least squares fit163

(Kim 2008) or a maximum likelihood estimation (Zecchin et al. 2013).164

Implicit in all of these approaches is that each node within the network possesses either165

a known boundary condition (either nodal pressure for a reservoir, or nodal flow as for a166

junction where θ = 0), or that either one of these nodal states is measured. That is, prior167

to the work presented within this paper, no methods have previously been formulated to168

deal with the situation where there are nodes within the network for which the transient169

behaviour of both the nodal pressure or flow is unknown.170

This section is structured as follows. First, a framework to systematically categorize the171

nodes, based on the information that is available from them, is outlined. Second, a Laplace-172

domain model is developed that decomposes the system dynamics into a term dependent173

on all measured nodal states, and a term dependent on all unmeasured node states. This174
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model serves as the basis for the expectation-maximization algorithm derived in the following175

section.176

Network nodal partitioning177

For a given network (G(N ,Λ),P) containing known boundary conditions and measured178

nodal states, the nodes N can be categorized into disjoint node sets depending on whether179

the nodal variables are known, measured or unknown. Three disjoint subsets exist, namely180

1. A, the set of nodes for which neither of the variables of pressure and flow are known,181

2. B, the set of nodes for which the nodal flow is known, and182

3. C, the set of nodes for which the nodal pressure is known.183

This partitioning can be further refined by considering combinations for which the nodal184

states are either measured or unmeasured. This results in the 8 unique sets that are tabulated185

in Table 1. Note that the following relations hold, A = A1∪A2∪A3∪A4, B = B1∪B2, and186

C = C1∪C2. These 8 sets represent a complete partitioning covering all realistic combinations187

for which the nodal variables are simultaneously known or unknown. The only omission is188

the case of known pressure and known flow, which is an unrealistic case as only one of these189

variables can be controlled and hence known (i.e. at a junction the outflow can be controlled,190

and hence it is known to be zero, but the pressure must be measured, and at a reservoir, the191

pressure can be controlled and is known, but the outflow must be measured).192
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Given the sets in Table 1, the network nodal state space can be partitioned as193

ψ =



ψA1

...

ψA4

ψB1

ψB2

ψC1

ψC2



, θ =



θA1

...

θA4

θB1

θB2

θC1

θC2



(10)

where each of the ψX and θX are nX × 1 vectors (X = A1,A2,A3,A4,B1,B2, C1 and C2).194

Given this partitioning, the known, measured and unmeasured variables are195

ψk =

 ψC1

ψC2

 , ψm =


ψA1

ψA2

ψB1

 , ψu =


ψA3

ψA4

ψB2

 (11)

for pressure, respectively, and196

θk =

 θB1

θB2

 , θm =


θA1

θA3

θC1

 , θu =


θA2

θA4

θC2

 (12)

for the nodal flows, respectively.197

Given this partitioning of the nodal set based on the information available at each node,198

the differentiation of this work from that of previous studies can be outlined more precisely.199

Namely, all previous works have dealt with networks for which neither the nodal pressure ψ200

nor nodal flow θ were unknown or unmeasured, that is, for all previous work A4 = ∅. The201

consideration of cases where A4 6= ∅ is the primary novel contribution of this work.202
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Example. Reconsider the example network in Figure 1(b) with pressure measurements203

at nodes 2, 3, 4 and 6, and a flow measurement at node 4. Node 1 is a reservoir, and so it204

has a known head but with unknown (and unmeasured) nodal flow, so 1 ∈ C2. Nodes 2, 3, 5205

and 6 are junctions, with known zero nodal flow, hence they are all in the set B. Of these206

nodes, 2, 3, 6 ∈ B1 as they contain pressure measurements, and 5 ∈ B2 as the pressure is not207

measured at this node. Node 4 is in set A1 as both the nodal flow and pressure are measured208

at this node. Node 7 is in the set A4 as both the pressure and nodal flow are unknown and209

unmeasured at this node. The entire nodal categorisation is summarised as Scenario 1 in210

Table 2. As a result of this categorisation, the measured and unmeasured variables from211

(11) and (12) are summarised as follows: ψk = ψ1; ψm = [ψ4 ψ2 ψ3 ψ6]T ; ψu = [ψ7 ψ5]T ;212

θk = [θ2 θ3 θ6 θ5]T ; θm = θ4; θu = [θ7 θ1]T .213

Laplace-Domain Network Admittance Matrix214

For a linear network with homogeneous initial conditions (or a nonlinear network, lin-215

earized about an initial steady-state operating point), Zecchin et al. (2009) demonstrated216

that the nodal pressures could be mapped to the nodal flows through the following admit-217

tance map218

θ(t) =

∫ t

0

Y(t− τ)ψ(τ)dτ (13)

where Y is the network admittance matrix whose (i, k) element Yi,k is the impulse response219

function for the contribution of the pressure at node k to the flow at node i. No closed form220

expression for Y exists, but the Laplace transform of (13) is221

Θ(s) = Y (s)Ψ(s) (14)

where s is the Laplace variable, the uppercase symbols represent the Laplace transforms of222

their lower case counter parts, and for which the elemental transfer functions Yi,k are given223
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by224

Yi,k(s) =



∑
λj∈Λi

Z−1
cj (s) coth Γj(s) if k = i

−Z−1
cj (s) csch Γj(s) if λj ∈ Λi ∩ Λk

0 otherwise

. (15)

where Γj is the propagation operator for pipe j and Zcj is the series impedance for pipe j,225

and are given by226

Γ(s) =
√
RojCoj [s+Rj(s)] [s+ Cj(s)], Zcj(s) =

√(
Roj

Coj

)
s+Rj(s)

s+ Cj(s)

where Rj and Cj are the Laplace transforms of the linearised approximations of R and227

C respectively (typically the only term requiring linearisation is the steady-state quadratic228

term in R, as for turbulent flow, R[q] = R[q]+O
{

(q − qo)2} where qo 6= 0 is a reference flow229

rate (Wylie and Streeter 1993)). The propagation operator Γj characterises the amplitude230

and phase change of a propagating travelling wave, and Zcj characterises the amplitude and231

phase coupling between the pressure and flow within a pipeline.232

Given the node partitioning outlined in the previous section, Y can be expressed in the233

block matrix form234

Y (s) =


Y A1A1(s) · · · Y A1C2(s)

...
. . .

