Techniques for the CO₂ Laser Fabrication of Soft Glass Optical Fibre Devices and Measurement of their Optical and Physical Properties

By

Keiron Boyd

Thesis submitted for the degree of Doctor of Philosophy

In

The University of Adelaide
School of Chemistry and Physics

September 2013
Table of Contents

CHAPTER 1: INTRODUCTION

1.1 Thesis Overview .. 1
1.2 Introduction .. 1
1.3 Issues .. 4
1.4 Background ... 6
 1.4.1 Optical fibre fundamentals .. 7
 1.4.2 Optical Fibre Tapers .. 13
 1.4.3 Microsphere Resonators ... 15
 1.4.4 Ultra-short pulses and nonlinear optics 18

CHAPTER 2: PROPERTIES OF CO₂ LASER PROCESSED GLASS OPTICAL FIBRE

2.1 Introduction ... 23
2.2 Interaction between Glass and CO₂ Laser Irradiation 24
 2.2.1 Introduction .. 24
 2.2.2 Absorption of 10.6 µm CO₂ Laser Irradiation in Glass 25
 2.2.3 Optical Control of Fibre Diameter and Surface Tension Tapering Effects of CO₂ Laser Heated Optical Fibre Glass Melts. ... 27
 2.2.4 CO₂ Laser Induced Refractive Index Change 38
2.3 Surface Tension Measurement of Optical Glass Using a Scanning CO₂ Laser 41
 2.3.1 Introduction ... 41
 2.3.2 Theory ... 43
 2.3.3 Experimental Setup .. 45
 2.3.4 Measurement Technique ... 46
 2.3.5 Glass Composition and Fibres Investigated 47
 2.3.6 Results ... 48
 2.3.7 Additional Investigation: Surface Tension of Tellurite Optical Fibres Fabricated in Different Atmospheric Conditions ... 51
2.4 Viscosity Measurement of Optical Fibres Using a Scanning CO₂ Laser 54
Table of Contents

2.4.1 Introduction .. 54
2.4.2 Measurement Technique Theory .. 55
2.4.3 Experimental Setup .. 56
2.4.4 Measurement Technique .. 57
2.4.5 Results .. 58

2.5 Contamination based Transmission Loss in Soft Glass .. 60
2.5.1 Introduction .. 60
2.5.2 Gold Nanoparticle Contamination of Tellurite Glass ... 60
2.5.3 Dust Particle Contamination .. 68

2.6 SUMMARY AND CONCLUSIONS ... 68

CHAPTER 3: NEW SOFT GLASS OPTICAL DEVICES PRODUCED USING A CO$_2$ LASER 71

3.1 INTRODUCTION .. 71
3.2 CO$_2$ LASER TAPERING OF PRESSURIZED BISMUTH GLASS MOF 72
3.2.1 Problem ... 73
3.2.2 Issues to be addressed ... 73
3.2.3 Overall Objective ... 74
3.2.4 Dispersion Control through pitch and hole size variations of MOF Bismuth 76
3.2.5 Method ... 77
3.2.6 Thermal Gradient ... 84
3.2.7 Revised Method .. 89
3.2.8 Results ... 90
3.2.9 Conclusion .. 94

3.3 SUB-WAVELENGTH TAPERING WITH DIRECT CO$_2$ LASER IRRADIATION 94
3.3.1 Problem ... 94
3.3.2 Issue to be addressed ... 95
3.3.3 Objective .. 95
3.3.4 Approach .. 96
3.3.5 Results ... 98
3.3.6 Conclusion .. 99
Table of Contents

3.4 MICROSPHERE FABRICATION FROM TELLURITE OPTICAL FIBRES USING DIRECT CO₂ LASER IRRADIATION ... 100

3.4.1 Issue .. 100
3.4.2 Objectives ... 100
3.4.3 Approach ... 101
3.4.4 Results .. 104
3.4.5 Conclusions ... 106

CHAPTER 4: CHARACTERIZATION OF CO₂ LASER FABRICATED OPTICAL DEVICES ... 109

4.1 INTRODUCTION .. 109
4.2 FEMTOSECOND INTERFEROMETRY FOR DIRECT MEASUREMENT OF THE EVOLUTION OF FEMTOSECOND PULSES ALONG SUB-WAVELENGTH WAVEGUIDES ... 110

4.2.1 Problem .. 110
4.2.1 Issue ... 111
4.2.2 Objective .. 111
4.2.3 Experimental Technique ... 112
4.2.4 Femtosecond laser mode-locking and pulse characteristics 118
4.2.5 Results .. 129
4.2.6 Discussion ... 137
4.2.7 Conclusions .. 138

