Outdoor Navigation: Time-critical Motion Planning for Nonholonomic Mobile Robots

Mohd Sani Mohamad Hashim

School of Mechanical Engineering
The University of Adelaide
South Australia 5005
Australia

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering on February 2014
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td>1</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xi</td>
</tr>
<tr>
<td>STATE OF ORIGINALITY</td>
<td>xii</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xv</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 MOTIVATION</td>
<td>2</td>
</tr>
<tr>
<td>1.2 RESEARCH AIMS</td>
<td>4</td>
</tr>
<tr>
<td>1.3 LAYOUT OF THESIS</td>
<td>5</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1 MOTION PLANNING ALGORITHMS</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Roadmap path planning</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Cell decomposition path planning</td>
<td>11</td>
</tr>
<tr>
<td>2.1.3 Potential field path planning</td>
<td>12</td>
</tr>
<tr>
<td>2.1.4 Other path planning approaches</td>
<td>16</td>
</tr>
<tr>
<td>2.1.5 Geometric approach for trajectory planning</td>
<td>22</td>
</tr>
<tr>
<td>2.2 NAVIGATION ENVIRONMENTS</td>
<td>25</td>
</tr>
<tr>
<td>2.2.1 Outdoor navigation</td>
<td>26</td>
</tr>
<tr>
<td>2.3 OBSTACLE AVOIDANCE</td>
<td>27</td>
</tr>
<tr>
<td>2.4 MULTIPLE ROBOTS COORDINATION</td>
<td>30</td>
</tr>
<tr>
<td>2.5 SUMMARY AND GAP STATEMENT</td>
<td>32</td>
</tr>
<tr>
<td>3. METHODOLOGY</td>
<td>35</td>
</tr>
<tr>
<td>3.1 STAGE 1: DEVELOPMENT OF ALGORITHMS FOR TIME-CRITICAL MOTION PLANNING</td>
<td>36</td>
</tr>
<tr>
<td>3.2 STAGE 2: OBSTACLE AVOIDANCE APPROACH</td>
<td>36</td>
</tr>
<tr>
<td>3.3 STAGE 3: SIMULATION WORKS</td>
<td>37</td>
</tr>
<tr>
<td>3.4 STAGE 4: HARDWARE PREPARATION AND EXPERIMENTAL WORKS</td>
<td>38</td>
</tr>
<tr>
<td>3.5 CONCLUDING REMARKS</td>
<td>39</td>
</tr>
<tr>
<td>4. DEVELOPMENT OF TIME-CRITICAL MOTION PLANNING ALGORITHMS</td>
<td>40</td>
</tr>
<tr>
<td>4.1 KINEMATIC MODEL OF NONHOLONOMIC MOBILE ROBOT</td>
<td>42</td>
</tr>
<tr>
<td>4.2 BOUNDARY CONDITIONS</td>
<td>43</td>
</tr>
</tbody>
</table>
Table of Contents

4.3 COORDINATE-X EQUATION ... 44
4.4 COORDINATE-Y EQUATION ... 45
4.5 ORIENTATION (θ) EQUATION ... 48
4.6 STEERING ANGLE (φ) EQUATION .. 48
4.7 ANGULAR VELOCITY (υ₀) EQUATION ... 49
4.8 OBSTACLE AVOIDANCE APPROACH ... 49
 4.8.1 Avoiding static obstacles ... 50
 4.8.2 Avoiding moving obstacles ... 51
4.9 CONCLUDING REMARKS ... 54

5. SIMULATION RESULTS AND DISCUSSIONS .. 56
 5.1 SIMULATION ARCHITECTURE ... 57
 5.2 SIMULATED VEHICLE ... 59
 5.3 MATLAB FRAMEWORKS .. 60
 5.4 TRAJECTORY OPTIMIZATION ... 63
 5.4.1 Replanning approach .. 69
 5.5 SIMULATION RESULTS AND DISCUSSIONS 72
 5.5.1 Navigation in static and open-space environments 73
 5.5.2 Navigation in dynamic and open-space environments 83
 5.5.3 Navigation in the city-like environments 93
 5.6 CONCLUDING REMARKS ... 106