...

Y C2A1(s) · · · Y C2C2(s)

 (16)

where the block matrices Y AB in Y are lexicographically ordered based on the pair (A,B)235

where A,B ∈ {A1,A2,A3,A4,B1,B2, C1, C2}. The matrices Y AB are nA × nB matrices that236

can be interpreted to be the admittance mapping from ΨB, the nodal pressures from set B,237

to ΘA, the nodal flows for the nodes in set A.238

Without loss of generality it can be assumed that the transforms of the known variables239

Ψk and Θk are zero. This is a reasonable assumption as either the pressure is held constant240

(in the case of a reservoir) or the flow injection is zero (in the case of a junction) which241
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means that there are no dynamic fluctuations in these variables about the steady-state242

point. Despite the fact that the method is formulated only for simple nodes (junctions243

and reservoirs), more complex boundary conditions can be incorporated into the framework244

by either treating the boundary conditions as unknown, or incorporating nodal variable245

measurements at these nodes. Retaining the important terms and collecting the measured246

and unmeasured variables yields the following expression of the network dynamics where the247

influences of the measured and unmeasured variables are made explicit248

Gm(s)

 Ψm(s)

Θm(s)

+Gu(s)

 Ψu(s)

Θu(s)

 = 0 (17)

and where the operators acting on the measured and unmeasured states are given by249

Gm(s) =


Y m1(s) −I

Y m2(s) 0

Y m3(s) 0

 , Gu(s) =


Y u1(s) 0

Y u2(s) 0

Y u3(s) −I

 . (18)

where the matrix transfer functions Y mi Y ui, i = 1, 2, 3, comprise the blocks in (16) as

Y m1 =


Y A1A1 Y A1A2 Y A1B1

Y A3A1 Y A3A2 Y A3B1

Y C1A1 Y C1A2 Y C1B1

 , Y u1 =


Y A1A3 Y A1A4 Y A1B2

Y A3A3 Y A3A4 Y A3B2

Y C1A3 Y C1A4 Y C1B2

 ,

Y m2 =

 Y B1A1 Y B1A2 Y B1B1

Y B2A1 Y B2A2 Y B2B1

 , Y u2 =

 Y B1A3 Y B1A4 Y B1B2

Y B2A3 Y B2A4 Y B2B2

 , (19)

Y m3 =


Y A2A1 Y A2A2 Y A2B1

Y A4A1 Y A4A2 Y A4B1

Y C2A1 Y C2A2 Y C2B1

 , Y u3 =


Y A2A3 Y A2A4 Y A2B2

Y A4A3 Y A4A4 Y A4B2

Y C2A3 Y C2A4 Y C2B2

 .

In summary, (17) provides us with the basic model for considering the network dynamics as250
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being dependent on both measured and unmeasured nodal states.251

For systems where the links are passive (i.e., they dissipate energy (Wohlers 1969)),252

these matrices have some properties that are important for the ensuing analysis. These are253

summarized in the following.254

Theorem 1. For a network (G(N ,Λ),P) with a given nodal partitioning, if all links λ ∈ Λ

are passive, then the following relationships hold

Gu(s) is full column rank, (20)(
Gm(s) Gu(s)

)
is full row rank, (21)

for all s ∈ C+.255

For brevity, the proof of this theorem is given in Appendix I, however, it is worth inter-256

preting the meaning of these properties: (20) means that each unmeasured state influences257

the system dynamics in a way that is different from every other unmeasured state; and (21)258

can be interpreted to mean that each row in (17) describes a unique and linearly independent259

dynamic relationship between the network state variables.260

Example. For the example network from Figure 1(b) with the nodal partitioning as261

outlined as Scenario 1 in Table 2, the matrices from (18) are given as262

Gm =



Y44 Y42 Y43 Y46 −1

Y24 Y22 Y23 Y26 0

Y34 Y32 Y33 Y36 0

Y64 Y62 Y63 Y66 0

Y54 Y52 Y53 Y56 0

Y74 Y72 Y73 Y76 0

Y14 Y12 Y13 Y16 0



,Gu =



Y47 Y45 0 0

Y27 Y25 0 0

Y37 Y35 0 0

Y67 Y65 0 0

Y57 Y55 0 0

Y77 Y75 −1 0

Y17 Y15 0 −1



(22)

where Yik = Yik(s) symbolises the (i, k)-th term in the network admittance matrix Y (s) from263
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(16), and the partition lines indicate the submatrices in the matrix expressions from (18).264

From Theorem 1, the columns of Gu are linearly independent (on s ∈ C+) and represent the265

unique influence that each unmeasured nodal state ψu = [ψ7 ψ5]T and θu = [θ7 θ1]T has on the266

system dynamics, and the rows of the matrix (GmGu) are linearly independent (on s ∈ C+)267

indicating that eash row describes a unique dynamic relationship between the measured nodal268

states, ψm = [ψ4 ψ2 ψ3 ψ6]T and θm = θ4, and unmeasured nodal states.269

THE PROPOSED EXPECTATION-MAXIMISATION ALGORITHM270

To construct an error function on which to base a parameter estimate requires a model to271

describe the relationship between the measurements. The expression (17) provides us with272

such a description, however, it cannot be used in its present form due to the presence of273

the unmeasured terms Ψu and θu. In order to undertake an estimation procedure, this274

dependency must be accounted for. In the work by Zecchin et al. (2013), a decoupling filter275

