CLINICAL ANALYSIS OF LIVER FUNCTION

Development of a Novel Method for the Detection of Portosystemic Shunts

Todd James Matthews BHSc (Hons)

December 2013
Discipline of Surgery
School of Medicine
Faculty of Health Science

THE UNIVERSITY of ADELAIDE

An original thesis submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy
Abstract

A portosystemic shunt (PSS) is defined as a congenital or acquired abnormal blood vessel that redirects blood around the liver without being filtered through hepatic parenchyma. PSS are thought to contribute to the distribution of isolated secondary metastases beyond the liver in 1.7 - 7.2% of all colorectal cancer patients without cirrhosis of the liver. No standardised clinical test for PSS yet exists and subsequently, the majority of PSS cases are detected incidentally through radiological means. To better identify PSS, a simple standardised clinical test for its detection is needed. The aim of this thesis was to develop a cost effective, non-invasive technique that can detect and measure PSS in a healthy liver model.

Methods

An artificial 8mm diameter PSS was created between the portal vein and the inferior vena in a pig model with a catheter inserted in the confluence of the hepatic veins for sample collection. A spectrum of compounds including indocyanine green (ICG), 13C-methacetin, sorbitol and lignocaine, were injected into the portal system. To analyse the pharmacokinetic nature of the shunt and liver, Evans blue dye and 14C-sucrose were also administered. ICG was measured via a LiMON® spectrometer attached to the pig’s snout, while levels of the other indicators were measured by serial blood and breath sample collection over a 40 minute period. The process was repeated with the PSS clamped as the control.
Results

Of the administered compounds, only ICG had the potential to clearly identify and quantify the shunt due to the rapid serial sampling via the LiMON®. Further simulations using ICG demonstrated that the shunted fraction can be calculated using the transit times, including mean residence time, lag time and pharmacokinetic modelling.

Conclusion

Although this study has not yet provided a concise method for PSS detection available for immediate clinical use, it does provide a large foundation for further exploration into a quantitative technique. A future PSS test would allow an added risk assessment for secondary cancer, and consequently individual cancer therapy may be better targeted for individual patient care.
Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: ___________________________________
Date: ________________________________
Preface

This thesis is the first stage toward portosystemic shunt (PSS) detection. Chapter 1 explores the range of PSS diagnosed in patients without liver disease and the associated method that was used for diagnosis, while also underlying the values for a need of a standardised clinical test. Chapter 2 replicates PSS by describing a surgical method to mimic a large PSS within a swine model. With an artificial PSS developed, chapter 3 describes the different practical dynamic techniques that may be plausible for PSS detection, with some viable techniques to be explored further. Chapter 4 studies the techniques chosen from chapter 3 in the PSS swine model and determines which technique is best suited for PSS identification and quantification. Chapter 5 reviews how the best technique from chapter 4 can quantify the shunt and what possible limits the shunt itself has with this technique. Finally, chapter 6 summarises this technique with a future outlook as to what PSS detection implications would have a clinical setting. This chapter also outlines the limitations and complications with the previous methods and what steps were used to overcome these problems. References and additional material can be found in chapters 7 and 8.
Acknowledgements

The author acknowledges the involvement of those who assisted with this study. Mr Mark Hamilton, Dr Nadia Blest and Dr Joe Dawson assisted in the surgical predication of a PSS. Dr Peng Li assisted in sample collection and analysis. Professor Simon Barry, Ms Betty Zacharakis and Ms Esther Burt assisted in breath sample analysis. Dr Timothy Kuchel and Mr Matthew Smith assisted in animal anaesthesia. Professor Guy Maddern supervised the entirety of this study. A special acknowledgment to Mr Markus Trochsler, who assisted in all aspects of this study.
Table of Contents

