Behaviour of Quantum Chromodynamics
Near an Infrared Fixed Point

Galib O. M. Souadi
Special Research Centre for the Subatomic Structure of Matter
School of Chemistry and Physics

A Thesis Submitted for the Degree of
Doctor of Philosophy
April 2014
Abstract

In perturbation theory, the QCD running coupling depends on the renormalization scheme or is parameterised by a physical process. The problem is that artefacts of this ambiguity may upset physical conclusions outside the asymptotically free region, in particular near an infrared fixed point. Thus, a non-perturbative definition for the QCD running coupling is required that should be a monotonic and analytic function of the space-like energy scale Q^2. The most physical coupling is Grunberg’s definition for the running coupling as an effective charge $\alpha_G(Q^2)$. However, we find that it works only for sufficiently high energy scales. At some finite values of the energy scale, near the top of the resonance region, the β-function associated with $\alpha_G(Q^2)$ has a false zero below which $\alpha_G(Q^2)$ decreases.

We test this conclusion further by applying chiral perturbation theory to the running coupling based on the method of effective charges. We consider the Drell-Yan ratio $R(q^2)$ and Adler-function $D(Q^2)$ in the time-like and space-like domains, respectively. These quantities tend to a finite value in the both infrared and ultraviolet limits: $R(0) = D(0) = 0.5$ for π^\pm, K^\pm and $R(\infty) = D(\infty) = 2$ for the light quarks. This means that the running coupling becomes negative in the infrared limit. Therefore, neither the time-like nor the space-like effective charges is a monotonic function over the whole energy scale.

We also try to cancel the space-like pole of the proposed exact β-function, using the property of renormalization scheme dependence. Our modified exact β-function is non-singular for all finite values of the running coupling α and has an infrared fixed point even for a small number of quark flavours.
Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Galib O. SOUADI
List of workshop proceeding and future publication based on this thesis:

Acknowledgements

The completion of any work is too hard without the contribution of other people. During my PhD, I had a support from many people, whose should have a great acknowledgement from me.

First and foremost, I have to thank my supervisors for their support, time, great ideas to complete my PhD. In particular, I would like give a great thank to my principal supervisor Dr. Rod Crewther for his effort, ideas and guidance, wisdom and helpful comments throughout my PhD. The support from him stems from the beginning of my studying at the University of Adelaide for the degree of Master and then PhD. Also, thanks to him for the great comments and feedback during writing this thesis. Furthermore, I would like to thank my second supervisor Dr. Ross Young for useful comments.

I thank all staff of CSSM and School of Chemistry and Physics for administering and providing technical support.

I owe deep gratitude to the government of Saudi Arabia for the financial support to complete my PhD, in particular King Khalid University. Thanks to Saudi Arabia Culture Mission (SACM) in Australia for the excellent communication with my sponsor in Saudi Arabia. To Department of Physics at King Khalid University for choosing me to complete my postgraduate education, Master and then PhD at the University of Adelaide. In particular, I am grateful to Profs. Abdulaziz AlShahrani, Ali AlHajry and Ali AlKamli for giving me this opportunity.

I also would like to thank my friends at Adelaide University who are help me during this work. In particular, I thank Lewis Tunstall for his helpful discussions and comments on my PhD project.
Also, thanks to him for pointing me to many important papers related to my work. Further, I would like to thank my friend Ali Alkathiri for providing a technical help at some stages of writing my thesis. Also, thanks to other friends outside of physics community for their moral support. I also have to thank my nephew A. AlFraji and Elite Editing Centre for proofreading at some stages of my thesis.

Last but not least, I would like to send a special thank to all members of my family for their encouragement to complete my postgraduate education, in particular my mother for her love and prayer. The biggest thank is to my wife for her love and support to complete my PhD. She shared me all problems that I had met during my work and always encouraged me to pass these problems. Thanks to her very much. To my children, Yazad, Ziyad, Ayan and Ellen, who are made my world so beautiful.
Contents

Contents vi

List of Figures ix

List of Tables xiii

1 Introduction 1

2 Quantum Chromodynamics 7
 2.1 QCD Lagrangian ... 7
 2.1.1 Gauge Invariance 7
 2.1.2 QCD Quantisation 10
 2.2 Renormalization Procedure 12
 2.3 Perturbative QCD ... 15
 2.3.1 The QCD β-Function 15
 2.3.2 Asymptotic Freedom 16
 2.3.3 Annihilation of e^+e^- into Hadrons 20
 2.4 Non-Perturbative QCD 23
 2.4.1 Effective Field Theories 23
 2.4.2 Proposed Behaviour for the QCD β-function at low-energy scales ... 25