6. DEVELOPMENT OF A NONHOLONOMIC MOBILE ROBOT 107
 6.1 ROBOT CONTROLLER ... 110
 6.2 WHEEL ENCODER .. 111
 6.3 DETECTION SENSORS .. 114
 6.4 COMMUNICATION ... 114
 6.5 CALIBRATION OF STEERING ANGLE AND VELOCITY 115
 6.5.1 Steering angle .. 115
 6.5.2 Velocity .. 117
 6.6 OBSTACLE DETECTION ... 119
 6.7 WIRELESS COMMUNICATION .. 120
 6.8 CONCLUDING REMARKS ... 120

7. EXPERIMENTAL RESULTS AND DISCUSSIONS 122
 7.1 EXPERIMENT ARCHITECTURE .. 123
 7.2 EXPERIMENT SETUP ... 124
 7.3 CASE 1: NAVIGATION IN AN OBSTACLE-FREE ENVIRONMENT 125
 7.4 CASE 2: NAVIGATION IN A KNOWN STATIC ENVIRONMENT 130
 7.5 CASE 3: NAVIGATION IN AN UNKNOWN STATIC ENVIRONMENT 135
Table of Contents

7.5.1 Scenario 1: One unknown static obstacle ... 135
7.5.2 Scenario 2: Two unknown static obstacles .. 140
7.6 CASE 4: NAVIGATION IN AN UNKNOWN DYNAMIC ENVIRONMENTS 145
 7.6.1 Scenario 1: Opposite direction of mobile robot .. 145
 7.6.2 Scenario 2: From left-hand side of mobile robot ... 149
 7.6.3 Scenario 3: From right-hand side of mobile robot ... 153
7.7 CONCLUDING REMARKS ... 156