Abstract ... i

Thesis Declaration .. iii

Preface .. iii

Acknowledgements .. iv

Table of Contents .. vi

List of Tables, Figures and Equations .. xv

List of Abbreviations ... xxv

Publications, Presentations and Competitions ... xxviii

CHAPTER 1 Introduction ... 1

1.1 Introduction ... 2

1.1.1 Classification ... 2

1.1.2 Portosystemic Shunt Variability Within The Classifications 9

1.1.3 Incidence ... 10

1.1.4 Associated Malformations .. 11

1.1.5 Symptoms and Complications .. 12

1.1.6 Pathogenesis .. 14
1.1.7 Detection and Assessment ... 16

1.1.8 Treatment ... 17

1.2 Gastrointestinal Cancers ... 18

1.2.1 Circulating Tumour Cells ... 20

1.2.2 Metastases Distribution .. 20

1.3 Summary .. 22

1.4 Objectives .. 23

1.5 Question ... 24

1.6 Methodology ... 24

1.6.1 Search Strategy ... 24

1.6.2 Search Results ... 26

1.6.3 Demographics .. 28

1.6.4 Frequency of Diagnostic Procedures .. 28

1.6.5 Symptomatology and Associated Conditions 29

1.6.6 Other Investigations: ... 29

1.7 Discussion .. 36

1.8 Conclusion .. 41

1.9 Significance ... 42
CHAPTER 2 Development of a Portosystemic Shunt in a Swine Model..............43

2.1 Introduction ...44

2.2 Materials & Methods ..47

2.2.1 Surgical Procedure ...49

2.2.2 Shunt Flow Direction ...57

2.2.3 Shunted Blood ...60

2.3 Results ..62

2.3.1 Anastomosis Material ...62

2.3.2 Pressure Gradient ...66

2.4 Discussion ...69

2.5 Conclusion ...71

CHAPTER 3 Practical Methods for Portosystemic Shunt Detection.......................72

3.1 Introduction ...73

3.1.2 Possible Portosystemic Shunt Detection Techniques76

3.1.2.1 Microspheres ...76
5.5.1 LiMON® Analysis ... 168

5.5.2 Evans Blue ... 177

5.6 Discussion .. 182

5.7 Conclusion ... 185

CHAPTER 6 General Discussion .. 186

6.1 Portosystemic Shunt Detection Technique 187

6.2 Limitations and Complications ... 188

6.2.1 Measuring Shunt Flow .. 189

6.2.2 Breath Sampling During Anaesthesia 192

6.2.2.1 Breath Analysis .. 194

6.2.2.2 Isoflurane Contamination ... 197

6.2.2.3 Sampling Accuracy ... 202

6.4 Significance .. 205

6.5 Clinical Implications ... 206

6.5.1 Cancer Catagorisation and Risk Factors 206

6.6 Future Considerations ... 207

6.7 Conclusions .. 208
CHAPTER 7 References..210

CHAPTER 8 Appendices ...249

Appendix A – List of drugs searched as a PSS marker (n= 110) ...250

Appendix B – Coding to create the model for the software ADAPT 5253

Appendix C- Surgical Research Society 48th Annual Scientific Meeting 2011
Abstract and Presentation ..254

Appendix D- Surgical Research Society 48th Annual Scientific Meeting 2011
Abstract ..256

Appendix E- The Queen Elizabeth Hospital Research Day 2011 Abstract and
Presentation...257

Appendix F – The Queen Elizabeth Hospital Research Day 2012 Abstract and
Presentation...259

Appendix G – Three Minute Thesis Competition Poster ...261

Appendix H: Review of Incidentally diagnosed congenital and acquired
portosystemic shunts in patients without cirrhotic liver disease: a need for a
standardised clinical test ...262

Appendix I: Creation of a Portocaval Shunt in pigs, with a method for estimating
shunt fractions ...313

Appendix J: Detrimental effect of isoflurane in gas chromatography337
Appendix K: Safe and inexpensive method for breath sampling and a technique for continuous intravenous anaesthesia in pigs .. 353

Appendix L: Portosystemic shunt fraction determination by pharmacokinetic modelling.. 366

Appendix M: Figure 3.1 Grant of Permission.. 390
CHAPTER 1 Introduction

Table 1.1: Summary of Abernethy extrahepatic and Park intrahepatic portosystemic shunt definitions. ... 5

Figure 1.1: Extrahepatic Abernethy portosystemic shunts. Type I: All blood from the Portal Vein (PV) is diverted into the Inferior Vena Cava (IVC). Type II: a portion of blood diverted into the Inferior Vena Cava with the Portal Vein being patent, but tortuous. .. 6

Figure 1.2: Park classification: Type I has a single, constant diameter shunt from the intrahepatic portal vein (PV) to the inferior vena cava (IVC). In Park Type II, single or multiple shunts can be found between the intrahepatic portal branches and the hepatic veins within the same segment. Park Type III has a shunt, which has formed via a portal system aneurysm connecting to a hepatic vein, and in Park Type IV, there are multiple shunts between the portal branches and the hepatic veins in multiple segments.. 7

Figure 1.3: Human liver divided into segments according to Couinaud’s nomenclature. The left lobe consists of segments I-IV, while the right lobe consists of segments V-VIII .. 8