4.3 OPTICAL PROPERTIES OF TAPERED BISMUTH MOF .. 138

4.3.1 Objective .. 138
4.3.2 Approach ... 138
4.3.3 Results ... 139
4.3.4 Discussion ... 139

4.4 SOFT GLASS OPTICAL MICROSPHERE CHARACTERIZATION 141

4.4.1 Introduction ... 141
4.4.2 Method ... 141
4.4.3 Results ... 143
4.4.4 Conclusions .. 146
Table of Contents

CHAPTER 5: CONCLUSIONS .. 147
Table of Contents

Bibliography

BIBLIOGRAPHY ... 151

Appendix

APPENDIX A .. 165
APPENDIX B .. 171
APPENDIX C .. 173

Publications

PUBLICATION A. ELLIPTICAL CO₂ LASER BEAM TAPERING OF PRESSURIZED BISMUTH MICROSTRUCTURED OPTICAL FIBRE A ... 175
PUBLICATION B. MEASURING THE EVOLUTION OF FEMTOSECOND PULSES IN FIBRE OPTIC TAPERS BY INTERFEROMETRIC REFLECTOMETRY ... 179
PUBLICATION C. SURFACE TENSION AND VISCOSITY MEASUREMENT OF OPTICAL GLASSES USING A SCANNING CO₂ LASER ... 183
PUBLICATION D. UPCONVERSION LASING FOR INDEX SENSING AND STRONG AMPLITUDE MODULATION OF WGMs IN Er-Yb CO-DOPED TELLURITE SPHERES ... 193
Table of Contents
Table of Contents

Figures

FIGURE 1.1 OUTLINE OF THE TOPICS PRESENTED IN THIS THESIS ... 3
FIGURE 1.2 STEP INDEX OPTICAL FIBRE .. 7
FIGURE 1.3 FINITE ELEMENT MODEL SHOWING THE NORMALIZED ELECTRIC FIELD 9
FIGURE 1.4 SEM IMAGES OF A 3 RING HEXAGONAL STRUCTURED MOF 10
FIGURE 1.5 OPTICAL FIBRE TAPER ... 14
FIGURE 1.6 FEMTOSECOND PULSE IN THE TIME DOMAIN ... 20
FIGURE 2.1 TRANSMISSION SPECTRA FUSED SILICA ... 26
FIGURE 2.2 TEMPERATURE DEPENDENCE OF CO\textsubscript{2} LASER TRANSMITTANCE 27
FIGURE 2.3 GAUSSIAN SPOT ... 30
FIGURE 2.4 SLAB APPROXIMATION TO THE CO\textsubscript{2} LASER IRRADIATION OF AN OPTICAL FIBRE 30
FIGURE 2.5 SILICA OPTICAL FIBRE SURFACE TEMPERATURE ... 31
FIGURE 2.6 RATIO OF POWER INCIDENT ON AN OPTICAL FIBRE TO THE TOTAL POWER 32
FIGURE 2.7 EXPERIMENTAL SETUP FOR SURFACE TENSION TAPERING 34
FIGURE 2.8 MICROSCOPE IMAGES OF SURFACE TENSION TAPERS 35
FIGURE 2.9 SURFACE TENSION TAPERING MECHANISM ... 36
FIGURE 2.10 MINIMUM DIAMETER OF TAPERS FORMED FROM A F2 GLASS 37
FIGURE 2.11 VOLUME-TEMPERATURE DIAGRAM .. 40
FIGURE 2.12 SURFACE TENSION MEASUREMENT TECHNIQUE ... 44
FIGURE 2.13 VISCOSITY MEASUREMENT TECHNIQUE ... 46
FIGURE 2.14 COMPARISON OF SURFACE TENSIONS ... 50
FIGURE 2.15 SURFACE TENSION MEASUREMENTS AS A FUNCTION OF CO\textsubscript{2} LASER INTENSITY 53
FIGURE 2.16 PICTURE OF SURFACE TENSION AND VISCOSITY EXPERIMENT 57
FIGURE 2.17 MEASURED VISCOSITY OF FUSED SILICA ... 59
FIGURE 2.18 SPHERES WITH BLUE TRANSMISSION ... 61
FIGURE 2.19 BULK TELLURITE GLASS SAMPLES SHOW DICHROIC NATURE 62
FIGURE 2.20 DICHROIC BEHAVIOUR WAS DEMONSTRATED IN AU-ANTIMONY GLASS 62
FIGURE 2.21 EXPERIMENT FOR THE INVESTIGATION OF BLUE DISCOLOURATION 63
FIGURE 2.22 MICROSCOPE IMAGE THROUGH BLUE MICROSPHERES 65
Table of Contents

