EFFICACY OF PRO-APOPTOTIC RECEPTOR AGONISTS IN THE TREATMENT OF PRIMARY BREAST CANCER AND BONE METASTASIS

IRENE ZINONOS B.Hlth.Sc. (Hons)

A Thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy in The Discipline of Surgery, School of Medicine Faculty of Health Sciences The University of Adelaide

July 2012
TABLE OF CONTENTS

DECLARATION .. IX

ACKNOWLEDGMENTS ... X

ABSTRACT ... XIV

CONFERENCE PRESENTATIONS .. XVI

PRIZES AWARDED ... XX

CHAPTER 1 ... 1

- INTRODUCTION ... 1
- BREAST CANCER ... 2
 Classification .. 2
 Incidence and Mortality .. 3
 Risk Factors and epidemiology ... 3
 Breast Cancer Treatments ... 5
 Breast Cancer and Metastasis .. 6
 Breast Cancer Metastasis to the Bone: a multistep process ... 6
 Epithelia to Mesenchymal Transition (EMT) .. 7
 Metastatic Theories .. 8
 Pre-metastatic niche ... 9
 Establishment of the metastatic spread and vascularisation ... 10
- NORMAL BONE REMODELLING - RANKL/RANK/OPG SYSTEM 12
- THE “VICIOUS CYCLE” OF BONE METASTASIS ... 13
- APOPTOSIS .. 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Extrinsic and Intrinsic Apoptotic Pathways</td>
<td>19</td>
</tr>
<tr>
<td>Targeting the Extrinsic Apoptotic Pathway</td>
<td>23</td>
</tr>
<tr>
<td>APO2L/TRAIL AND ITS DEATH AND DECOY RECEPTORS</td>
<td>24</td>
</tr>
<tr>
<td>Apo2L/TRAIL in Cancer Therapy</td>
<td>25</td>
</tr>
<tr>
<td>Monoclonal Antibodies in Cancer Therapy</td>
<td>28</td>
</tr>
<tr>
<td>DROZITUMAB</td>
<td>30</td>
</tr>
<tr>
<td>AIMS AND SIGNIFICANCE OF THE PROJECT</td>
<td>32</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>34</td>
</tr>
<tr>
<td>APOMAB, A FULLY HUMAN AGONISTIC ANTIBODY TO DR5 EXHIBITS</td>
<td></td>
</tr>
<tr>
<td>POTENT ANTITUMOUR ACTIVITY AGAINST PRIMARY AND METASTATIC BREAST CANCER</td>
<td>34</td>
</tr>
<tr>
<td>STATEMENT OF AUTHORSHIP</td>
<td>36</td>
</tr>
<tr>
<td>FACULTY OF 1000 MEDICINE COMMENTARY</td>
<td>41</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>44</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>44</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>45</td>
</tr>
<tr>
<td>Cells</td>
<td>45</td>
</tr>
<tr>
<td>Reagents</td>
<td>45</td>
</tr>
<tr>
<td>Cell viability assays</td>
<td>45</td>
</tr>
<tr>
<td>Retroviral infection of MDA-MB-231-TXSA cells with the triple reporter gene construct SFG-NES-TGL</td>
<td>45</td>
</tr>
<tr>
<td>Western blot analysis</td>
<td>45</td>
</tr>
<tr>
<td>Animals</td>
<td>46</td>
</tr>
<tr>
<td>Mammary fat pad injections of breast cancer cells</td>
<td>46</td>
</tr>
</tbody>
</table>
Intratibial injections of breast cancer cells .. 46

In vivo bioluminescent imaging .. 46

Microcomputed tomography analysis .. 46

In vivo live microcomputed tomography ... 46

Ex vivo micro-CT imaging ... 46

Histology .. 46

Data analysis and statistics ... 46

RESULTS .. 47

Effect of Apomab on breast cancer cells and on normal primary cell cultures 47

Effect of Apomab as a single agent on the growth of orthotopic breast cancer
xenografts .. 48