Figure 1.4: Gastrointestinal organs with venous drainage into the portal system.............. 19

Search Term 1.1: Search terms formatted for PUBMED used to find naturally occurring or acquired portosystemic shunts in adults without cirrhosis. .. 25

Figure 1.5. Flow chart of the systematic search strategy. .. 27

Table 1.2: Prevalence of the type of shunt in male and female patients 31

Table 1.3: Median age at diagnosis of shunts n=104 (no data reported in eight patients) 32
Table 1.4: Different methods used for detection of naturally occurring portosystemic shunts in patients without hepatic cirrhosis. CT/A – computed tomography/angiography. MRI/A – magnetic resonance imaging/angiography.

n=number of patients. ... 33

Table 1.5: Symptoms and pre-existing conditions in patients with Abernethy and Park type portosystemic shunts. ... 34

Table 1.6: Shunt flow rate and shunted ratio. ... 35

CHAPTER 2 Development of a Portosystemic Shunt in a Swine Model

Figure 2.1: A 10 cm incision made on the lower right side of the neck. (A) The Jugular vein
located (arrow). (B) Drip line inserted into the jugular vein with a 16G Braun Introcan Safety® needle. ... 51

Figure 2.2: A 40 cm incision was made down the midline to expose abdominal organs and vessels... 52

Figure 2.3: (A) The inferior vena cava (arrow) is located and mobilised to a level at the confluence of the liver. (B) The portal vein (solid arrow) was identified and mobilised with separation of lymphatics (hollow arrow) and nodes that surround the portal vein. ... 53

Figure 2.4: (A) The inferior vena cava (IVC) was partially clamped using a side biting satinsky clamp and a longitudinal venotomy was performed. An end to side anastomosis of the portosystemic shunt is performed using continuous 6/0 polypropylene suture and 8 mm diameter by 10-15 cm PTFE tubing. (B) The portal vein anastomosis was similarly completed with partial occlusion clamping and end-to-side anastomosis. ... 54
Figure 2.5: Schematic of an end-to-side anastomosis. (A and B) The graft material is trimmed. (C) A 16 mm elliptical excision is made into the portal vein or inferior vena cava with the suture starting at the ‘heel’. (D) The ‘heel’ is sutured until half way, along both sides and then suturing is started from the toe. (E) Suture from the toe is joined in the middle with any excess edges removed. 55

Figure 2.6: The end to side anastomosis of the portosystemic shunt is measured and allowed to stabilise for five minutes. .. 56

Figure 2.7: A vacuum container consisting of a 100 mL glass jar filled with 0.9% saline solution and a portion of PTFE. A BD Connecta™ three-way tap with luer-lock has been drilled and glued into the cap so air can be withdrawn from the jar using a syringe. .. 59

Equation 2.1: Hagan Poiseuille equation rearranged to find the flow rate of the portosystemic shunt.. 61

Equation 2.2: A simplified equation to calculate the portosystemic shunt (PSS) fraction using the Portal vein pressure (PVP) when the shunt is open and closed. Adapted from Washizu et al. [210] .. 61

Equation 2.3: Ratio of blood volume between the portosystemic shunt (PSS) volume and the portal vein volume. .. 61

Figure 2.8: (A) scavenged iliac vein and (B) PTFE used to create an anastomosis between the portal vein (PV) and inferior vena cava (IVC). .. 64

Figure 2.9: Images of all anastomoses inserted into each of the six pigs between the portal vein (PV) and inferior vena cava (IVC). .. 64

Figure 2.9: Images of all anastomoses inserted into each of the six pigs between the portal vein (PV) and inferior vena cava (IVC). .. 65
Table 2.1: Length of anastomoses that was inserted into each pig with the ratio between the portal vein (PV) and shunt (PSS) volumes. A range is given as the portal vein length was assumed of 6.5 ± 1.5cm. .. 67

Table 2.2: Pressure differences (mmHg) between portal vein (PV) and inferior vena cava (IVC) with the shunt open (S) and when closed/control (C)... 68

CHAPTER 3 Practical Methods for Portosystemic Shunt Detection

Figure 3.1: Schematic of a hepatocyte with the location of drug transporters.................. 75

Equation 3.1: Kety-Renkin-Crone equation (A) to find the extraction rate (E) of a substrate in a sinusoid, x denotes the measurement is specific to the substrate. Rearranged Kety-Rekin-Crone equation (B) to determine the linear relationship between two substrates [226]. ... 78

Figure 3.2: Flow chart of pharmacological agents and compounds that may be suitable for detection of portosystemic shunts... 82

Table 3.1: List of pharmacological agents and compounds that may be used as a portosystemic marker. .. 83

Table 3.2 List of pharmacological agents and compounds with respective doses. 84

CHAPTER 4 Analytical Methods and Results

Figure 4.1: LiMON machine by Pulsion® Medical Systems (Germany) that uses spectrophotometry to detect Indocyanine Green dilution and retention in the systemic system.. 94
Table 4.1: Dose and stock solution of each compound used as marker for portosystemic shunts.