L was constructed to nullify the influence of the unmeasured states on the system dynamics276

(i.e. LGu = 0 for all s ∈ C+). However, this was only possible for the case where A4 = ∅,277

and so cannot be used for the more general case here. Instead, a different avenue is pursued278

through the application of the EM algorithm (Dempster et al. 1977), which provides a way279

of undertaing parameter estimation in systems involving hidden or unknown/unmeasured280

states.281

Stated in its general form, given a system with measured states Um and unmeasured282

states Uu drawn from the joint distribution f (Um,Uu|ϑ) parameterized by ϑ, for a given283

initial estimate ϑ0 the following sequence of iterates284

ϑk = arg max
ϑ

E [ln (f (Um,Uu|ϑ))| Um,ϑk−1] , k = 1, . . . (23)

converges to a local maximizer of the marginal likelihood function f (Um|ϑ) of the measured285

states Um (provided the marginal distribution is bounded). The process (23) has many286

different interpretations (Michiko and Kazunori 2004), but the most simple explanation287
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is as follows: the k-th iterate ϑk is given as the value that maximizes the expected log-288

likelihood of the joint distribution of the measured and unmeasured states f (Um,Uu|ϑ) over289

the conditional probability space Uu|Um,ϑk−1 of the unmeasured states given the measured290

states and the (k − 1)-th parameter estimate. The useful aspect of this approach is that291

the expectation integrates over the unmeasured variables explicitly removing them from the292

maximization function.293

Expectation-maximisation for the (G(N ,Λ),P) network294

Before the EM approach can be developed, the joint distribution f between the measured295

and unmeasured states must first be defined. For a network with a given nodal partitioning,296

in the case of a system in steady-oscillatory flow, the measurement data set comprises the297

time domain sequence (7) and (8) where eψ and eθ represent the measurement noise, and298

are stationary processes with power spectra Sψ(iω) and Sθ(iω). Given this form of the299

time-domain measurements for N = 2M , the frequency-domain data, as obtained through a300

discrete Fourier transform (DFT) (Brillinger 1974), follows the distribution301

 Ψ̃m(iωi)

Θ̃m(iωi)

 ∼ Nc

 Ψm(iωi)

Θm(iωi)

 ,
1

2M

 Sψ(iωi) 0

0 Sθ(iωi)


 , i = 1, . . . ,M (24)

where the ωi are the Fourier frequencies, andNc is the complex normal distribution (Schoukens302

and Pintelon 1991). It is important to note that complex normal relationship (24) assumes303

only that the time-domain noise is a stationary process, where the system dynamics are em-304

bedded in the frequency dependent mean values of the data (the actual state values Ψm and305

Θm) as these correspond to the system’s noise-free frequency response (i.e. no restriction306

is imposed on Ψm and Θm). The necessity of the EM algorithm comes into play because307

the mean values of the measured data Ψm and Θm are unknown, but are dependent on the308

unmeasured nodal states Ψu and Θu through (17). Therefore, the total data that comprises309

the measured and unmeasured nodal states must be considered. To determine the joint310

distribution of the total data, it is required to assign a distribution to the unmeasured data.311
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Therefore, assuming that the data for the unmeasured states follows312

 Ψ̃u(iωi)

Θ̃u(iωi)

 ∼ Nc

 Ψu(iωi)

Θu(iωi)

 ,Ai

 , i = 1, . . . ,M, (25)

where Ai is a symmetric positive definite matrix, the joint distribution of the total data is313

given by (24) and (25) where the means are unknown, but related by (17).314

Now that we have a joint distribution between our measured and unmeasured states,315

the EM algorithm can be applied. For simplicity, the majority of the analysis is deferred to316

Appendix II, but the main results concerning the final EM algorithm are summarized in the317

following theorem.318

Theorem 2. Consider a (G(N ,Λ),P) network with passive links, a given nodal partitioning,319

and the measured and unmeasured data sets Ũ = {ũ1, . . . , ũM} and Ṽ = {ṽ1, . . . , ṽM},320

respectively, where321

ũi =

 Ψ̃m(iωi)

Θ̃m(iωi)

 , ṽi =

 Ψ̃u(iωi)

Θ̃u(iωi)


are distributed as in (24) and (25) with mean values, ui and vi, related by the system equation322

(
Gmi(ϑ) Gui(ϑ)

) ui

vi

 = 0, i = 1, . . . ,M (26)

where Gmi = Gm(iωi) and Gui = Gu(iωi) are parameterized by the network parameter set323

ϑ ∈ Υ [Gm and Gu are the system matrices from (18)] . The EM algorithm for estimating324

ϑ based on the measured data Ũ is given by the sequence325

ϑk+1 = arg max
ϑ∈Υ
−

M∑
i=1

Qi (ũi,ϑk,ϑ) (27)

where Qi (ũi,ϑk,ϑ) is the negative of the expectation of the log likelihood of the joint dis-326
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tribution of ũi and ṽi conditional on ũi and ϑk (constant terms neglected), and is given327

by328

Qi (ũ,ϑk,ϑ) = ũHCmmi (ϑ) ũ

−2Re
{
ũHCmui (ϑ)C−1

uui (ϑk)Cumi (ϑk) ũ
}

+tr {Cuui (ϑ) Σui}

+ũHCmui (ϑk)C
−1
uui (ϑk)Cuui (ϑ)C−1

uui (ϑk)Cumi (ϑk) ũ

. (28)

where

Cmmi(ϑ) = GH
mi(ϑ)Λ−1

i (ϑ)Gmi(ϑ)

