Non-Invasive Imaging of Atherosclerotic Plaque
Prior to Percutaneous Interventional Procedures

Gary Y. H. Liew

MBBS, FRACP
Diplomate of Certification Board of Cardiovascular Computed Tomography
(CBCCT – United States of America)

Department of Medicine
Faculty of Health Sciences
The University of Adelaide
&
Cardiovascular Research Center
Royal Adelaide Hospital
Adelaide, South Australia
AUSTRALIA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy
Department of Medicine
University of Adelaide
May 2012
TABLE OF CONTENTS

Table of Contents ... ii
Abstract .. vii
Declaration .. ix
Acknowledgment ... x
Thesis Related Publications ... xii
Thesis related Published Abstracts ... xiii
Thesis Related Scholarship and Awards ... xv
Abbreviations .. xvi
Chapter 1 .. 1
Literature Review ... 1
1.1 Introduction .. 2
1.2.1 Histology .. 4
1.2.2 Pathogenesis ... 5
1.2.2.1 Flow & Mechanical Factors ... 7
1.2.2.2 Endothelial dysfunction .. 7
1.2.2.3 Inflammation .. 8
1.2.2.4 Dyslipidaemia ... 9
1.2.2.5 Infection .. 10
1.2.3 Arterial Remodelling .. 13
1.2.3.1 Saphenous vein graft remodelling .. 15
1.2.4 Vulnerable Plaque ... 16
1.2.4.1 Plaque Rupture ... 21
1.2.4.2 Plaque size and composition ... 23
1.3.1 Invasive Techniques ... 31
 1.3.1.1 Intravascular Ultrasound .. 31
 1.3.1.2 Virtual Histology ... 34
 1.3.1.3 Optical Coherence Tomography .. 35
 1.3.1.4 Angioscopy ... 37
 1.3.1.5 Intravascular Palpography ... 38
 1.3.1.6 Thermography .. 39
 1.3.1.7 Near-Infrared Spectroscopy .. 41

1.3.2 Non-invasive imaging of atherosclerotic plaque 42
 1.3.2.1 Multi-detector computed tomography (MDCT) 42
 1.3.2.2 Magnetic Resonance Imaging ... 54
 1.3.2.3 Positron Emission Tomography 59

1.3.3 Conclusions ... 62

1.4 Saphenous Vein Graft Disease .. 63
 1.4.1 Pathogenesis of SVG disease ... 63
 1.4.2 Prevention of SVG disease ... 66
 1.4.3 Repeat CABG for SVG disease ... 67
 1.4.4 Percutaneous Coronary Intervention for SVG Disease 68
 1.4.5 Prevention and Treatment of No-Reflow 70

1.4.6 Embolic Protection Devices .. 73
 1.4.6.1 Distal Protection Devices ... 73
 1.4.6.2 Proximal Protection Devices ... 75
 1.4.6.3 Efficacy of Embolic Protection Devices 76

1.4.7 Predictors of Adverse Events ... 77

1.4.8 Conclusions ... 78
1.5.1 Ultrasound ... 80
1.5.2 Computed Tomography .. 82
1.5.3 Magnetic Resonance Imaging .. 84
1.5.4 Management of Carotid Stenosis 87
1.5.4.1 Medical management ... 87
1.5.4.3 Carotid Artery Stenting .. 89
1.5.4.4 Embolic protection devices (EPD) 90
1.5.4.5 Randomized Trials – CAS v CEA 94
1.5.5 Conclusions ... 96

Chapter 2 ... 97

Methods ... 97

2.1 Saphenous Vein Graft Intervention 98
2.1.1 Multi-detector computed tomography 98
2.1.2 Magnetic Resonance Imaging ... 100
2.1.3 Intravascular Ultrasound ... 101
2.1.4 Distal Protection Device .. 101
2.1.5 Histopathology .. 102
2.1.6 Statistical evaluation ... 102
2.2 Carotid Artery Stenting ... 103
2.2.1 Magnetic resonance imaging ... 103
2.2.2 Histopathology ... 105

Chapter 3 .. 106

Angiographic Predictors of Impaired Flow During Saphenous Vein Graft Intervention ... 106

3.1 Methods ... 108
Chapter 3

3.3 Discussion ... 115

3.3.1 Limitations ... 117

3.4 Conclusion ... 117

Chapter 4

Accuracy of MDCT and MRI Compared to IVUS in Plaque Quantification........ 118

4.1 Methods ... 120

4.3 Discussion ... 126

4.3.1 Limitations ... 127

4.4 Conclusion ... 128

Chapter 5

Saphenous Vein Graft Plaque Characterization by Multi-Detector Computed

Tomography with Histopathological Correlation of Embolic Debris During Intervention