Figure 4.2: (A) Breath sample collecting apparatus consisting of two blood transfusers and two three way taps that (B) connect to the sample line of the anaesthesia machine.

Figure 4.3: Pilot results of 13CO$_2$ ratio in the breath of a shunted and non-shunted pig.

Figure 4.4: Concentration of Evans blue (EB) in each shunted pig and the mean when injected into the portal system.

Table 4.2: Mean transit time (MTT) with corresponding area under the curve (AUC) from Evans blue dye in the shunted and control models.

Figure 4.5: Concentration of 14C-Sucrose in each pig when injected into the portal system.

Table 4.3: Mean transit time (MTT) with corresponding area under the curve (AUC) from 14C-Sucrose in the shunted and control models.

Figure 4.6: Concentration of monoethylglycinexylidide (MEGX) in each pig post injection of Lignocaine into the portal system.

Figure 4.7: Concentration of Indocyanine green dye (ICG) in each pig in the plasma when injected into the portal system. There is an error in pig 4 in regards to concentration as it is thought that there was internal bleeding while the shunt was open, however it is still shown to reference with the LiMON® data.

Table 4.4: LiMON conversion factor to calibrate the LiMON® data into relative concentrations and its correlation coefficient (R^2) when indocyanine green is injected into the portal system.

Figure 4.8: Concentration of indocyanine green dye (ICG) in each shunted pig and the mean from the LiMON® system when injected into the portal system. There is a error
in pig 4 in regards to concentration, however it is still shown to determine transit times. .. 124

Table 4.5: Lag times (threshold > 0.01 µg/L) and time of the first peak from the portal injection using the LiMON® data.. 125

Table 4.6: Mean transit time (MTT) with corresponding area under the curve (AUC) from indocyanine green in the shunted and control models. 126

Figure 4.9: Indocyanine green concentration in the plasma as collected from the confluence of the hepatic veins in the inferior vena cava when injected into the systemic venous system (Jugular vein). There is an error in pig 4 in regards to concentration as it is thought that there was internal bleeding while the shunt was open, however it is still shown to reference against the LiMON® data..... 128

Table 4.7: LiMON conversion factor to calibrate the LiMON® data into relative concentrations and its correlation coefficient (R^2) when Indocyanine green is injected systemically. .. 129

Figure 4.10: Concentration of indocyanine green dye (ICG) in each shunted pig and the mean from the LiMON® system when injected into the systemic venous system (jugular vein). .. 130

Table 4.8: Lag times (threshold > 0.01 µg/L) and time of the first peak from the systemic injection using the LiMON® data.. 131

Table 4.9: Liver mean residence time data for indocyanine green dye injected into the systemic system.. 132

Figure 4.11: Methacetin concentration in the plasma from injecting into the portal system and collected from the confluence of the hepatic veins in the inferior vena cava..134

Figure 4.12: Methacetin concentration in the plasma from injecting into the jugular vein and collected from the confluence of the hepatic veins in the inferior vena cava..136
Figure 4.13: Ratio of 13CO$_2$ to 12CO$_2$ in the breath of a shunted and non-shunted pig. 138

Figure 4.14: Two compartment showing the liver and shunt in parallel with the blood flow of the portal vein (Q_{pv}) being split into the flow through the liver (qQ_{pv}) and the shunt ($(1-q)Q_{pv}$)................................. 141

CHAPTER 5 Determining Portosystemic Shunt Fractions

Equation 5.1: Pharmacokinetic question to measure flow (Q) by volume (V) and the mean transit time (MTT). ... 149

Equation 5.2: Adapted pharmacokinetic question to measure flow (Q) by volume (V) and the lag time.. 149

Figure 5.1: Dispersion of Evans blue dye injected through a 17 cm length 8 mm diameter PTFE tubing ex vivo with flow rates set at (A) 1 mL/s, (B) 5 mL/s, and (C) 10 mL/s... 152

Table 5.1: Calculated flow rate of Evans blue in an ex vivo model as determined by the lag time and compared to the set pump flow rate................................. 153

