ZINC AND GENOMIC STABILITY

A thesis submitted to the University of Adelaide
for the degree of Doctor of Philosophy

Razinah Sharif

School of Medicine,
Faculty of Health Sciences, University of Adelaide
and
CSIRO Food and Nutritional Sciences, Adelaide

June 2012
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>viii</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>PRESENTATIONS AND PUBLICATIONS ARISING FROM THE THESIS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

Chapter 1: The Role of Zinc in Genomic Stability 1

1.1 Abstract 3
1.2 Introduction 3
 1.2.1 Genomic stability and cancer; the role of nutrition 3
 1.2.2 Zinc functions 5
1.3 Zinc deficiency, DNA damage and chromosomal instability 13
1.4 Zinc excess, DNA damage and toxicity 20
1.5 Zinc and telomeres 27
1.6 Knowledge gaps and future directions 26

Chapter 2: Aims, Hypotheses and Models 30

2.1 Aims and hypotheses 31
2.2 Experimental models 31
 2.2.1 In vitro model 31
 2.2.2 In vivo model 34

Chapter 3: The Effect of Zinc Sulphate and Zinc Carnosine on Genome Stability and Cytotoxicity in WIL2-NS Lymphoblastoid Cell Line 35

3.1 Abstract 38
3.2 Introduction 39
3.3 Materials and methods 42
3.3.1 WIL2-NS cell culture 42
3.3.2 Cell counting using the Coulter Counter 42
3.3.3 Culture medium 42
3.3.4 9-day WIL2-NS culture in 24 well plates 44
3.3.5 Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES) 45
3.3.6 MTT assay 46
3.3.7 Alkaline comet assay 46
3.3.8 CBMN-Cyt assay 47
 3.3.8.1 Scoring criteria 48
3.3.9 Gamma-ray-irradiation of cells 52
3.3.10 H₂O₂ treatment of cells 52
3.3.11 Western blotting 53
3.3.12 Statistical analysis 55
3.3.13 Optimization of cell growth for long term culture 56

3.4 Results 57
 3.4.1 Cellular Zinc concentrations 57
 3.4.2 MTT assay 59
 3.4.3 Alkaline comet assay 62
 3.4.4 Effect of Zinc concentration on baseline levels of cytotoxicity and chromosome damage as measured by the CBMN-Cyt assay 63
 3.4.5 Effect of Zinc concentration on γ-radiation induced cytotoxicity and chromosome damage as measured by the CBMN-Cyt assay 67
 3.4.6 Effect of Zinc concentration on H₂O₂ induced cytotoxicity and chromosome damage as measured by the CBMN-Cyt assay 70
 3.4.7 Western blot analysis 74

3.5 Discussion 80
Chapter 4: Zinc Deficiency or Excess within the Physiological Range Increases Genome Instability, Cytotoxicity, respectively, in Human Oral Keratinocytes

4.1 Abstract
4.2 Introduction
4.3 Materials and methods
 4.3.1 HOK cell culture and study design
 4.3.2 Cell counting using the Coulter Counter
 4.3.3 Culture medium
 4.3.4 10-day HOK culture in 24 well plates
 4.3.5 Inductively coupled plasma optical emission spectrometry (ICPOES)
 4.3.6 MTT cell growth and viability assay
 4.3.7 Alkaline comet assay
 4.3.8 CBMN-Cyt assay
 4.3.8.1 Scoring criteria
 4.3.9 Gamma-ray-irradiation of cells
 4.3.10 H$_2$O$_2$ treatment of cells
 4.3.11 Western blotting
 4.3.12 Statistical analysis
 4.3.13 Optimization of cell growth for long term culture
 4.3.14 Optimization of Cytochalasin B (Cyto B) concentration
4.4 Results
 4.4.1 Cellular Zinc concentrations
 4.4.2 Effect of Zinc concentration on cell viability as measured via the MTT assay
 4.4.3 Effects of Zinc concentration on DNA strand breaks as measured via the comet assay
 4.4.4 Effect of Zinc concentration on baseline levels of cytotoxicity and chromosome damage as measured by the CBMN-Cyt assay
 4.4.5 Effect of Zinc concentration on γ-radiation induced cytotoxicity and chromosome damage as measured by the CBMN-Cyt assay
 4.4.6 Effect of Zinc concentration on H$_2$O$_2$ induced cytotoxicity
Chapter 5: Zinc Deficiency Increases Telomere Length and is Associated with Increased Telomere Base Damage, DNA Strand Breaks and Chromosomal Instability