Effect of Apomab on breast cancer-induced bone destruction 49

DISCUSSION .. 51

REFERENCES ... 54

CHAPTER 3 ... 56

DOXORUBICIN OVERCOMES RESISTANCE TO DROZITUMAB BASED-IMMUNOTHERAPY IN A
MOUSE MODEL OF BREAST CANCER ... 56

STATEMENT OF AUTHORSHIP ... 58

ABSTRACT ... 63

INTRODUCTION .. 64

MATERIALS AND METHODS .. 67

Cell lines and tissue culture ... 67

Reagents .. 67

Generation of drozitumab-resistant MDA-MB-231-TXSA-TGL cells in vitro 67
Cell viability assays...68
Flow cytometry analysis (FACs) for cell surface expression of DR4 and DR5
..68
Western blot analysis ...68
Apoptosis analysis..70
4,6-Diamidine-2-phenylindole staining of nuclei (DAPI stain). ...70
Measurement of DEVD-caspase activity ...70
Animals ..71
Mammary fat pad injections of breast cancer cells ...71
In vivo bioluminescent imaging (BLI) ..72
Data analysis and statistics ..72
RESULTS ...73
Generation of drozitumab-resistant MDA-MB-231-TXSA breast cancer cells73
Combination of drozitumab and DOX against MDA-MB-231-TXSA-droz-R
cells in vitro ...76
Anticancer efficacy of drozitumab and DOX on the growth of mammary
xenografts ..82
DISCUSSION ...88

CHAPTER 4..92

ANTICANCER EFFICACY OF Apo2L/TRAIL IS RETAINED IN THE PRESENCE OF HIGH AND
BIOLOGICALLY ACTIVE CONCENTRATIONS OF OSTEOPROTEGERIN IN VIVO.92
STATEMENT OF AUTHORSHIP ...94
ABSTRACT ...99
INTRODUCTION ...99
MATERIALS AND METHODS .. 100

Cell lines and tissue culture .. 100
Reagents ... 100
Generation of luciferase-tagged MB-231-TXSA cells ... 100
Generation of luciferase-tagged MB-231-TXSA-TGL overexpressing native human OPG .. 100
RT-PCR ... 101
Cell viability assays ... 101
DAPI staining of nuclei ... 101
Western blot analysis ... 101
Preparation of conditioned media and detection of OPG by ELISA .. 101
Detection of OPG by immunoprecipitation .. 101
Challenge with Apo2L/TRAIL in the presence of CM from MG-63 cells and BMSCs 102
Osteoclast assays .. 102
Animals ... 102
Intratibial injection model .. 102
Bioluminescence imaging (BLI) of tumour growth ... 102
Micro-computed tomographic (μCT) analysis .. 102
Histology .. 103
Data analysis and statistics ... 103

RESULTS .. 103

Apo2L/TRAIL induces apoptosis in breast cancer cells lines in vitro .. 103
Generation and characterization of breast cancer cells overexpressing full length-human OPG .. 103
Biologic activity of OPG secreted by transfected cells..........................104

Effect of OPG overexpression of Apo2L/TRAIL-induced apoptosis of MB-231-TXSA cells in vitro ...105

Anticancer efficacy of Apo2L/TRAIL against OPG-overexpressing intratibial
tumors ...105

DISCUSSION ...107

REFERENCES ...111

CHAPTER 5 ..113

LOCAL PRODUCTION OF OSTEOPROTEGERIN BY BREAST CANCER CELLS INHIBITS
CANCER-INDUCED OSTEOLYSIS AND INTRA-OSSEOUS TUMOUR BURDEN BUT PROMOTES
PULMONARY METASTASIS ..113

STATEMENT OF AUTHORSHIP ..115

ABSTRACT ..121

INTRODUCTION ..122

MATERIALS AND METHODS ..124

- Cell lines and tissue culture...124
- Animals ...124
- Intratibial injection model...125
- Preparation of blood serum and detection of OPG by ELISA125
- Bioluminescence imaging (BLI) of tumour growth..............................126
- Micro-computed (μCT) tomography analysis126
- Histology ...127
- Data analysis and statistics...127