Figure 5.2: Correlation between the set pump flow rate and the (A) lag time, and (B) the calculated flow rate based on lag time. ... 154

Equation 5.3: Inverse Gaussian Distribution model using the mean transit time (MTT), the point of time (t) and the relative dispersion (RD). .. 157

Equation 5.4: Combination of inverse Gaussian distribution models for a two compartment model, with the liver (qf_L) and the shunt ($(1-q)f_S$).. 157

Figure 5.3: Single pass model of indocyanine green (ICG) clearance in the liver with the presence of a portosystemic shunt, when injected into the portal system. The liver and the shunt are in parallel with blood flows qQ and $(1-q)Q$ respectively
(Q, is portal flow, and 0<q<1). The liver and body are individually characterised by inverse Gaussian transit time density functions shown as f(t).

Figure 5.4: Example of a typical fit of $f_{LS}(t)$ to data observed with an open shunt. $R^2 = 0.99159$

Table 5.2: Estimated fractions of shunt flow (1-q) as deemed from the model with its correlation to the fitted data (R^2) the corresponding portal vein (PV) and shunt (PSS) volume ratio.

Figure 5.5: Schematic of injection plan. D1. Control 1: Into portal vein (PV) with shunt clamped. D2. Control 2: Into portal vein, above shunt (open) to capture liver function only. D3. Directly into the shunt. D4. Into portal vein below shunt, to capture both shunt and liver.

Figure 5.6: Portosystemic shunt created in (A) pig 7, (B) pig 8, and (C) pig 9 using 8 mm diameter PTFE.

Table 5.3: Length of each anastomosis that was inserted into each pig with portal vein (PV) volume and the shunt (PSS) volume ratio.

Figure 5.7: Mean concentration of indocyanine green dye of pigs 7, 8 and 9 in each scenario as depicted from the LiMON® system.

Table 5.4: Lag times (threshold > 0.01 µg/L) for different injected scenarios using the LiMON® data for all pigs.

Table 5.5: Relative flow rate Q (mL/s) derived from lag time for different injected scenarios using the LiMON® data in all pigs.

Table 5.6: Shunted ratios, 1-q derived from lag time for different injected scenarios using the LiMON® data in all pigs.

Table 5.7: Mean residence time (seconds) for each different injected scenarios using the LiMON® data in all pigs.
Table 5.8: Relative flow rates, Q (mL/s) derived from mean residence time for each different injected scenarios using the LiMON® data in all pigs...................... 175

Table 5.9: Actual, relative and maximum shunted fractions 1-q derived from mean residence time for each different injected scenarios using the LiMON® data in all pigs. ... 176

Table 5.10: Mean transit time (seconds) of Evans blue for each injected scenario in all pigs.179

Table 5.11: Relative flow rates (mL/s) derived from Evans blue mean transit time for each injected scenario in all pigs. ... 180

Table 5.12: Actual, relative and maximum shunted fractions (1-q) derived from Evans blue mean transit time for each injected scenario in all pigs........................ 181

Table 5.13: D4/D1 Shunted fractions (1-q) based on indocyanine green dye lag time and mean residence time (MRT), mean transit time (MTT) of Evans blue, and the pharmacokinetic model. Included is the portal vein (PV) and Shunt (PSS) ratio as a comparison. Model data for pigs 8 and 9 could not be included due to technical difficulties.. 183

CHAPTER 6 General Discussion

Figure 6.2: Series of quality control references throughout sampling for 13CO$_2$ in the presence of isoflurane. Each quality control should maintain similar ratio of 29.1 ± 0.2 (dashed line), however a drift occurs (solid line) as more isoflurane contaminated samples are analysed. The black dash line shows the standard deviation of the drift. .. 195

Figure 6.3: Series of quality control references throughout sampling for 13CO$_2$ in the presence of isoflurane. Digital raw sample data was rerun in sample sets with
the analysis window being changed to correct for the drift, so each quality
control should maintained similar within each set. 196

Figure 6.4: Series of quality control references samples that were not used in the presence
of isoflurane. Each quality control maintained similar ratio of 31.1 ± 0.6%. 201