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.23</td>
<td>HeNe laser scattering through spheres</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Outline of the problems addressed within Chapter 3</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Viscosity curves for silica and bismuth glass</td>
<td>74</td>
</tr>
<tr>
<td>3.3</td>
<td>SEM image of the 3 ring bismuth structure</td>
<td>75</td>
</tr>
<tr>
<td>3.4</td>
<td>Simulation of dispersion for 3 ring MOF</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>MOF elliptical beam tapering experimental setup</td>
<td>78</td>
</tr>
<tr>
<td>3.6</td>
<td>Elliptical beam profile</td>
<td>79</td>
</tr>
<tr>
<td>3.7</td>
<td>Power vs diameter of tapered bismuth rod fibre</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>The minimum pressure required to prevent hole collapse</td>
<td>82</td>
</tr>
<tr>
<td>3.9</td>
<td>Movement of the optical fibre due to asymmetric heating</td>
<td>83</td>
</tr>
<tr>
<td>3.10</td>
<td>Thermal modelling considering</td>
<td>86</td>
</tr>
<tr>
<td>3.11</td>
<td>Thermal gradient at equilibrium</td>
<td>87</td>
</tr>
<tr>
<td>3.12</td>
<td>Tapered bismuth MOF</td>
<td>88</td>
</tr>
<tr>
<td>3.13</td>
<td>Tapered bismuth MOF cross sections</td>
<td>89</td>
</tr>
<tr>
<td>3.14</td>
<td>Modified experimental setup</td>
<td>90</td>
</tr>
<tr>
<td>3.15</td>
<td>Microscope image of the cross section of a MOF fibre</td>
<td>91</td>
</tr>
<tr>
<td>3.16</td>
<td>SEM image of taper transition region</td>
<td>92</td>
</tr>
<tr>
<td>3.19</td>
<td>Image of sub-micrometre fibre through travelling microscope</td>
<td>99</td>
</tr>
<tr>
<td>3.20</td>
<td>Microscope image of direct CO$_2$ laser tapered bismuth</td>
<td>99</td>
</tr>
<tr>
<td>3.21</td>
<td>Steps A→D taken in the CO$_2$ laser fabrication of optical microspheres</td>
<td>102</td>
</tr>
<tr>
<td>3.22</td>
<td>Tellurite optical fibre tapered in a four stage process</td>
<td>105</td>
</tr>
<tr>
<td>3.23</td>
<td>SEM image of tellurite sphere</td>
<td>106</td>
</tr>
<tr>
<td>3.24</td>
<td>Silica microspheres fabricated</td>
<td>107</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental setup</td>
<td>113</td>
</tr>
<tr>
<td>4.2</td>
<td>The HeNe laser ruler</td>
<td>114</td>
</tr>
<tr>
<td>4.3</td>
<td>Diagram used to calculate the optical path length difference</td>
<td>115</td>
</tr>
<tr>
<td>4.4</td>
<td>Number of gratings irradiated by a femtosecond pulse</td>
<td>116</td>
</tr>
<tr>
<td>4.5</td>
<td>The interferograms for the femtosecond pulse</td>
<td>117</td>
</tr>
<tr>
<td>4.6</td>
<td>Cavity for Kerr lens mode-locked Te:sapphire laser</td>
<td>119</td>
</tr>
<tr>
<td>4.7</td>
<td>Prism compressor</td>
<td>120</td>
</tr>
</tbody>
</table>
Table of Contents