Cmui(ϑ) = GH
mi(ϑ)Λ−1

i (ϑ)Gui(ϑ)

Cumi(ϑ) = GH
ui(ϑ)Λ−1

i (ϑ)Gmi(ϑ)

Cuui(ϑ) = GH
ui(ϑ)Λ−1

i (ϑ)Gui(ϑ)


(29)

and329

Λi(ϑ) = Gmi(ϑ)ΣmiG
H
mi(ϑ) +Gui(ϑ)ΣuiG

H
ui(ϑ), (30)

where Σmi and Σui are the covariance matrices for the measured and unmeasured data as in330

(24) and (25).331

A constructive proof of Theorem 2 is given in Appendix II. Within this theorem, it is332

seen that the EM algorithm resolves down to solving the sequence of maximization problems333

(27) to achieve increasingly accurate parameter estimates as k increases.334

Computational Algorithm335

An algorithm for computing the EM parameter estimate from Theorem 2 is outlined in336

Algorithm 1. The required input data to compute the EM parameter estimate is the network337

topology G (N ,Λ), frequency-domain data Ũ (corresponding frequencies ω = {ω1, . . . , ωM}),338

covariances for measured (and unmeasured) data Σm and Σu, a specified parameter range Υ,339

and an initial parameter estimate ϑ0. As seen in Steps 1 and 2 of Algorithm 1, the first step340
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involves determining the nodal sets A, B, and C from Table 1, and reordering the nodal states341

as in (10). As outlined in Steps 3 to 10, with the initial parameter estimate ϑ0, successive pa-342

rameter estimates are determined as the maximiser of the expected conditional loglikelihood343

function from (27) (represented in Algorithm 1 as the function ExpCondLogLikelihood).344

The computational algorithm for ExpCondLogLikelihood is outlined in Algorithm 2 and345

discussed below. Once the termination criteria is met (typically a limit on the maximum346

k, or a lower threshold for the update norm ||ϑk+1 − ϑk||), the latest parameter estimate is347

returned as the EM estimate.348

The crux of Algorithm 1 is the maximisation of the expected conditional loglikelihood349

function in Step 5 (equation (27)). Given the complexity of the optimisation problem,350

iterative techniques are necessary which require repeated calls to ExpCondLogLikelihood351

to determine the maximiser. The computation of ExpCondLogLikelihood is outlined in352

Algorithm 2 where the required inputs for Algorithm 2 follow those required for Algorithm353

1. The algorithm loops through all frequencies ωi = 1, . . . ,M (Steps 2 to 12), summating354

the expected conditional loglikelihood Qi terms. At each frequency, the system matrices355

required to determine Qi are computed for both the old parameter estimate ϑk and the new356

parameter estimate ϑ (Steps 3 to 9). For each parameter value, first the network admittance357

matrix is determined (Step 4), followed by the sequential construction and calculation of358

the system matrices (Steps 5 to 8). Once all the system matrices for both the old and new359

parameter estimates are determined, the Qi term for the i-th frequency can be computed360

from (28) (Step 10). The Qi terms are summated for each frequency, and finally the expected361

conditional loglikelihood function −Q is returned (Step 13).362

NUMERICAL EXAMPLES363

The following numerical examples demonstrate the ability of the proposed EM algorithm364

from Theorem 2 to accurately estimate a hydraulic network’s parameters in the presence of365

unknown boundary conditions. The 11-pipe network depicted in Figure 1 (b) is the focus of366

the study. The additional subnetwork comprising pipes [12] and [13] and nodes 8 and 9, in367
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Figure 1 (a), is treated as an unknown subnetwork, resulting in an unknown and unmeasured368

boundary condition at node 7.369

Two different case studies, each with a different resistance function R are considered.370

For these case studies, the measured information consists of pressure measurements at nodes371

{2, 3, 4, 6}, and a flow measurement at node 4. In order to test the utility of the proposed372

EM algorithm for dealing with systems with unknown boundary conditions, two different373

scenarios of prior information were considered: Scenario 1, the existence of the additional374

connection at node 7 is known, hence an unknown flow boundary condition at node 7 is375

assumed (the correct assumption); Scenario 2, the existence of the additional connection at376

node 7 is not known, hence the flow boundary condition at node 7 is assumed to be zero377

(the incorrect assumption). These two scenarios allow for a direct testing of the effectiveness378

that the EM algorithm is able to deal with the unknown boundary condition. The nodal set379

partitions (from Table 1) corresponding to these scenarios is given in Table 2.380

Preliminaries381

The raw time-domain data for the numerical experiments was generated from a method382

of characteristics (MOC) simulation with added Gaussian noise. The frequency-domain data383

was obtained from the DFT of the time-domain data. For the MOC simulation, the system384

was excited into a steady-oscillatory transient state by a multi-sine flow perturbation at node385

4 consisting of 983 equi-spaced frequencies from 0 to 15 Hz with amplitudes ranging from386

0.01 to 0.1 L/s. The time-domain measurement errors were taken as independent zero mean387

Gaussian variates with standard deviations of 1 kPa for the pressure measurements and 0.32388