... 129

5.1 Methods ... 131

5.1.1 Multi-detector computed tomography ... 131

5.1.2 Distal Protection Device. ... 133

5.1.3 Histopathology ... 134

5.1.4 Statistical evaluation ... 136

5.2 Results ... 136

5.3 Discussion ... 144

5.3.1 Limitations of Study. ... 146

5.4 Conclusion ... 147

Chapter 6

MRI plaque assessment of carotid artery stenosis prior to intervention with

histopathological correlation.. 148
ABSTRACT

Atherosclerosis is a disease which has impacted our health like no other in the last half century. The detection of this disease range from biomarkers, stress-testing to invasive imaging by way of angiography or other intravascular methods. In recent years, technological developments in multi-detector computed tomography (MDCT) and magnetic resonance imaging (MRI) has allowed us to visualize atherosclerotic plaque non-invasively. This has great appeal as they carry very little risk in comparison to invasive angiography and provide information of plaque composition in addition to stenosis severity.

The identification of plaques which are high-risk or ‘vulnerable’ to subsequent complications such as myocardial infarction or stroke would be highly valuable in our approach to incremental risk assessment and perhaps future treatment. Certain procedures in interventional cardiology such as saphenous vein graft (SVG) intervention and carotid stenting carry increased risk of embolic complications compared to coronary stenting. Non-invasive imaging could potentially identify certain plaque features which may be associated with an increased risk of embolization before embarking on such procedures. This thesis examines the utility of MDCT and MRI in atherosclerotic plaque imaging prior to SVG interventions and carotid stenting.

Our initial chapter investigates the angiographic parameters associated with embolization during SVG intervention. We correlate the amount of debris captured by distal protection devices during intervention with angiographic markers and subsequently, with impaired blood flow by way of Thrombolysis In Myocardial Infarction (TIMI) frame count.
Our next step involved the accuracy and reproducibility of MDCT and MRI in plaque quantification in comparison to our reference standard of intravascular ultrasound. We measured the luminal, vessel wall and plaque areas, and then calculated the resultant plaque volume of SVG lesions for all three modalities.

Having gained an understanding of the accuracy of MDCT and MRI, we investigated the relationships of MDCT plaque volume and density with embolic debris captured by distal protection device during SVG intervention. We then undertook histological assessment of the debris utilizing semi-automated image analysis software. We quantified the various plaque components including red blood cells, thrombus, lipid, cholesterol clefts and fibrous tissue. Finally, we explored the relationship between the histological findings with plaque volume, density and amount of embolization which occurred.

Our last original chapter investigates the utility of multi-weighted MRI to assess carotid plaque prior to stenting. We measured plaque volumes and characterized plaques as calcific, fibrotic or lipidic according to MRI findings. This information is then correlated to the amount of embolic debris captured by the distal protection device used during stenting.

In comparison to invasive imaging modalities like intravascular ultrasound, research into plaque characterization by MDCT and MRI is just beginning. Almost all of the current studies have been on coronary artery plaques. This thesis breaks new ground by studying SVG plaques and demonstrating links between plaque volume, composition and embolization during intervention. It builds on our knowledge of these non-invasive modalities and help us define their future roles.
DECLARATION

I declare that this thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Gary Y. H. Liew.

To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University of Adelaide Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Gary Y. H. Liew

May 2012

Department of Medicine

University of Adelaide
ACKNOWLEDGMENT

The years of my PhD candidature has seen a multitude of changes and challenges. The initial leap of faith to move to a new city, acquiring technical and research skills and balancing work life with parenthood. I owe my deepest gratitude to a number of people who have made these few years possible.

I would first like to thank my principal supervisor, Prof. Stephen Worthley, who guided me down this ‘road less travelled by’. His ideas, wisdom and encouragement have made it possible to combine my interest of non-invasive imaging and interventional cardiology. Not only has he taught me about the technical and clinical aspects in these areas but also the personal qualities of a leader. I would also like to thank my co-supervisor, A/Prof. Robert Fitridge (Department of Surgery, University of Adelaide) who has always provided great insights into the projects and encouragement over the years. I am truly indebted to Prof. Anthony Thomas (Department of Pathology, Flinders Medical Center) for his expertise, time and patience in teaching me histopathology of atherosclerotic plaques.

I have been privileged to work with a wonderful research group at the Cardiovascular Research Center of Royal Adelaide Hospital. To Angelo Carbone, senior scientist, if not for all the million little things you do, no big things will be accomplished in our group. Your tremendous support in specimen collection, preparations and cataloging are invaluable … as are your insights into sporting team performances of the season. Christopher Hammett and Karen Teo for helping to recruit patients. Ben Dundon and
Michael Leung acting as second observers for image analyses and your helpful insights. Mishele Korlaet, senior radiographer, for helping with performance of the scans. This work would not have been possible without the support and encouragement of everyone at CRC.