Figure 6.5: Ratio of total CO₂ contained within the breath samples of pigs 7, 8 and 9....... 204
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-</td>
<td>[13]Carbon labelled</td>
</tr>
<tr>
<td>14C-</td>
<td>[14]Carbon labelled</td>
</tr>
<tr>
<td>1-qQ</td>
<td>Difference of flow rate fraction</td>
</tr>
<tr>
<td>3H-</td>
<td>3Hydrogen labelled</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>CF$_{4}$</td>
<td>Tetrafluromethane</td>
</tr>
<tr>
<td>CO$_{2}$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CT</td>
<td>Computed tomography</td>
</tr>
<tr>
<td>CTA</td>
<td>Computer tomography angiography</td>
</tr>
<tr>
<td>CTC</td>
<td>Circulating tumour cells</td>
</tr>
<tr>
<td>CYP1A2</td>
<td>Cytochrome 1A2</td>
</tr>
<tr>
<td>D1</td>
<td>Drug administration site into the portal vein with the shunt closed (normal control).</td>
</tr>
<tr>
<td>D2</td>
<td>Drug administration site into the portal vein above the open shunt flowing into the liver only (control).</td>
</tr>
<tr>
<td>D3</td>
<td>Drug administration site directly into the start of the shunt.</td>
</tr>
<tr>
<td>D4</td>
<td>Drug administration site into the portal vein below the shunt.</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>E_{ICG}</td>
<td>Extraction of Indocyanine green</td>
</tr>
<tr>
<td>E_{sorbitol}</td>
<td>Extraction of sorbitol</td>
</tr>
<tr>
<td>$f(t)$</td>
<td>Inverse Gaussian distribution function</td>
</tr>
<tr>
<td>GLUTs</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>ICG</td>
<td>Indocyanine green dye</td>
</tr>
<tr>
<td>R15</td>
<td>Plasma disappearance rate at 15 minutes</td>
</tr>
<tr>
<td>IRMS</td>
<td>Isotope-ratio mass spectrometry</td>
</tr>
<tr>
<td>IVC</td>
<td>Inferior vena cava</td>
</tr>
<tr>
<td>MATEs</td>
<td>Mammalian multidrug and toxic compound extrusion</td>
</tr>
<tr>
<td>MEGX</td>
<td>Monoethylglycinexylidide</td>
</tr>
<tr>
<td>MRA</td>
<td>Magnetic resonance angiography</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance image</td>
</tr>
<tr>
<td>MRT</td>
<td>Mean residence time</td>
</tr>
<tr>
<td>MTT</td>
<td>Mean transit time</td>
</tr>
<tr>
<td>N2O</td>
<td>Nitrogen oxide</td>
</tr>
<tr>
<td>NTCP</td>
<td>Sodium-dependent taurocholate co-transporting protein</td>
</tr>
<tr>
<td>OATPs</td>
<td>Organic anion transporting polypeptides</td>
</tr>
<tr>
<td>OATs</td>
<td>Organic anion transporter</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OCTs</td>
<td>Polyspecific organic cation transporters</td>
</tr>
<tr>
<td>Ost α and β</td>
<td>Organic solute or steroid transporter alpha and beta</td>
</tr>
<tr>
<td>PSS</td>
<td>Portosystemic shunt</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetrafluoroethylene</td>
</tr>
<tr>
<td>PV</td>
<td>Portal vein</td>
</tr>
<tr>
<td>Q</td>
<td>Flow rate</td>
</tr>
<tr>
<td>QC</td>
<td>Quality control</td>
</tr>
<tr>
<td>qQ</td>
<td>Fraction of flow</td>
</tr>
<tr>
<td>R^2</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RD</td>
<td>Relative dispersion</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TIPS</td>
<td>Transjugular intrahepatic portosystemic shunt</td>
</tr>
<tr>
<td>TNM</td>
<td>Tumour node metastases staging system</td>
</tr>
<tr>
<td>TQEH</td>
<td>The Queen Elizabeth Hospital</td>
</tr>
<tr>
<td>TTD</td>
<td>Transit time</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic compound</td>
</tr>
</tbody>
</table>
Publications, Presentations and Competitions

Publications, papers submitted for publication and conference presentations pertaining to results relating to the thesis are listed below. Abstracts, manuscripts and presentations can be found in Chapter 8: Appendices.

Published Abstracts and Conference Presentations

Conference Presentations

Competitions

Submitted Manuscripts

Matthews T, Trochsler M, Hamilton M, Maddern G. Creation of a portocaval shunt in pigs, with a method to estimating shunt fractions. Submitted to Journal of Surgical Research (Appendix I)

Matthews T, Kuchel T, Maddern G. Safe and inexpensive method for breath sampling and a technique for continuous intravenous anaesthesia in pigs. Submitted to Journal of Breath Research (Appendix K)