L/s for the flow measurement. All results presented are based on 10 independent trial data389

sets.390

For the purposes of the EM algorithm, the pipeline parameter values were assumed to be391

known down to an interval, where: the wavespeed c was known to be within [900,1200] m/s;392

the friction factor f within [0.015,0.04]; the diameters D were known to within ±10 mm of393

their actual value; the pipe lengths l were known to within ±20 m of their actual value; the394
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relative roughnesses ε/D were known to be on the interval [0.0001, 0.01]; and the steady-state395

velocities vo were known to be on the interval [0.1, 10] m/s. Narrowing the parameter values396

down to such intervals is reflective of the a priori knowledge available within real systems.397

Within the experiments, two different pipeline resistance functions were considered, namely398

the turbulent-steady-friction (TSF) model (Wylie and Streeter 1993), and the turbulent-399

unsteady-friction (TUF) model (Vardy and Brown 2007). For all experiments, the pipeline’s400

were modelled elastically (i.e. C = 0).401

Algorithms 1 and 2 were used as the framework to determine the EM estimate, where402

the maximiser ϑ̂ was computed using the evolutionary algorithm process of particle swarm403

optimisation (PSO) (i.e. PSO was used to solve the optimisation problem in Step 5 of404

Algorithm 1). More details on the adopted optimization process are given in Zecchin (2010).405

Case Study 1: Turbulent steady friction pipeline model406

Pipeline model407

Within the first case study, the network pipelines were modelled within the MOC using408

the TSF resistance function given by409

RTSF[q](x, t) =
f

2DA
|q(x, t)|q(x, t)

where f is the Darcy-Weisbach friction factor (Wylie and Streeter 1993), and A and D410

are the cross-sectional area and pipe diameter. As the proposed frequency-domain method411

is a linear approximation, the EM algorithm assumed a resistance function of the form412

RTSF[q](x, t) = (fvo/D)q(x, t) (where vo is the steady-state velocity), leading to the following413

expressions for the frequency-domain pipeline functions Γ and Zc414

Γ(s) = Γo
√
s (s+ ro), Zc(s) = Zco

√
s+ ro
s
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where415

Γo =
√
RoCo =

l

c
, Zco =

√
Ro

Co
= ρ

c

A
, ro =

fvo
D

(31)

where c is the wavespeed, l is the length, and ρ is the fluid density. The functions Γ and416

Zc are dependent on five parameters c, D, l, f and vo 6= 0 (assuming that the density is417

known), however they only appear as the three terms (31). Therefore, the functions Γ and418

Zc are described by the values of these three terms meaning a unique parameter set for419

the TSF pipeline model is ϑ = {Γo, Zco, ro}. Consequently, for the 11-pipe network, the420

parameter space to be identified is ϑ = {ro1,Γo1, Zco1} ∪ · · · ∪ {ro11,Γo11, Zco11} which is a421

total of 33-dimensions.422

Results423

The parameter estimation results for each of the prior information scenarios from Table424

2 are summarised in the box plots in Figure 2 and the statistics in Table 3, where the425

relative error is defined as the difference between the estimated and actual parameter values,426

as a percentage of the actual parameter value. Comparing the performance of Scenario 1427

to Scenario 2 from Figure 2 and Table 3, it is clear that the correct hypothesis concerning428

the node 7 flow (i.e. Scenario 1 that assumed an unknown nodal flow θ7 6= 0) on average429

yielded more accurate parameter estimates than the incorrect hypothesis (i.e. Scenario 2430

that assumed a known nodal flow of θ7 = 0). In Table 3 it is seen that the median error431

estimates for Scenario 1 are all lower than Scenario 2, this is particularly so for the estimates432

for ro and Zco. Most notably is that the error for the parameter estimate of ro for pipe [10]433

was less than 5% for Scenario 1 but in the order of O {103}% for Scenario 2.434

A more thorough consideration of Figure 2 shows that some stronger patterns exist within435

the data. The parameter estimates for Scenario 1 are significantly better than those for436

Scenario 2 for all pipes that are incident to node 7 (i.e. pipes [8], [9], and [10]). This pattern437

indicates two observations. Firstly, incorrect nodal categorisations have a more significant438

impact on the parameter estimates for links that are incident to nodes that have been439
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incorrectly characterised. Secondly, the proposed EM algorithm has successfully provided440

accurate parameter estimates for a system containing a node for which no information exists441

(i.e. both the nodal pressure and flow are unknown and unmeasured). This has not been442

achieved before within the literature, to the authors knowledge.443

Considering the Scenario 1 estimates for the different parameter types, it is observed that444

the propagation coefficient Γo is estimated with a high accuracy, far higher than the resistance445

coefficient ro and the impedance coefficient Zco. The hypothesised reason for this lies in the446

influence that the parameters have in the pattern of the system’s frequency response. The447

parameter Γo is related to the period of a pipeline and hence the location of the harmonics448

in the frequency-domain, whereas ro and Zco are related to the energy dissipation within a449

pipeline and are hence related to the harmonic amplitudes in the frequency-domain. The450

error between the model predictions and the data is much more sensitive to mis-aligned451

harmonics than it is to well aligned harmonics with slightly different amplitudes. Therefore,452

by implication, it is expected that the error between the model predictions and the data453

would be much more sensitive to errors in the estimation of Γo compared to that of ro and454

Zco, resulting in more accurate estimates for Γo in comparison to ro and Zco.455

This reasoning also explains why the parameter estimates of Γo for Scenario 2 were456

reasonably accurate despite the incorrect assumption about the flow at node 7. The presence457

of the branch from node 7 did not alter the locations of the network’s harmonics that were458

associated with the periods of the known 11 pipes. Hence the Γo parameters were still459

able to be estimated accurately. However, the presence of the branch did serve to dissipate460

energy within the system through the combined action of pipe friction and losses through the461

emitter. Therefore, as the branch changed the network’s harmonic amplitudes, the estimates462

for ro and Zco were affected as they are related to these amplitudes.463
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Case Study 2: Turbulent unsteady friction pipeline model464