If this journey has taught me one thing, it is the importance of family. My parents for their constant love and support, without which I would not have come this far. My wife, Elizabeth, who I owe everything for her enduring love, strength and understanding in the pursuit of this endeavor. You have made tremendous sacrifices on your time, career and family which have made this possible. Finally, to our adorable boys Nathan and Alexander, you put everything in life into perspective.
THESIS RELATED PUBLICATIONS

Manuscripts In Submission

Liew GYH, Hammett CJ, Dundon BK, Teo KSL, Worthley MI, Zaman AG, Worthley SG. Multidetector Computed Tomography and Magnetic Resonance Imaging Noninvasively Quantifies Saphenous Vein Graft Atherosclerotic Plaque: A comparison with intravascular ultrasound
THESIS RELATED PUBLISHED ABSTRACTS

6. **Liew GYH**, Hammett CJ, Dundon BK, Teo KSL, Worthley MI, Zaman AG, Worthley SG. Saphenous vein graft plaque quantification utilizing magnetic resonance imaging and multidetector computed tomography: A comparison with

xiv
THESIS RELATED SCHOLARSHIP AND AWARDS

Post-graduate Biomedical Scholarship, National Health and Medical Research Council of Australia. 2008-2010

Travel Grant from Japanese Circulation Society to present at 71st Scientific Meeting – Japanese Circulation Society, Kobe, Japan. 2007

Travel Grant from National Heart Foundation of Australia to present at 57th Annual Scientific Sessions of the American College of Cardiology, Chicago, USA. 2008

Cardiac Society of Australia & New Zealand Travelling Fellowship to present at 58th Annual Scientific Sessions of the American College of Cardiology, Orlando, USA. 2009

Cardiovascular Lipid Travel Grant to present at 4th Annual Scientific Meeting of Society of Cardiovascular Computed Tomography, Orlando USA. 2010

Best Poster - Finalist, 55th ASM of Cardiac Society of Australia & New Zealand, Christchurch, New Zealand. 2007

Highly Commended Poster, University of Adelaide Research Expo, Adelaide, SA, Australia. 2008

Liew GYH, Hammett CJ, Dundon BK, Teo KSL, Worthley MI, Zaman AG, Worthley SG. Saphenous vein graft plaque quantification utilizing magnetic resonance imaging and multidetector computed tomography: A comparison with intravascular ultrasound
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>Acute coronary syndrome</td>
</tr>
<tr>
<td>AHA</td>
<td>American Heart Association</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary artery bypass graft</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary artery disease</td>
</tr>
<tr>
<td>CAS</td>
<td>Carotid artery stenting</td>
</tr>
<tr>
<td>CDUS</td>
<td>Carotid Doppler ultrasound</td>
</tr>
<tr>
<td>CEA</td>
<td>Carotid endarterectomy</td>
</tr>
<tr>
<td>CSA</td>
<td>Cross sectional area</td>
</tr>
<tr>
<td>CTA</td>
<td>Computed tomography angiography</td>
</tr>
<tr>
<td>DPD</td>
<td>Distal protection device</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiograph</td>
</tr>
<tr>
<td>EEM</td>
<td>External elastic membrane</td>
</tr>
<tr>
<td>EPD</td>
<td>Embolic protection device</td>
</tr>
<tr>
<td>FDG</td>
<td>Fluorodeoxyglucose</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield Unit</td>
</tr>
<tr>
<td>IVUS</td>
<td>Intravascular ultrasound</td>
</tr>
<tr>
<td>LAD</td>
<td>Left anterior descending artery</td>
</tr>
<tr>
<td>LCx</td>
<td>Left circumflex artery</td>
</tr>
<tr>
<td>MACE</td>
<td>Major adverse cardiac events</td>
</tr>
<tr>
<td>MBG</td>
<td>Myocardial blush grade</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MDCT</td>
<td>Multi-detector computed tomography</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>PCI</td>
<td>Percutaneous coronary intervention</td>
</tr>
<tr>
<td>PDW</td>
<td>Proton density weighted</td>
</tr>
<tr>
<td>QCA</td>
<td>Quantitative coronary analysis</td>
</tr>
<tr>
<td>RCA</td>
<td>Right coronary artery</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>SVG</td>
<td>Saphenous vein graft</td>
</tr>
<tr>
<td>T</td>
<td>Tesla</td>
</tr>
<tr>
<td>TCFA</td>
<td>Thin cap fibroatheroma</td>
</tr>
<tr>
<td>TE</td>
<td>Echo time</td>
</tr>
<tr>
<td>TFC</td>
<td>TIMI frame count</td>
</tr>
<tr>
<td>TIMI</td>
<td>Thrombolysis In Myocardial Infarction</td>
</tr>
<tr>
<td>TMPG</td>
<td>TIMI perfusion grade</td>
</tr>
<tr>
<td>TR</td>
<td>Repetition time</td>
</tr>
<tr>
<td>T1W</td>
<td>T1 weighted</td>
</tr>
<tr>
<td>T2W</td>
<td>T2 weighted</td>
</tr>
</tbody>
</table>