FIGURE 4.8 Ti:sapphire output coupler mirror M1 transmission spectrum .. 123
FIGURE 4.9 Ti:sapphire HR mirror M2 transmission spectrum .. 124
FIGURE 4.10 Stability conditions for the Ti:sapphire laser cavity with a Kerr lens 126
FIGURE 4.11 Ti:sapphire laser ... 126
FIGURE 4.12 The transmission spectrum of mode locked Ti:sapphire laser pulses 127
FIGURE 4.13 Interferometric autocorrelation ... 128
FIGURE 4.14 Image from the transient digitizer ... 128
FIGURE 4.15 Interferograms measured by scanning the delay arm .. 130
FIGURE 4.16 Position of peaks found on PD3 interferogram used as an optical ruler 131
FIGURE 4.18 Calibrated interferogram ... 132
FIGURE 4.17 Front surface interferogram zoomed in ... 133
FIGURE 4.19 Interferogram from front cleaved surface of SMF28 tapered optical fibre 135
FIGURE 4.20 Interferogram of pulse reflected from back of sub-wavelength taper 136
FIGURE 4.21 Zoom of pulse reflected from back of taper ... 137
FIGURE 4.22 Transmission spectra through tapered and un-tapered bismuth MOF 139
FIGURE 4.3 Losses for a three-ring MOF as a function of wavelength and pitch λ 140
FIGURE 4.25 Three ring MOF as a function of wavelength and hole diameter D 140
FIGURE 4.26 Experimental setup for microsphere spectra measurement 143
FIGURE 4.27 WGM spectrum from an 8µm Te 109 sphere ... 144
FIGURE 4.27 WGM spectrum from an 8µm Te 109 sphere immersed in ethanol 145
FIGURE 4.29 Gaussian fit to find the FWHM .. 145
FIGURE 5.1 Measured CO₂ laser power ... 165
FIGURE 5.2 Scanning razor beam measurement ... 166
FIGURE 5.3 Derivative scanning razor power .. 167
FIGURE 5.4 Labview virtual interface ... 168
FIGURE 5.6 Disappearing filament optical pyrometer temperature measurement 169
Equations

- **EQUATION 1.1** NUMERICAL APERTURE
- **EQUATION 1.2** EFFECTIVE NONLINEARITY
- **EQUATION 1.3** DISPERSION PARAMETER
- **EQUATION 1.4** EFFECTIVE REFRACTIVE INDEX
- **EQUATION 1.5** TOTAL CHROMATIC DISPERSION
- **EQUATION 1.6** MATERIAL DISPERSION
- **EQUATION 1.7** WAVEGUIDE DISPERSION
- **EQUATION 1.8** CONFINEMENT LOSS OF MOF’S
- **EQUATION 1.9** QUALITY FACTOR
- **EQUATION 1.10** QUALITY FACTOR IN TERMS OF LOSS MECHANISMS
- **EQUATION 1.11** SURFACE SCATTERING LIMIT TO QUALITY FACTOR
- **EQUATION 1.12** MATERIAL ABSORPTION LIMIT TO QUALITY FACTOR
- **EQUATION 1.13** FREE SPECTRAL RANGE
- **EQUATION 1.14** INTENSITY IN MICROSPHERE RESONATOR
- **EQUATION 1.15** COMPLEX ELECTRIC FIELD FOR PULSES
- **EQUATION 1.16** COMPLEX FIELD ENVELOPE
- **EQUATION 1.17** FOURIER TRANSFORM OF FEMTOSECOND PULSE
- **EQUATION 1.18** ELECTRIC FIELD OF FEMTOSECOND PULSE
- **EQUATION 1.19** UNCERTAINTY RELATION FOR PULSES
- **EQUATION 2.1** TRANSMITTANCE
- **EQUATION 2.2** BEER-LAMBERT LAW
- **EQUATION 2.3** THERMAL TRANSFER EQUATION
- **EQUATION 2.4** RATE OF HEAT GENERATION
- **EQUATION 2.5** RATIO OF POWER INCIDENT ON FIBRE TO TOTAL BEAM POWER
- **EQUATION 2.6** INTENSITY PROFILE OF A GAUSSIAN LASER SPOT
- **EQUATION 2.7** SURFACE TENSION
- **FIGURE 2.8** DYNAMIC VISCOSITY
- **FIGURE 2.9** NET FORCE ON HEATED OPTICAL FIBRE
<table>
<thead>
<tr>
<th>Figure/Equation</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 2.10</td>
<td>Dynamic Viscosity for Measured Parameters</td>
<td>56</td>
</tr>
<tr>
<td>EQUATION 3.1</td>
<td>Minimum Pressure Required to Prevent Hole Collapse</td>
<td>81</td>
</tr>
<tr>
<td>EQUATION 3.2</td>
<td>The Minimum Waist Radius</td>
<td>95</td>
</tr>
<tr>
<td>EQUATION 4.1</td>
<td>Optical Path Length Difference Introduced by a Diffraction Grating</td>
<td>115</td>
</tr>
<tr>
<td>EQUATION 4.2</td>
<td>Diffraction Grating Minimum Resolution</td>
<td>116</td>
</tr>
<tr>
<td>EQUATION 4.3</td>
<td>Brewster’s Angle</td>
<td>120</td>
</tr>
<tr>
<td>EQUATION 4.4</td>
<td>Minimum Angle of Deviation SF14</td>
<td>121</td>
</tr>
<tr>
<td>EQUATION 4.5</td>
<td>Apex Angle</td>
<td>121</td>
</tr>
<tr>
<td>EQUATION 4.6</td>
<td>Dispersion Constant for Prism</td>
<td>122</td>
</tr>
<tr>
<td>EQUATION 4.7</td>
<td>Dispersion Relation</td>
<td>122</td>
</tr>
<tr>
<td>EQUATION 4.8</td>
<td>Separation of Prism Apexes</td>
<td>122</td>
</tr>
<tr>
<td>EQUATION 4.9</td>
<td>Critical Beam Power for Self-Focusing</td>
<td>123</td>
</tr>
<tr>
<td>EQUATION 4.10</td>
<td>Dioptric Power</td>
<td>124</td>
</tr>
<tr>
<td>EQUATION 4.11</td>
<td>Condition for Resonator Stability</td>
<td>124</td>
</tr>
<tr>
<td>EQUATION 4.12</td>
<td>Stability Region Matrices</td>
<td>125</td>
</tr>
<tr>
<td>EQUATION 4.13</td>
<td>Condition for Resonator Stability</td>
<td>125</td>
</tr>
<tr>
<td>EQUATION 4.14</td>
<td>Sensitivity</td>
<td>133</td>
</tr>
<tr>
<td>EQUATION 4.15</td>
<td>Experimental Sensitivity</td>
<td>133</td>
</tr>
</tbody>
</table>
Tables