Pipeline model465

Within the second case study, the experiments of the first case study were repeated using466

a different pipeline resistance function model, namely the TUF model given by Vardy and467

Brown (2007)468

RTUF[q](x, t) = RTSF[q](x, t) +

∫ t

0

r(t− τ)
∂q

∂t
(x, τ)dτ

where r is a weighting function that is parametrically dependent on the pipe diameter D,469

the kinematic viscosity ν, the Reynolds number Re = voD/ν, and the relative roughness470

ε/D (see Vardy and Brown (2007) for details). The difference between the TSF and TUF471

models are that the TUF model accounts for the additional dissipation within the fluid body472

resulting from accelerating and decelerating flows. For the TUF model, the propagation473

operator and characteristic impedance are given by474

Γ(s) = Γo
√
s (s+ ro + r(s)), Zc(s) = Zco

√
s+ ro + r(s)

s

where Γo, Zco, and ro are as defined above, but with fo as a function of ε/D and Re,475

and r(s) is the Laplace transform of r(t). Given that the fluid density and viscosity are476

known, Γ and Zc can be uniquely parameterised by the parameter set ϑ = {c,D, l, Cε, CRe}477

where Cε = log10 (ε/D) and CRe = log10Re. Consequently, the 11-pipe network parameter478

estimation problem for case study 2 involves the estimation of the 55 dimensional parameter479

set ϑ = ϑ1 ∪ · · · ∪ ϑ11 where ϑi = {ci, Di, li, Cεi, CRei}.480

Results481

The results of 10 independent trials for each scenario are summarised in the box plots482

in Figure 3 and the statistics in Table 4. As demonstrated in Table 4, for Scenario 1 (the483

correct assumption about the node 7 flow), the EM algorithm on average yielded more484

accurate parameter estimates for all parameters except the pipe diameters. Consistent with485

case study 1, is the pattern that the parameter estimates for Scenario 1 are significantly486
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better than those for Scenario 2 for all pipes that are incident to node 7 (i.e. pipes [8], [9],487

and [10]). This reinforces the observation that (i) the correct categorisation of a node is488

particularly crucial for the accurate estimation of the parameters of all links incident to that489

node, and (ii) the proposed EM algorithm is effectively able to deal with nodes for which490

there is no information (i.e. the transient fluctuations in nodal pressure and nodal flow are491

unknown and unmeasured).492

Drawing from both case studies 1 and 2, more detail can be given to these conclusions,493

in that it is mainly the parameters associated with energy dissipation that are affected by494

the incorrect categorization of node 7. As Scenario 2 does not allow for any flow to leave495

node 7, the energy that enters links [8] to [10] is considered as only being dissipated within496

the links on the known 11-pipe network. The implication of this is that the energy loss497

parameters (e.g. ro for TSF pipes and CRe for TUF pipes), will be higher than the actual498

values. However, as Scenario 1 correctly categorises node 7 and allows for energy loss through499

this node (through the correct categorisation of this node, allowing for unmeasured flow into500

and out of this node), the energy loss parameter estimates for the links connected to this501

node are more accurate.502

As with all the parameter estimation examples within this paper, the variables related to503

the system harmonic locations (i.e. wavespeed and pipe length) were estimated with greater504

accuracy than the other parameters. This is particularly true for Cε, where the apparent505

lack of sensitivity of the methodology to this parameter is attributed to the fact that ε/D506

only appears in the expression for the pipeline functions Γ and Zc through the functions A∗507

and B∗ (Vardy and Brown 2007), thus potentially diminishing its influence.508

CONCLUSIONS509

This paper presents a novel method for the estimation of hydraulic network parame-510

ters based on transient fluid state measurements using the expectation-maximisation (EM)511

method. The proposed method was formulated to deal with a broader class of measurement512

scenarios than has previously been considered within the literature, specifically, it is designed513
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to deal with scenarios for which there exist unknown boundary conditions.514

Within the proposed approach, the measured nodal states were treated as being only part515

of the complete data (the complete data consisting of both the measured and unmeasured516

nodal states). Based on posing the problem in a constrained complex Gaussian framework,517

the statistical EM algorithm was used to derive a scheme to estimate the network parameters518

based on only using the information from the measured nodal states. This proposed method519

is significant in that it is the only method within the literature that is able to deal with the520

case where there are nodes within the system for which no information exists.521

A series of numerical experiments were performed by coupling the EM method with522

a particle swarm optimisation (PSO) algorithm. The experiments were designed to test523

the ability of the methodology to deal with unknown nodal states. This was undertaken524

by dealing with a 13-pipe network for which full topology of the network was considered525

unknown. That is, for the purposes of parameter identification, the network was considered526

as an 11-pipe network with an unknown nodal pressure and flow at one of the network nodes.527

The results indicated that the use of the EM approach to correctly deal with the unknown528

nodal variables resulted in parameter estimates of a greater accuracy, particularly for the529

parameters of pipes incident to nodes for which no information exists.530

The proposed method provides a small step closer to dealing with parameter identifica-531

tion in realistic networks by providing a statistically posed way of dealing with uncertain532

boundary conditions. However, within realworld networks, there still remains many prob-533

lems to be solved such as uncertainties in the system dynamics, noise present within the534

system from external sources, and the incorporation of complex boundary conditions (such535

as actively controlled pumps and control valves).536
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APPENDIX I. PROOF OF THEOREM 1603