8. CONCLUSIONS AND FUTURE WORKS .. 158

CONTRIBUTIONS ... 159
FUTURE WORKS .. 161

REFERENCE ... 163

APPENDIX A .. 167
APPENDIX B .. 172
LIST OF FIGURES

Figure 2.1 Path generation (a) Path constraints made of four required postures (b) Generated path (Delingette et al., 1991). ... 8
Figure 2.2 Roadmap approach (a) Visibility Graph (Jiang et al., 1997). (b) Voronoi diagram (Siegwart and Nourbakhsh, 2004). ... 9
Figure 2.3 Cell decomposition method (a) A fixed-resolution grid. (b) A triangulation (Ge and Lewis, 2006). ... 11
Figure 2.4 Simulation results by using (a) trapezoidal decomposition and (b) triangular decomposition (Ghita and Kloetzer, 2012). 12
Figure 2.5 Potential field method (Safadi, 2007). ... 13
Figure 2.6 Path generated by the navigation algorithm (Cosio and Castaneda, 2004). .. 14
Figure 2.7 Implementation of the proposed algorithm by Koh and Cho (Koh and Cho, 1999). ... 17
Figure 2.8 Results from the information-based method (Mihaylova et al., 2003) 18
Figure 2.9 Cell mapping model (a) with 30^5 cells. (b) with 40^5 cells (Li and Wang, 2003). ... 18
Figure 2.10 (a) Generated trajectory (b) Velocity profile (c) Acceleration profile (Prado et al., 2003). ... 19
Figure 2.11 Neuro-fuzzy approach (Hui et al., 2006). ... 20
Figure 2.12 Generated trajectory with several control points (Haddad et al., 2007). .. 21
Figure 2.13 Simulation results in (a) a complex scenario, and (b) a long corridor (Ma et al., 2013). ... 21
Figure 2.14 Different types of curves used to connect four postures for path generation (Shin and Singh, 1990). .. 22
Figure 2.15 An optimal path (a) minimum energy, (b) minimum travel distance, and (c) minimum travel time (Liu and Sun, 2011). 25
Figure 2.16 Outdoor navigation (a) Pioneer3-AT with URG and SICK (Chang et al., 2009) (b) The Cycab used in the experimental works (Zhang et al., 2006). ... 26
Figure 2.17 Plan view of the observer moving in dynamic environment (a) Exocentric reference frame (b) Egocentric reference frame (Fajen and Warren, 2003). ... 28
Figure 2.18 Avoiding a dynamic obstacle (Jolly et al., 2008) .. 30
Figure 2.19 A group of robots in hunting operation (Yamaguchi, 2003) 31
Figure 2.20 Subtasks of construction task (Stroupe et al., 2005) 31
Figure 2.21 Overview of the system (Klancar et al., 2004) 32
Figure 3.1 Stages for proposed methodology .. 35
Figure 3.2 Generalized steps for avoiding an obstacle ... 37
Figure 3.3 The modified mobile robot used in the experimental works 38
Figure 4.1 Flowchart of the proposed algorithms .. 41
Figure 4.2 A car-like mobile robot .. 42
Figure 4.3 Avoiding a detected static obstacle which is unknown in priori 50
Figure 4.4 Avoiding a moving obstacle (a) perpendicular direction to the mobile robot and (b) in opposition to the mobile robot .. 52
Figure 4.5 Collision prediction approach (a) before detection of the obstacle, (b) first detection, (c) predicted position falls inside the collision radius, and (d) obstacle avoidance approach implemented 53
Figure 5.1 Simulation process flowchart ... 58
Figure 5.2 Geometric model of a mobile robot ... 59
Figure 5.3 Simulated Laser Range Finder ... 61
Figure 5.4 Simulation map with static and moving obstacles 62
Figure 5.5 The Graphical User Interface (GUI) for simulation framework (a) Input GUI, (b) Output GUI .. 63
Figure 5.6 Original trajectory plan .. 64
Figure 5.7 Final result of the trajectory ... 65
Figure 5.9 Steering angle profiles (a) Planned steering angle (red line) against adjusted steering angle (red dashed), and (b) adjusted steering angle (red dashed) against actual steering angle (blue line) .. 66
Figure 5.10 Velocity profiles (a) Planned velocity (red line) against adjusted velocity (red dashed), and (b) adjusted velocity (red dashed) against actual velocity (blue line) ... 67
Figure 5.11 Adjusted trajectory (red dashed) against actual trajectory (blue line) 68
Figure 5.12 Prior map with two waypoints connecting the initial and final point 70
Figure 5.13 Simulation results with replanning approach ...71
Figure 5.14 A complicated obstructed environment ..73
Figure 5.15 One mobile robot navigates in the environment75
Figure 5.16 Robot 1: Planned (red) against actual (blue) plot for (a) orientation,
 (b) steering angle, (c) velocity, and (d) location ...76
Figure 5.17 Two mobile robots navigate in the environment78
Figure 5.18 Robot 2: Planned (red) against actual (blue) plot for (a) orientation,
 (b) steering angle, (c) velocity, and (d) position ...79
Figure 5.19 Three mobile robots navigate in the environment81
Figure 5.20 Robot 3: Planned (red) against actual (blue) plot for (a) orientation,
 (b) steering angle, (c) velocity, and (d) position ...82
Figure 5.21 Simulated environment for Case 4 ..83
Figure 5.22 One mobile robot navigates in a dynamic environment85
Figure 5.23 Robot 1: Planned (red) against actual (blue) plot for (a) orientation,
 (b) steering angle, (c) velocity, and (d) position ...86
Figure 5.24 Simulated environment for Case 5 ..87
Figure 5.25 Two mobile robots navigate in a dynamic environment88
Figure 5.26 Robot 2: Planned (red) against actual (blue) plot for (a) orientation,
 (b) steering angle, (c) velocity, and (d) position ...89
Figure 5.27 Simulated environment for Case 6 ..90
Figure 5.28 Three mobile robots navigate in a dynamic environment91
Figure 5.29 Robot 3: Planned (red) against actual (blue) plot for (a) orientation,
 (b) steering angle, (c) velocity, and (d) position ...92
Figure 5.30 (a) A simplified city-like map, (b) Multiple waypoints trajectory
 planning ..95
Figure 5.31 Initial trajectories in a city-like map ..96
Figure 5.32 (a) Before detecting an obstacle. (b) Obstacle detected at the 9th
 second. (c) Starts to move along new trajectory. (d) Reaches the first
 waypoint at the 30th second ..97
Figure 5.33 (a) Before detecting an obstacle. (b) Obstacle detected at the 67th
 sec. (c) Starts to move along new trajectory. (d) Passes through
 moving obstacle safely ...98
Figure 5.34 (a) Before detecting an obstacle. (b) Obstacle detected at the 68th sec. (c) Starts to move along new trajectory. (d) Passes through moving obstacle safely.

Figure 5.35 Final result at the 120th second.

Figure 5.36 Second scenario with two mobile robots and one moving obstacle.

Figure 5.37 Final result at the 120th second for second scenario.