5.1 Abstract
5.2 Introduction
5.3 Materials and methods
 5.3.1 WIL2-NS lymphoblastoid cell culture
 5.3.2 HOK cell culture
 5.3.3 Isolation of genomic DNA
 5.3.4 Telomere length assay
 5.3.4.1 qPCR of DNA for telomere length assay
 5.3.5 Telomere base damage assay
 5.3.5.1 Excision of 8oxodG and incision of oligomers at 8oxodG sites using FPG
 5.3.5.2 qPCR of synthetic oligomers and genomic DNA
 5.3.6 Zinc content of the cells, comet assay and CBMN-Cyt assay
 5.3.7 Experimental design and statistical analysis
5.4 Results
 5.4.1 Cellular Zinc content
 5.4.2 Impact of Zinc on telomere length (TL) in WIL2-NS and HOK cells
 5.4.3 Impact of Zinc on telomere base damage in WIL2-NS and HOK cells
 5.4.4 Correlation between telomere length, telomere base damage with DNA damage biomarkers (tail moment, tail intensity, micronuclei, nucleoplasmic bridges and nuclear buds)
5.5 Discussion
Chapter 6: Genome Health Effect of Zinc Supplement in an Elderly South Australian Population with Low Zinc Status

6.1 Abstract

6.2 Introduction

6.3 Materials and methods
 6.3.1 Screening and recruitment of volunteers
 6.3.2 Intervention design
 6.3.3 Nutritional assessment
 6.3.4 Blood collection and sample preparation
 6.3.5 Plasma analysis
 6.3.5.1 Plasma mineral, B12, Folate and Homocysteine analysis
 6.3.5.2 FRAP analysis
 6.3.5.3 eSOD assay
 6.3.6 DNA damage assay
 6.3.6.1 Cytokinesis Block Micronucleus Cytome (CBMN-Cyt) assay
 6.3.6.2 Alkaline comet assay
 6.3.6.3 Isolation of DNA/RNA
 6.3.6.4 Telomere length
 6.3.6.5 Telomere base damage
 6.3.7 Gene expression
 6.3.7.1 MT1A and ZIP expression
 6.3.8 Statistical analysis

6.4 Results
 6.4.1 Screening results
 6.4.2 Characteristics of volunteers
 6.4.3 Plasma micronutrients: Zinc, Carnosine, Mineral, B12, Folate and Homocysteine
 6.4.4 Antioxidant activity (FRAP and eSOD)
 6.4.5 DNA damage assay: CBMN-Cyt assay and alkaline comet assay
 6.4.6 Telomere integrity: Telomere length and telomere base damage
 6.4.7 Zinc transporter genes: MT1A and ZIP1
6.4.8 Correlation between plasma Zinc and other biomarkers measured in this study

6.4.9 Correlation between other measured biomarkers

6.5 Discussion

Chapter 7: Conclusions, Knowledge Gaps and Future Directions

7.1 Introduction

7.2 Zinc and genomic stability: *in vitro* (WIL2-NS and HOK cells)

7.3 Zinc and genomic stability: *in vivo* (Genome health effect of Zinc supplementation in an elderly South Australian population with low Zinc status)