RESULTS ..130
OPG over-expressed by breast cancer cells does not affect total tumour burden

in vivo ... 130

OPG over-expression inhibits cancer-induced osteolysis ... 131

OPG secreted by breast cancer cells maintains skeletal integrity but alters the

intra- and extra-medullary tumour distribution .. 134

OPG secreted by breast cancer cells promotes pulmonary metastasis by failing
to restrain extra-medullary tumour growth ... 137

DISCUSSION .. 141

CHAPTER 6 .. 146

DISCUSSION .. 146

CRITICAL EVALUATION ... 156

Animal Xenograft Models ... 156

Generation of cancer cell-resistance .. 157

FUTURE DIRECTIONS .. 159

BIBLIOGRAPHY ... 163

Bibliography .. 164
DECLARATION

NAME: Irene Zinonos

PROGRAM: PhD

This work contains no material which has been accepted for the award of any other degree* or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis resides with the Copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

*Due to the publication format of this thesis, Chapter 2 contains results also presented in my Honours Thesis.

SIGNATURE:...DATE:....................................
“Ithaca”, a very famous poem by Konstantinos Kavafis (one of the greatest Greek poets) describes Odysseus’ long journey to return home after the Trojan War. Kavafis explains how important his journey was, even though it was beset by perils and misfortunes. Odysseus learnt valuable lessons and gained experience, he never gave up and he eventually arrived home to his beautiful wife Penelope and son Telemachus.

Ithaca has given you the beautiful voyage
Without her you would never have taken the road
But she has nothing more to give you
And if you find her poor, Ithaca has not defrauded you
With the wisdom you have gained, with so much experience, you must surely have understood by then what Ithacas mean.
The poem suggests that, had it not been for the desire of Odysseus to return to Ithaca, all the experiences along the way would have been missed. So, the journey AND the destination share the same importance in life, which brings me to my Ithaca, my PhD! I have finally arrived to my destination! The desire to complete my PhD, made the journey so much more enjoyable and the journey, with all the great things it taught me along the way, made the destination so much more important. However, experiencing this journey and eventually arriving to my destination would not have been possible if it wasn’t for the support, guidance and love of many great people.

Firstly and foremost I owe me deepest gratitude to my supervisor and my mentor, Prof Andreas Evdokiou for giving me the opportunity to undertake this project, work with him and learn from his expertise. I would not have been able to complete this journey without your support and guidance. Your enthusiasm for our research is contagious and your hard work and passion has inspired me and set an example I really hope to match one day. I thank you from the bottom of my heart for trusting me with one of your projects and I hope I lived up to your expectations. I now know how privileged I have been to have someone like you to guide me and be my mentor. I will always be grateful!

I would like to express my gratitude to my co-supervisor Dr Agatha Labrinidis whom I immensely respect and look up to. You taught me everything I know and for that I cannot thank you enough. Your assistance, support and guidance were invaluable to me and I know I will become a better scientist just by following your example. I would also like to extend my very special thanks to Prof David Findlay whom I greatly respect and admire. Your vast knowledge and experience in our field were of great value and your advice and thoughtful guidance could not have been more appreciated.

My deepest appreciation to the funding bodies of this project, the University of Adelaide (APA) and the IMVS (Dawes Scholarship).
My biggest thanks and gratitude from the bottom of my heart go to Shelley Hay and Bill Liapis for sharing their experience in the lab with me and creating a friendly and welcoming environment to work in. You guys are amazing! I especially thank you for your invaluable help and support during my thesis writing. I would not have been able to finish it if it wasn’t for your encouraging smile every day. I would also like to express my deepest thanks to my “lab friend” Renee Ormsby for her lovely company, the great conversations and laughs we had which I will remember and cherish forever. Thank you to Bill Panagopoulos, Mark DeNichilo, A/Prof Gerald Atkins, Michelle Lee, Katie Weldon, Asiri Wijenayaka, Masakuzo Kogawa and Nobuaki Ito for creating the best environment to work in. It was a pleasure to meet and work with you all! These three years would not have been such a happy time in my life if it wasn’t for all the new friends I made. Thank you to Geetha, Shalini, Amanda, Mariea, Nisha, Ranjani, Erin, Lauren, Damien, Sian and Caroline and all the other people at the BHI. You guys made my day every day and I know I have made friends for life. Thank you for everything! A special thank you to my dearest friends Shalini and Sozos for editing my thesis and picking up all my careless mistakes. I really appreciate it guys and I hope I can return the favour!