Figure 5.38 Third scenario with three mobile robots and two moving obstacles.

Figure 5.39 Final result at 100th second for third scenario.

Figure 6.1 The modified car-like robot used in experimental works.

Figure 6.2 Mobile robot platform.

Figure 6.3 Sensor platform.

Figure 6.4 Sensor platform attached to the mobile robot platform.

Figure 6.5 Robot controller.

Figure 6.6 (a) Magnets mounting attached at the wheel (b) Hall Effect sensors attached at the rear axle.

Figure 6.7 Hall effect sensor.

Figure 6.8 Location of the wheel encoder.

Figure 6.9 Magnet mounting of encoder.

Figure 6.10 (a) Ultrasonic range sensors (b) Sensor attached to the sensor base.

Figure 6.11 Wireless communication (a) Router (b) Coordinator.

Figure 6.12 Calibration work for establishment of steering angle.

Figure 6.13 Relation between PWM values and steering angle.

Figure 6.14 Calibration work for establishment of velocity.

Figure 6.15 Relation between PWM values and speed.

Figure 6.16 Obstacle detection range for experimental works.

Figure 6.17 Wireless communication between the operator and the router (robot).

Figure 7.1 Experimental work flow.

Figure 7.2 Testing arena.

Figure 7.4 Mobile robot navigated in an obstacle-free environment (simulation).

Figure 7.5 Mobile robot navigated in an obstacle-free environment (experiment).

Figure 7.6 Case 1: Trajectory planning without an obstacle.

Figure 7.7 Experimental setup for Case 2.

Figure 7.8 Mobile robot navigated in a known static environment (simulation).
Figure 7.9 Mobile robot navigated in a known static environment (experiment).132
Figure 7.10 (a) Case 2: Trajectory planning with a known static obstacle, (b) Experimental results..133
Figure 7.11 (a) Plan view (b) Actual experimental setup for Scenario 1136
Figure 7.12 Initial collision-free trajectory for Case 3 ..136
Figure 7.13 Mobile robot navigates in the unknown static environment (simulation)...137
Figure 7.14 Mobile robot navigates in the unknown static environment (experiment)...138
Figure 7.15 Theoretical and actual trajectory for Case 3139
Figure 7.16 Experimental setup for Scenario 2 ..140
Figure 7.17 Mobile robot navigates through two unknown obstacles (simulation)...142
Figure 7.18 Mobile robot navigates through two unknown obstacles (experiment)...143
Figure 7.19 Theoretical and actual trajectory for Case 4144
Figure 7.20 Moving obstacle coming from the opposite direction of the mobile robot ...145
Figure 7.21 Scenario 1: Moving obstacle from the opposite direction of the mobile robot (simulation) ...146
Figure 7.22 Scenario 1: Moving obstacle from the opposite direction of the mobile robot (experiment) ...147
Figure 7.23 Theoretical and actual trajectory for scenario 1148
Figure 7.24 Moving obstacle coming from left-hand side of the mobile robot......149
Figure 7.25 Scenario 2: Moving obstacle from the left-hand side of the mobile robot (simulation)..150
Figure 7.26 Scenario 2: Moving obstacle from the left-hand side of the mobile robot (experiment) ...151
Figure 7.27 Theoretical and actual trajectory for scenario 2152
Figure 7.28 Moving obstacle coming from right-hand side of the mobile robot....153
Figure 7.29 Scenario 3: Moving obstacle from the right-hand side of the mobile robot (simulation)...154
Figure 7.30 Scenario 3: Moving obstacle from the right-hand side of the mobile robot (experiment) ...155
Figure 7.31 Theoretical and actual trajectory for scenario 3156
LIST OF TABLES