3 Perturbative Running Coupling and Renormalization Scheme 28
 3.1 Perturbative Running Coupling 28
 3.2 The Problem of Renormalization Scheme 31
 3.3 Proposed Solutions for the Problem 33
 3.3.1 The ’t Hooft Scheme 34
3.3.2 Effective Charges Method 37
 3.3.2.1 The Gell-Mann-Low ψ-Function 37
 3.3.2.2 The Generalisation of the GML ψ-Function
 into QCD 39
3.4 Physical Running Coupling 41

4 Analysis of Perturbative and Non-Perturbative Infrared Fixed
 Point 43
 4.1 Perturbative Infrared Fixed Point 43
 4.1.1 The Banks-Zaks Infrared Fixed Point 44
 4.1.2 The Effect of Higher-Loop Orders 46
 4.1.3 Large Limits: $N_f, N_c \to \infty$ 50
 4.2 Non-Perturbative Infrared Fixed Point 51
 4.2.1 Schrödinger Functional Analysis 52
 4.2.2 Dyson-Schwinger Equations Analysis 54
 4.2.3 Anti-de Sitter Analysis 58

5 The Infrared Behaviour of Proposed Exact β-Functions 62
 5.1 Supersymmetric β-Function 63
 5.2 Ryttov-Sannino (\mathbb{R}S) β-Function 65
 5.2.1 The Singularity of the $\beta^{\mathbb{R}S}$-Function 65
 5.2.2 Non-trivial Fixed Point 67
 5.2.3 Comparison of the Banks-Zaks and Ryttov-Sannino Fixed
 Points 69
 5.3 Modified $\beta^{\mathbb{R}S}$-Function 72
 5.3.1 Renormalization Gauge Transformation 72
 5.3.2 Infrared Fixed point 73

6 Chiral Analysis of QCD at Low-Energy Scales 79
 6.1 Chiral Perturbation Theory 80
 6.1.1 Chiral Symmetry 80
 6.1.2 Effective Lagrangians for Strong Interactions 82
 6.1.2.1 Transformation Properties of the Goldstone
 Bosons 82
 6.1.2.2 The Lowest-Order Effective Lagrangian 84
CONTENTS

6.2 Electromagnetic Interactions .. 85
 6.2.1 External Fields ... 85
 6.2.2 Effective Lagrangian for Electromagnetic Interactions 87
6.3 The Physical Quantity $R(q^2)$... 90
6.4 QCD Effective Charges .. 93

7 Conclusion .. 96
 7.1 Summary of Results ... 96
 7.2 What Next? ... 98

A Feynman Diagrams .. 100

B Reference Formulae .. 102
 B.1 Gell-Mann Matrices ... 102
 B.2 Gamma Matrices ... 103
 B.3 Loop Integrals ... 103
 B.4 Dimensional Regularization ... 104

C The β-Function and Anomalous Dimension 107
 C.1 Perturbative Coefficients ... 107
 C.2 The $SU(N_c)$ Coloured Gauge Group 110

D Proposed Exact β-Function at a Small α 112
 D.1 Proof 1 .. 112
 D.2 Proof 2 .. 113
 D.3 Proof 3 .. 115

E Loop Integrals ... 116
 E.1 Meson-Loop Integral .. 116
 E.2 Quark-Loop Integral .. 119

References .. 121
List of Figures

2.1 Contributions of fermions and all gauge boson interaction terms of order α to gluon propagator in QCD. 15
2.2 In QCD, the point at the origin is an UV fixed point, where $\beta < 0$. In this case, QCD may have an IR fixed point (solid line). For $N_c \to \infty$, QCD does not have an IR fixed point (dashed line). As $N_f \to \infty$, asymptotic freedom is lost and the fixed point at the origin becomes an IR fixed point (dash-dotted line), it can be seen when $N_f \geq 17$ for $N_c = 3$. 17
2.3 In QED, the β-function is a positive function near the origin, and hence the fixed point at the origin is an IR fixed point. When high-order corrections are added to the β-function, it may develop another fixed point (an UV fixed point) at a non-vanishing value for α. 18
2.4 Diagrams contribute to annihilation of e^+e^- into hadrons in QCD. The first diagram gives the leading-order contribution and the others give the correction of order α. 21
2.5 The possibilities of the QCD β-function in the IR region. .. 26

3.1 Beyond the perturbative region, the running coupling α grows faster than the 't Hooft running coupling $\tilde{\alpha}$ based on the first three terms in Eq. (3.22). 36
3.2 In the 't Hooft scheme, the original running coupling α becomes negative for some positive values of $\tilde{\alpha}$ in the $SU(3)$ gauge group, but beyond the perturbative region. 36
4.1 In the SU(3) gauge group, the BZ IR fixed point is a decreasing function of N_f with $N_f^{\text{min}} < N_f < N_f^{\text{max}}$. It becomes more reliable in the framework of perturbation theory as N_f increases to 16. ... 46