Last but definitely not least I owe my deepest gratitude and appreciation to my family and friends. Mum and Dad, you are the most important people on this planet for me, and I cannot thank you enough for all the sacrifices you had to make for us. Without your constant support and love, I wouldn’t have been able to achieve so many things in life. Andrea, Stavri, Christofore, Charalambia, Maria, Eleni, Orthodoxia and Eustahie you are the best siblings anyone could ask for and I love you so much. Thanks to your kind messages and lovely phone calls you guys put a smile on my face every time! To my “foster” parents, Helen and George, I cannot find words to express how much I appreciate everything that you have done for me in the last 5 years. I owe you so much and I will always be grateful! Aunt Anna and Uncle
Mario, I love you so much. You are the kindest people I know. I thank you so much for taking me and supporting me along the way.

To my best friends Sozo, Chrysa, Taso and Effie, you guys are my rock; I could not have done this without your love and support, even though you are so far away. I love you all very much and thank you from the bottom of my heart!!
ABSTRACT

Breast cancer is the most common malignancy among women which frequently metastasises to the bone. Despite the significant improvements in detecting and treating primary breast cancer, metastatic breast cancer remains a challenging condition to treat. The studies presented in this thesis were aimed to exploit the therapeutic potential of Pro-Apoptotic Receptor Agonists (PARAs) including the recombinant TNF-related apoptosis-inducing ligand, Apo2L/TRAIL, and its agonistic monoclonal antibody, drozitumab, for the treatment of primary breast cancer and bone metastases in vitro and in vivo.

Drozitumab is a fully human agonistic monoclonal antibody which binds to Apo2L/TRAIL death receptor DR5 and triggers apoptosis. The anticancer efficacy of drozitumab was evaluated using murine models of breast cancer xenografted at the orthotopic site and in bone. In vitro, drozitumab induced apoptosis in various human breast cancer cell lines, without being toxic to normal cells. In vivo, drozitumab exerted remarkable tumour suppressive activity as a single agent and co-operated with chemotherapeutic drugs, for increased efficacy against mammary tumours. In addition, drozitumab treatment completely inhibited tumour growth in bone, even in animal having well-advanced tibial tumours, leading to complete resolution of osteolytic lesions.

Osteoprotegerin (OPG) is a soluble member of the TNF receptor superfamily, which binds the receptor activator of NF-kB (RANKL) and inhibits bone resorption. OPG can also bind and inhibit the activity of Apo2L/TRAIL, raising the possibility that the anticancer efficacy of Apo2L/TRAIL may be abrogated in the bone microenvironment, where OPG expression is high. In vitro, breast cancer cells engineered to overexpress OPG were protected from Apo2L/TRAIL-induced apoptosis. However, when mice were injected intratibially with cells overexpressing OPG, Apo2L/TRAIL treatment resulted in strong growth inhibition of
OPG overexpressing intratibial tumours indicating that OPG levels in bone, even in the face of supra-physiological concentrations, are unlikely to play a significant role in modulating Apo2L/TRAIL therapeutic potential.

Previous preclinical studies have shown that systemic administration of recombinant OPG inhibited tumour growth in bone and prevented cancer-induced osteolysis. However, the data presented in this thesis have demonstrated that while overexpression of OPG by breast cancer cells protected the bone from cancer-induced osteolysis, it was without effect on overall tumour burden. Despite the OPG-mediated bone protection, OPG overexpression led to a significant increase in the incidence of pulmonary metastasis. These results suggest that OPG-mediated inhibition of bone resorption modulates the bone microenvironment and it may affect the likelihood of cancer cells spreading elsewhere in the body. This also suggests that other anti-resorptive therapeutic agents including bisphosphonates (BPs), which have been the standard care for patients with skeletal malignancies, have the potential to harm by promoting cancer metastasis to other non-skeletal sites.