References

APPENDIX: PAPER REPRINTS
Abstract

Zinc (Zn) is an essential trace element required for both optimal human health and maintaining genomic stability. The main aim of this thesis was to address important knowledge gaps regarding the possible impact of Zn status on genomic stability events in both lymphocytes and epithelial cells using both *in vitro* and *in vivo* models. The project also aimed to study the differential impact of Zn Carnosine (ZnC) and Zn Sulphate (ZnSO₄) on genome stability as the former is a newly emerging commercially available supplement renown for its antioxidant capacity. The *in vitro* studies investigated the effects of ZnSO₄ and ZnC on cell proliferation via MTT assay and DNA damage rates and was measured using both the comet assay and the Cytokinesis-block micronucleus cytome (CBMN-Cyt) assay in the WIL2-NS human lymphoblastoid cell line and HOK cell line. This study also investigated the impact of Zn status on both telomere length and telomere base damage *in vitro*. An *in vivo* study was designed to further investigate the effect of Zn supplementation in minimising genome instability events in lymphocytes. An increased intake of Zn may reduce the risk of degenerative diseases but may be toxic if taken in excess. This study aimed to investigate whether taking daily supplements of 20 mg of Zn as Zn Carnosine can improve Zn status, genome stability events and Zn transporter genes in an elderly South Australian cohort characterised by having low plasma Zn levels. In conclusion, the *in vitro* studies suggest that 1) Zn deficiency (0 µM) and high Zn concentrations increase DNA damage; 2) Zn at 4-16 µM is optimal in maintaining genome stability events; 3) Zn at 16-32 µM is optimal in protecting the cell against DNA damage induced by irradiation and hydrogen peroxide challenges; and 4) Zn may play an important role in telomere maintenances. The *in vivo* study suggests that Zn supplementation may be beneficial in an elderly population with marginal lowered Zn status by raising plasma Zn levels, lowering DNA damage events and modifies Zn transporter gene expression.
Declarations

I, Razinah Sharif certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for a copy of my thesis when deposited in the University Library, to be made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed on page xv) resides with the copyright holders of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research depository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

CSIRO Food and Nutritional Sciences retain the copyright of any subsequent publications arising from this thesis.

Signature: .. Date:
Acknowledgements

First and foremost, I would like to praise God for everything whilst travelling through this PhD journey. It has been a roller coaster ride and whenever I became stuck or felt unmotivated, God always listened to me and things worked out fine eventually.

Secondly, I would like to thank my amazing supervisors (Prof Michael Fenech, Dr Philip Thomas and Dr Peter Zalewski) for giving me the opportunity to undertake this PhD project and for their guidance throughout the study. I would also like to thank Prof Robin Graham and Prof Ross Butler who were initially involved with the project design.

I’m also grateful to all the staff and students at CSIRO Nutrigenomics lab and also to Kylie Lange (CSIRO), Erin Symonds (IMVS), Steve Henderson (CSIRO Waite), Eugene Roscioli (QEH), Rhys Hamon (QEH), Teresa Fowles (Waite campus), Lyndon Palmer (Waite campus), and Nathan O’Callaghan (CSIRO) who have always listened and helped me with some of the experiments and making it a complete story line. I would also like to acknowledge the group of PhD students who shared the pain, sweat and tears (Arnida, Carly, Eva, Sau Lai, Ann, Penny, Kacie, Mansi), you guys are the best bunch! I would really appreciate all the advice, the conversations and all the help. Thanks a million!

In order to complete the biggest part of my PhD project which was the in vivo study, I needed to conduct a human trial and I would like to express my gratitude to the staff at the CSIRO clinical trial unit (Julia Weaver, Lyndi Lawson, Rosemary McArthur, Vanessa Courage and Peter Royle) who helped me in completing this study. Thank you so much! On this occasion, I would also like to acknowledge Metagenics Company who provided the pills for the Zinc study without any charges at all. I would also like to thank all the volunteers who completed the study without any provided renumeration. They were willing to participate for the sake of science only. I’m really thankful to them!
I would also like to acknowledge my parents, my housemates (Maisara, Fauziah, and Norhalisa) and my other Malaysian communities for their friendship, support and prayers during the course of my study.