4.2 The shape of the AdS β-function in the scheme of the Bjorken sum rule is completely different compared to the perturbative QCD β-function with $N_f = N_c = 3$. Clearly, the AdS β-function is not compatible with perturbative QCD. 60

5.1 The behaviour of the β^{RS}-function’s pole as a function of N_f for finite values of N_c. ... 67

5.2 Comparison between the value of the pole (solid line) and non-trivial fixed point (dashed line) of the β^{RS}-function at the leading-order of the anomalous dimension as a function of N_f for $N_c = 3$. ... 69

5.3 For a small N_f, the β^{RS}-function has a non-trivial UV fixed point $\alpha^{\text{UV}}_{\text{Ex}}$ (unphysical), while the perturbative β-function does not have any fixed point at two-loop order. 70

5.4 Comparison of the Banks-Zaks IR fixed point $\alpha^{\text{IR}}_{\text{BZ}}$ and the IR fixed point $\alpha^{\text{IR}}_{\text{Ex}}$ of the β^{RS}-function for $N_f^{\text{min}} < N_f < N_f^{\text{max}}$, where both are renormalization scheme independent. 71

5.5 Comparison between the non-trivial fixed points $\alpha^{\text{IR}}_{\text{Ex}}$, $\alpha^{\text{IR}}_{\text{Ex}}$ of the modified ($k = 1$) and unmodified β^{RS}-functions in the SU(3) gauge group with $N_f = 16$. Both β^{RS}-functions have an IR fixed point at the same value, which is larger than the Banks-Zaks IR fixed point $\alpha^{\text{IR}}_{\text{BZ}}$. ... 74

5.6 Comparison between the modified ($k = 1$) and β^{RS}-functions for the SU(3) gauge group with $N_f = 6$. In this case, the β^{RS}-function is well defined, while the β^{RS}-function is undefined for all $0 < \alpha < \alpha^{\text{FP}}$. ... 75
5.7 At \(k = d \), the \(\tilde{\beta}^{\text{RS}} \)-function develops two non-trivial fixed points that could be an IR or UV fixed point. These fixed points merge with each other as \(N_f \) increases from \(17N_c/5 \) to \(11N_c/2 \). The special fixed point is an UV fixed point as \(N_f \to 17N_c/5 \) (Figure A) and becomes an IR fixed point as \(N_f \to 11N_c/2 \) (Figure B). .. 77

5.8 At a particular value of \(N_f \), the fixed points of the special \(\tilde{\beta}^{\text{RS}} \)-functions merge with each other. This can be seen for \(N_f = 14 \) in the \(SU(3) \) gauge group to leading-order. 78

6.1 The contribution of pseudoscalar mesons (\(\pi^{\pm}, K^{\pm} \)) to the photon vacuum polarisation in the IR limit. 88

6.2 The contribution of the light quark fields (\(u, d, s \)) to the photon vacuum polarisation in the UV limit. 89

6.3 Feynman diagram whose imaginary part gives the total cross section for \(e^+e^- \) annihilation to hadrons. In the IR limit, the imaginary part yields the mesons loop of \(\pi^{\pm}, K^{\pm} \) and the light quarks loop in the perturbative domain. 91

6.4 As \(q^2 \) decreases, the Drell-Yan ratio \(R(q^2) \) associated with the time-like effective charge loses its monotonic property at the maximum of the first resonance. 94

6.5 The Adler function \(D(Q^2) \) associated with the space-like effective charge loses its monotonic property as well, but at an unknown value. 94

6.6 The \(\psi \)-function has a false zero \(A \) and an IR limit at a negative value for the associated effective charge. 95

A.1 The Feynman rules for \(g\bar{q}q \) vertex and quark propagator in QCD.100

A.2 The Feynman rules for \(\gamma\phi^-\phi^+, \gamma\gamma\phi^-\phi^+ \) and \(g\bar{q}q \) vertices in \(\chi \)PT, including the rule of scalar propagator. 101

B.1 Leading-order contribution of the quark loop to the gluon propagator. 105
E.1 Leading-order diagrams for mesons loop (π^\pm, K^\pm) in the IR limit, including momentum labels. 117
E.2 Leading-order diagram for the light quark loop in the UV limit, including momentum labels. 119
List of Tables

4.1 The values of the perturbative IR fixed point at two-, three-, and four-loop order for the $SU(3)$ gauge group. 48
4.2 The values of the perturbative IR fixed point at different loop orders in large limits $N_f, N_c \to \infty$ with $N_f/N_c \to$ a finite value. 51