Table 2.1 Intrinsic splines’ family (Delingette et al., 1991) ... 24
Table 5.1 Input data for replanning approach scenario .. 69
Table 5.2 Actual collected data of simulation without replanning approach 70
Table 5.3 Actual collected data with replanning approach .. 72
Table 5.4 Input data for simulation Case 1 .. 74
Table 5.5 Actual data collected at the final point for Case 1 ... 76
Table 5.6 Input data for simulation Case 2 .. 77
Table 5.7 Actual data collected at the final point for Case 2 ... 79
Table 5.8 Input data for simulation Case 3 .. 80
Table 5.9 Actual data collected at the final point for Case 3 ... 82
Table 5.10 Input data for simulation Case 4 ... 84
Table 5.11 Actual data collected at the final point for Case 4 ... 86
Table 5.12 Input data for simulation Case 5 ... 87
Table 5.13 Actual data collected at the final point for Case 5 ... 89
Table 5.14 Input data for simulation Case 6 ... 90
Table 5.15 Actual data collected at the final point for Case 6 ... 93
Table 5.16 Parameters for the first mobile robot (R1) .. 94
Table 5.17 Parameters for the second mobile robot (R2) .. 94
Table 5.18 Table 3 Errors for Case 1 at final point ... 100
Table 5.19 Parameters for second simulation case ... 102
Table 5.20 Errors for Case 2 at the final point ... 103
Table 5.21 Parameters for third simulation case ... 104
Table 5.22 Errors for Case 3 at the final point ... 105
Table 6.1 Steering angles under different PWM values ... 116
Table 6.2 Velocities under different PWM values ... 118
Table 7.1 Actual initial and final positions for Case 1 ... 129
Table 7.2 Actual initial and final positions for Case 2 ... 134
Table 7.3 Actual initial and final positions for Case 3 ... 140
Table 7.4 Actual initial and final positions for Case 4 ... 144
ABSTRACT

The question of timing in mobile robot navigation still remains an area of research not thoroughly investigated. In certain situations, a mobile robot may need not only to reach a desired location safely, but to arrive at that location at a specified time. Such a situation may have significant ramifications for applications to which a robot is tasked, for example patrolling large areas, delivering goods or coordinating multiple mobile robots. Thus, it is important for a mobile robot to be able to plan its trajectories and movements in order to navigate from initial location to a final destination whilst considering timing, orientation and velocity. Furthermore, it should also be able to detect and avoid any obstacles encountered in its path during navigating through the environment.

The aim of this research is therefore to develop a time-critical motion planning algorithm, which includes planning the trajectory, position and orientation of a mobile robot, with obstacle avoidance capability for a single or multiple nonholonomic mobile robots. In addition, the mobile robot should be able to replan its original trajectories in order to ‘make up’ any loss of time caused by avoiding obstacles. An Ackermann car-like robot has been considered specifically during the development stage, with consideration given to the kinematic and dynamic constraints of nonholonomic mobile robot in general. The resultant algorithm is based on the geometric approach.

In achieving the research objectives, this study is conducted in four stages. The first stage deals with the development of a new algorithm for time-critical motion planning in order to navigate safely in an environment, to reach the specified location at the specified time, with the required orientation, velocity and with the consideration of the kinematic and dynamic constraints of the mobile robot. In the second stage, the algorithm should have the capability to avoid any unknown static and dynamic obstacles when the mobile robot starts to move from its initial point. The algorithm should have the ability to replan its original trajectory to compensate for time loss due to avoiding obstacles. Prior to experimental works, the simulations will be carried out to ascertain the effectiveness of the algorithm. In the final stage, experimental works will be undertaken to validate the algorithms utilising an Ackermann car-like robot.
STATE OF ORIGINALITY

To the best of my knowledge, except where otherwise referenced and cited, everything that is presented in this thesis is my own original work and has not been presented previously for the award of any other degree or diploma in any university. If accepted for the award of the degree of Doctor of Philosophy in Mechanical Engineering, I consent that this thesis be made available for loan and photocopying.

Mohd Sani Mohamad Hashim

Date
PUBLICATIONS

Conference papers (Main author)

Conference papers (Co-author)

Journal papers

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of a number of people. I would initially like to thank my father, Mohamad Hashim and my mother, Norriah Salleh as well as my family who have continuous support and motivate me throughout my PhD study in Australia.

I wish to thank my principal supervisor Dr. Tien-Fu Lu for his help, patient guidance and encouragement throughout the period of this project. I would also like to thank my co-supervisor Dr Lei Chen for his valuable suggestions. Special thanks also go to my colleagues; ZhenZhang, Tommie, Xinrui, Guntur, Kuan and Sukri.

The help and support from people in School of Mechanical Engineering have also been invaluable. I would like to thank colleague from the electronics and mechanical workshop; Philip Schmidt, Norio Itsumi and Billy Constantine. I would also like to thank Ms. Karen Adams for her helpful language support research and to who involve directly and indirectly throughout my PhD.