A PhD is always a stressful journey and for this matter, I am really thankful to Fernwood Gym Adelaide City, a place where I can go and ease my stress and a place that I can go whenever I’m having breakdown moments. Special credit to Abby, Rachel, Lou, Tam, Eman, Sandy, Sophie and Katrina for being the best gym buddies and also to Tracey for being my personal trainer.

Last but not least, I would like to acknowledge CSIRO Food and Nutritional Sciences for the funding provided to support all the chemicals needed in my study and also to my employer (Universiti Kebangsaan Malaysia) and Ministry of Higher Education, Malaysia who provided the scholarship (tuition fees and living allowances).

Thank you everyone for all the help and support. This thesis wouldn’t be a thesis without all of your support and prayers.

Thank you!
Presentations and Publications arising from the thesis

Abstract/Poster Presentations

Oral Presentations

1. Zinc and Genomic Stability. Wednesday Wrap. School of Medicine, University of Adelaide. 16th September 2009.

2. Zinc and Genomic Stability. Wednesday Wrap. School of Medicine, University of Adelaide. 14th December 2011.

Publications

List of Abbreviations

ACCV Anti Cancer Council of Victoria
AOA Antioxidant Activity
ANOVA Analysis of Variance
AP1 Activator Protein 1
APE Apyrimidinic Endonuclease
ATCC American Type Culture Collection
aTL Absolute Telomere Length
ATM Ataxia Telangiectasia Mutated
ATR Ataxia Telangiectasia and Rad3 Related
ATRIP Ataxia Telangiectasia and Rad3 Related Interacting Protein
AU Arbitrary Unit

BCA Bicinchoninic Acid
BER Base Excision Repair
BN Binucleate
BNed Binucleated
BHMT Betaine-homocysteine-S-methyltranferase
BSA Bovine Serum Albumin

Ca Calcium
CBMN Cyt assay Cytokinesis Block Micronucleus Cytome assay
cDNA Complementary Deoxyribonucleic Acid
CRP C-Reactive Protein
CSIRO Commonwealth Scientific and Industrial Research Organisation
CT Cycle Threshold
Cu Copper
CuSO4 Copper Sulphate
Cu/ZnSOD Copper Zinc Superoxide Dismutase
CV Coefficient of Variation
Cyto-B Cytochalasin B

DCF 2′7′-dichlorofluorescein
DCFH 2′7′-dichlorofluorescein hydrochloride
dH2O Distilled Water
DMSO Dimethyl Sulfoxide
DNA Deoxyribonucleic Acid
DNMT Deoxyribonucleic Acid Methyltransferase
DTT Dithiothreitol
EDTA	Ethylenediaminetetraacetic Acid
ELISA | Enzyme-linked Immunosorbent Assay
eSOD | Erythrocyte Superoxide Dismutase
FapyGua | 2,6-diamino-4-hydroxy-5-formamidopyrimidine
FapyAde | 4,6-diamino-5-formamidopyrimidine
FBS | Foetal Bovine Serum
Fe | Iron
FeCl$_3$.6H$_2$O | Iron Chloride
FFQ | Food Frequency Questionnaire
Fpg | Formanidopyrimidine-DNA Glycosylase
FRAP | Ferric reducing Ability of Plasma
GAPDH | Glyceraldehyde 3-Phosphate Dehydrogenase
gDNA | Genomic Deoxyribonucleic Acid