First considering (20). Given (18), Gu is full column rank when the first block column604

is full column rank. The rows and columns of Gu can be reordered to show that a principal605

minor of Y is embedded within this first block row, which is known to be positive definite on606

s ∈ C+ for a network comprised of passive links (see Zecchin (2010) for details). Therefore,607

as this first block row contains a positive definite submatrix, it is full column rank.608

Now considering (21). Given the structure of the identities in both Gm and Gu in (18),609

it is clear that both the top and bottom block rows of (Gm Gu) are linearly independent for610

all s ∈ C+. Therefore, to demonstrate the full row rank nature of this matrix, it is required611

to show that the center block row is a full row rank matrix. Reordering the columns and612

rows of (Gm Gu), it can be shown that a principal minor of Y is embedded in the center613

block row. As stated above, this submatrix is positive definite on s ∈ C+ meaning that the614

center block row is full row rank (see Zecchin (2010) for details).615
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APPENDIX II. PROOF OF THEOREM 2616

The determination of an EM process for the parameter ϑ requires three distinct steps. Firstly,617

the determination of the joint probability density function (PDF) for the ũi and ṽi given618

analytic forms of the maximum likelihood estimation (MLE) for the unknown means ûi and619

v̂i. Secondly, the expectation of the log-likelihood of the joint density over the conditional620

density of the unmeasured data ṽi given our measured data ũi and ϑ. Thirdly, the expression621

of this log-likelihood purely as a function of ũi by determining an estimate for vi given only622

ũi.623

Concerning the first step, as all the variates are independent for each i = 1, . . . ,M , the624

analytic expression of the MLEs for the unknown means ui and vi as a function of ṽi, ũi,625

and ϑ are given as (Zecchin 2010)626

 ûi(ϑ)

v̂i(ϑ)

 =

I −
 Σmi 0

0 Σui


 GH

mi

GH
ui

Λ−1
i

(
Gmi Gui

)
 ũi

ṽi

 (32)

where Λi is as given in (30). The existence of Λ−1
i is ensured by the positive definiteness of Λi627

arising from the fact that diag {Σmi,Σmi} is positive definite, and (Gmi Gui) is full row rank628

(Theorem 1). Given these MLEs, the joint distribution for the measured and unmeasured629

i-th vector variates is630

fi (ũi, ṽi|ûi, v̂i,ϑ) =

1

πn|Σmi||Σui|
exp

−
 ũi

ṽi


H Cmmi(ϑ) Cmui(ϑ)

Cumi(ϑ) Cuui(ϑ)


 ũi

ṽi




(33)

for i = 1, . . . ,M , where the complex matrix functions Cmmi, Cmui, Cmmi, and Cuui are631

given by (29). Finally, the negative of the log-likelihood of the joint distribution (33) can be632
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expressed as633

− ln (fi (ũi, ṽi|ûi, v̂i,ϑ)) =

πn + |Σmi|+ |Σui|+ ũHi Cmmiũi︸ ︷︷ ︸
term I

+ ũHi Cmuiṽi + ṽHi Cumiũi︸ ︷︷ ︸
term II

+ ṽHi Cuuiṽi︸ ︷︷ ︸
term III

. (34)

Concerning the second step, as ũi and ṽi are independent, the conditional density of ṽi

is in fact the marginal (Rice 1995) which is given by ṽi ∼ Nc (vi,Σui), however, as vi is

unknown and, in the conditional context, requires estimation conditional on knowing ũi and

ϑk, the conditional density of ṽi is expressed as ṽi ∼ Nc (vi,Σui), where vi = E [vi|ũi,ϑk].

The EM algorithm requires the expectation of (34) over the probability space defined by

this conditional PDF. Performing the expectation term by term, neglecting the terms that

are constant with respect to ϑ, yields

E [term I| ũi,ϑk] = ũHi Cmmi (ϑ) ũi

E [term II| ũi,ϑk] = ũHi Cmui (ϑ)vi + vHi Cmui (ϑ) ũi

= 2Re
{
ũHi Cmui (ϑ)vi

}
E [term III| ũi,ϑk] = tr {Cuui (ϑ) Σui}+ vHi Cuui (ϑ)vi

The integrations for the expectations of terms I and II are straightforward, but the expecta-634

tion for term III is somewhat more complex, but it arises from a standard result in quadratic635

form theory for random variables (Mathai and Provost 1992).636

Concerning the third step, it is required to determine an expression for vi dependent only637

on ũi and ϑk. To do this, note that (26) and (21) imply that638

vi = −G+
uiGmiui (35)

where G+
ui is a Moore-Penrose pseudoinverse to Gui, which exists as Gui is full column rank639

(Theorem 1). The equation (35) suggests the estimator vi = −G+
ui(ϑk)Gmi(ϑk)ũi for which640
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the expectation satisfies (35), meaning that it is an unbiased estimator. An appropriate641

expression for the Moore-Penrose inverse is G+
ui = C−1

uuiG
H
uiΛ

−1
i where Λi could be replaced642

by any nonsingular matrix of the correct size, but Λi was selected as it relates to the form643

of the MLEs (32). Defining Qi (ũi,ϑk,ϑ) = −E [ln (fi (ũi, ṽi|ûi, v̂i,ϑ)) |ũi,ϑk], with the644

substitution for vi as outlined above and combining all the terms i = 1, . . . ,M , and using645

(23) leads to the expression (27).646
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APPENDIX III. MANUSCRIPT TABLES647
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TABLE 1. Categorization of nodes N for the network (G(N ,Λ),P) into disjoint subsets
based on whether the state variables of pressure ψ and flow θ are known, measured or un-
known/unmeasured. Note that A1 ∪ A2 ∪ A3 ∪ A4 ∪ B1 ∪ B2 ∪ C1 ∪ C2 = N .