In conclusion, the data presented in this thesis demonstrate that drozitumab and Apo2L/TRAIL represent potent immunotherapeutic agents with strong activity as single agents and in combination with conventional chemotherapy against the development and progression of breast cancer. In addition, these studies provide important preclinical evidence that modulating the bone microenvironment by inhibiting osteoclastic bone resorption may not always be beneficial, a phenomenon which needs further investigation.
CONFERENCE PRESENTATIONS

• Irene Zinonos, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino, David M Findlay, and Andreas Evdokiou.
Local production of Osteoprotegerin by breast cancer cells inhibits cancer-induced osteolysis but promotes pulmonary metastasis. Faculty of Health Sciences 2010 Postgraduate Research Expo, University of Adelaide, Adelaide-SA. Poster presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino, David M Findlay, and Andreas Evdokiou.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino, David M Findlay, and Andreas Evdokiou.

Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin in vivo. Faculty of Health Sciences 2010 Postgraduate Research Expo, University of Adelaide, Adelaide-SA. Poster presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino, David M Findlay, and Andreas Evdokiou.

Apomab, a fully human agonistic DR5 monoclonal antibody, inhibits tumour growth and osteolysis in murine models of breast cancer development and progression. 20th
Annual Scientific Meeting of the ANZBMS 5-8 September 2010, Adelaide-SA. Oral Presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino David M Findlay, and Andreas Evdokiou.

 Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin *in vivo*. 20th Annual Scientific Meeting of the ANZBMS 5-8 September 2010, Adelaide-SA. Poster Presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino David M Findlay, and Andreas Evdokiou.

 Our Battle with Bone Cancer. 3 minutes Thesis Competition. Faculty of Health Sciences, University of Adelaide. Oral Presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino David M Findlay, and Andreas Evdokiou.

 Anticancer efficacy of Apo2L/TRAIL is retained in the presence of high and biologically active concentrations of osteoprotegerin *in vivo*. ASMR Medical Research Week, SA Scientific Meeting 2010, Adelaide-SA. Oral Presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino David M Findlay, and Andreas Evdokiou.
Apomab, a fully human agonistic DR5 monoclonal antibody, inhibits tumour growth and osteolysis in murine models of breast cancer development and progression. 6th Clare Valley Bone Meeting, 2010, Adelaide-SA. Oral Presentation.

- **Irene Zinonos**, Agatha Labrinidis, Michelle Lee, Vasilios Liapis, Shelley Hay, Vladimir Ponomarev, Peter Diamond, Andrew CW Zannettino David M Findlay, and Andreas Evdokiou.

PRIZES AWARDED

- Best Oral Presentation in the category for Senior PhD Students (Laboratory), Research Day 12 October 2012, Basil Hetzel Institute, The Queen Elizabeth Hospital, Adelaide, SA.

- Best Poster Presentation for the School of Medicine. 2012 Postgraduate Research Expo, 31 August 2011, University of Adelaide, Adelaide-SA.

- Best Oral Presentation in the category for Senior PhD Students (Laboratory), Research Day 14 October 2011, Basil Hetzel Institute, The Queen Elizabeth Hospital, Adelaide, SA.

- Best Poster Presentation for the School of Medicine, 2011 Postgraduate Research Expo, 25 August 2011, University of Adelaide, Adelaide-SA.

- Best Poster Presentation for the Faculty of Health Sciences Faculty of Health Sciences. 2011 Postgraduate Research Expo, 25 August 2011, University of Adelaide, Adelaide-SA.

- Travelling Fellowship form the Faculty of Health Sciences Postgraduate, April 2011, University of Adelaide, Adelaide, SA.

- ECTS/IBMS Travel Award, 3rd Joint Meeting of the European Calcified Tissue Society and the International Bone and Mineral Society, 7-11 May 2001, Athens, Greece.

- Roger Melick Young Investigator Award, 20th Annual Scientific Meeting of the ANZBMS 5-8 September 2010, Adelaide-SA.
• Best Poster Presentation for the Faculty of Health Sciences 2010 Postgraduate Research Expo, University of Adelaide, 1 September 2010, Adelaide-SA.