H$_2$O$_2$ | Hydrogen Peroxide
HBSS | Hanks Balanced Salt Solution
Hcy | Homocysteine
HCl | Hydrochloric Acid
HOK | Human Oral Keratinocyte
HUMN | HUman MicroNucleus/ The International Collaborative Project on Micronucleus Frequency in Human Populations
H$_2$O | Water
ICPOES | Inductively Coupled Plasma Optical Emission Spectrometry
IL-6 | Interleukin-6
IMVS | Institute of Medical and Veterinary Science
IR | Irradiated
K | Potassium
Kb | Kilobases
MDA | Malondialdehyde
Mg | Magnesium
MgCl$_2$ | Magnesium Chloride
MNi | Micronuclei
MNed | Micronucleated
MnSOD | Manganese Superoxide Dismutase
mRNA | Messenger Ribonucleic Acid
MT | Metallothionein
MT1A | Metallothionein-1A
MTR | Methionine Synthase
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide
M2nD | Marginal Zinc Deficiency
Na
Sodium
NaCl
Sodium Chloride
NaF
Sodium Fluoride
NaOH
Sodium Hydroxide
NBud
Nuclear Bud
NDI
Nuclear Division Index
NFκB
Nuclear Factor kappa-light-chain-enhancer of activated B cells
NI
Non Irradiated
NK
Natural Killer
NPD
Nucleoplasmic Bridge
NO
Nitric Oxide
Na₄P₂O₇.10H₂O
Sodium Pyrophosphate
Na₃VO₄
Sodium Orthovanadate

8-OHdG
8-Hydroxy-2-deoxyguanosine
8-oxoG
8-Oxoguanine
8-oxodG
8-Oxo-2'-deoxyguanosine
OGG1
8-Oxoguanine DNA glycosylase
OKM
Oral Keratinocyte Medium
OKGS
Oral Keratinocyte Growth Supplement

P
Phosphorus
p53
p53 Tumor Suppressor genes
PARP
Poly (ADP-ribose) Polymerase
PBL
Peripheral Blood Lymphocyte
PBS
Phosphate Buffered Saline
PCR
Polymerase Chain Reaction
PHA
Phytohemagglutinin
PMSF
Phenylmethanesulfonylfluoride

Q-FISH
Quantitative Fluorescent In Situ Hybridization

RDA
Recommended Daily Allowance
RDI
Recommended Daily Intake
Ref1
Redox Factor-1
RPMI
Roswell Park Memorial Institute
ROS
Reactive Oxygen Species
RT
Real Time
RT
Room Temperature
RTPCR
Real Time Polymerase Chain Reaction

S
Sulphur
SAM
S-adenosyl Methionine
SE
Standard Error
SD
Standard Deviation
SDS
Sodium Dodecyl Sulfate
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide Dismutase</td>
</tr>
<tr>
<td>TANK1</td>
<td>Human Tankyrase 1</td>
</tr>
<tr>
<td>TBAR</td>
<td>Thiobarbituric Acid Reaction</td>
</tr>
<tr>
<td>TBD</td>
<td>Telomere Base Damage</td>
</tr>
<tr>
<td>TI</td>
<td>Tail Intensity</td>
</tr>
<tr>
<td>TL</td>
<td>Telomere Length</td>
</tr>
<tr>
<td>TM</td>
<td>Tail Moment</td>
</tr>
<tr>
<td>TPEN</td>
<td>N,N,N'N'-tetrakis(-)[2-pyridylmethyl]-ethylenediamine</td>
</tr>
<tr>
<td>TPTZ</td>
<td>Tripyridyl Triazine</td>
</tr>
<tr>
<td>WAS</td>
<td>Waite Analytical Service</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WIL2-NS</td>
<td>WIL2-NS Lymphoblastoid Cell Line</td>
</tr>
<tr>
<td>WST-1</td>
<td>2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium monosodium salt</td>
</tr>
<tr>
<td>Zn</td>
<td>Zinc</td>
</tr>
<tr>
<td>ZnC</td>
<td>Zinc Carnosine</td>
</tr>
<tr>
<td>ZnD</td>
<td>Zinc Deficiency</td>
</tr>
<tr>
<td>ZnAD</td>
<td>Zinc Adequate</td>
</tr>
<tr>
<td>ZnSO$_4$</td>
<td>Zinc Sulphate</td>
</tr>
<tr>
<td>ZIP1</td>
<td>ZIP1 human Zinc transporter gene</td>
</tr>
<tr>
<td>γ-H2AX</td>
<td>genes coding for Histone 2A (phosphorylated)</td>
</tr>
</tbody>
</table>