Nodal set
Nodal state classification

Known Measured Unknown/unmeasured

A1 - ψ, θ -
A2 - ψ θ
A3 - θ ψ
A4 - - ψ, θ

B1 θ ψ −
B2 θ - ψ

C1 ψ θ -
C2 ψ - θ

TABLE 2. The nodal partitioning for scenarios 1 and 2 for the 11-pipe network in Figure 1(b).
The inclusion of 7 ∈ A4 means that Scenario 1 correctly assumes that θ7(t) 6= 0, where as 7 ∈ B2

for Scenario 2 incorrectly assumes that θ7(t) = 0.

Nodal set
Node sets for each case

Scenario 1 Scenario 2

A1 {4} {4}
A2 ∅ ∅
A3 ∅ ∅
A4 {7} ∅

B1 {2, 6, 3} {2, 6, 3}
B2 {5} {5, 7}

C1 ∅ ∅
C2 {1} {1}
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TABLE 3. Sample statistics of parameter estimate relative errors for case study 1. The estimate
sample statistics (median and the interquartile range, IQR) are based on 10 trials, where the
presented relative errors of the estimates are averaged over all 11 pipes.

Parameter Estimate sample statistic
Relative error statistics (%)
(averaged over all 11 pipes)

Scenario 1 Scenario 2

ro
median 30.68 307.26

IQR 9.30 0.96

Γo
median 0.01 0.03

IQR 0.01 0.00

Zco
median 7.94 11.87

IQR 3.46 1.50

TABLE 4. Sample statistics of parameter estimate relative errors for case study 2. The estimate
sample statistics (median and the interquartile range, IQR) are based on 10 trials, where the
presented relative errors of the estimates are averaged over all 11 pipes.

Parameter Estimate sample statistic
Relative error statistics (%)
(averaged over all 11 pipes)

Scenario 1 Scenario 2

wavespeed, co
median 0.313 0.411

IQR 0.954 0.822

diameter, D
median 2.933 1.963

IQR 0.392 0.377

length, l
median 0.311 0.415

IQR 0.954 0.822

log10

(
ε
D

) median 17.26 28.37

IQR 35.51 15.21

log10Re
median 3.627 7.722

IQR 4.970 1.709
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APPENDIX IV. MANUSCRIPT ALGORITHMS648
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Algorithm 1 Computation of EM Parameter Estimate

Require: Network topology G (N ,Λ), frequency-domain data Ũ and corresponding frequen-
cies ω = {ω1, . . . , ωM}, covariances Σm and Σu, parameter range Υ, initial parameter
estimate ϑ0;

1: Given G (N ,Λ), construct nodal sets A, B, and C as defined in Table 1.
2: Reorder nodes in N from nodal sets as in (10);
3: k = 0; loop = True;
4: while loop do
5: Compute updated parameter estimate as the maximiser of the expected conditional

log likelihood

ϑk+1 = arg maxϑ∈Υ

{
ExpCondLogLikelihood(ϑ;G (N ,Λ) , Ũ ,ω,Σm,Σu,ϑk)

}
;

6: if Termination criteria is satisfied then
7: loop = False;
8: end if
9: k = k + 1;
10: end while
11: return Parameter estimate ϑk.
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Algorithm 2 Computation of ExpCondLogLikelihood function from Algorithm 1

Require: New parameter estimate ϑ, Network topology G (N ,Λ), frequency-domain data Ũ
and corresponding frequencies ω = {ω1, . . . , ωM}, covariances Σm and Σu, old parameter
estimate ϑk;

1: Q = 0;
2: for i = 1 to M do
3: for ϕ = ϑ and ϑk do
4: Compute admittance matrix Y = Y (iωi,ϕ) from (15);
5: Construct submatrices Y m1,Y m2,Y m3,Y u1,Y u2, and Y u3 as in (19) from subma-

trices of Y as in (16);
6: Construct Gm and Gu as in (18);
7: Compute Λi(ϕ) as in (30);
8: Compute Cmmi(ϕ),Cmui(ϕ),Cumi(ϕ), and Cuui(ϕ) as in (29);
9: end for
10: Compute Qi as in (28);
11: Q = Q+Qi

12: end for
13: return Expected conditional log likelihood value −Q.
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FIG. 1. The extended 11-pipe network. The double rings around the nodes indicate the locations
of pressure measurements. Subfigure (a) represents the actual true network which is the 11-pipe
network from with an additional branch from node 7 consisting of two pipes with a capacitor
at node 8 and an emitter at node 9. Subfigure (b) represents the known configuration of the
network involving an unknown nodal flow at node 7, as the existence of the connection is known
but the form of the subnetwork outside this node is unknown.
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FIG. 2. Box plots of the relative errors (%) of the parameter estimates from case study 1 (TSF
model). Within each subfigure, the vertical axis gives the relative error, and the horizontal axis
indicates the pipe number (i.e. each box and whisker set is associated with a pipe parameter
estimate). Each subfigure row is associated with a particular parameter (indicated to the left
of the subfigure matrix), and each subfigure column with particular scenarios (indicated on the
bottom of the subfigure matrix). For each case, 10 independent trials were performed. The +
indicate outliers.
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FIG. 3. Box plots of the relative errors (%) of the parameter estimates from case study 2 (TUF
model). Within each subfigure, the vertical axis gives the relative error, and the horizontal axis
indicates the pipe number (i.e. each box and whisker set is associated with a pipe parameter
estimate). Each subfigure row is associated with a particular parameter (indicated to the left
of the subfigure matrix), and each subfigure column with particular scenarios (indicated on the
bottom of the subfigure matrix). For each case, 10 independent trials were performed. The +
indicate outliers.
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