TABLE 1.1 PROBLEMS ADDRESSED .. 6
TABLE 2.1 PHYSICAL CONSTANTS FOR SURFACE TEMPERATURE MODELLING .. 29
TABLE 2.2 DESCRIPTION OF THE VOLUME CHANGE PROCESSES .. 41
TABLE 2.3 GLASS COMPOSITIONS .. 48
TABLE 2.4 MEASURED VALUES OF SURFACE TENSION .. 49
TABLE 2.5 GLASS FORMATION TEMPERATURES AND ENVIRONMENTAL CONDITIONS 52
TABLE 2.6 SURFACE TENSION MEASUREMENTS OF THREE DIFFERENT TELLURITE OPTICAL FIBRES 53
TABLE 2.7 GLASS MELT FORMATION TEMPERATURE AND ENVIRONMENT ... 61
TABLE 2.8 TRANSMISSION MEASUREMENTS OF TELLURITE SPHERES ... 66
TABLE 2.9 COLOUR IN TRANSMISSION OF BULK TELLURITE GLASSES .. 66
TABLE 3.1 OBJECTIVES AND APPROACHES .. 75
TABLE 3.2 COMPARISON OF THERMAL PROPERTIES OF THREE COMMON GLASSES 85
TABLE 3.3 PARAMETERS USED FOR THE TAPERING OF 3 RING BISMUTH MOF .. 88
TABLE 3.4 PROPERTIES OF THE CROSS SECTION OF THE BISMUTH MOF TAPER TRANSITION REGION 94
TABLE 3.5 TAPERING OBJECTIVES .. 96
TABLE 3.6 TAPERING PARAMETERS USED .. 97
TABLE 3.7 OBJECTIVES FOR MICROSPHERE FABRICATION IN TELLURITE GLASS 101
TABLE 3.8 FOUR STEP FABRICATION PROCESS FOR TELLURITE MICROSPHERE RESONATORS 103
TABLE 3.9 THREE STEP FABRICATION PROCESS FOR TELLURITE MICROSPHERES 104
TABLE 3.10 SUMMARY OF THE DIMENSIONS OF THE SMALLEST TELLURITE MICROSPHERE 105
TABLE 4.1 OBJECTIVES AND APPROACHES .. 112
TABLE 4.2 SELLMEIER EQUATION AND COEFFICIENTS FOR SAPPHIRE ... 121
TABLE 4.3 SELLMEIER EQUATION AND COEFFICIENTS FOR SF14 ... 121
TABLE 4.4 PROPERTIES OF MEASUREMENT TECHNIQUE .. 134
TABLE 4.5 PARAMETERS USED FOR THE MEASUREMENT OF INTERFEROGRAM .. 136
TABLE 4.6 SUMMARY OF LOSSES FROM THE HOLE SIZE AND PITCH ... 141
TABLE 4.7 PROPERTIES OF 14.8UM DIAMETER CO₂ FABRICATED TRIAL 109 GLASS MICROSPHERE 146
TABLE 5.1 CONCLUSIONS ... 150
Table of Contents

TABLE 5.2 OPTICAL AND ELECTRONIC MEASURING EQUIPMENT USED IN THIS THESIS .. 171

TABLE 5.3 MOTION CONTROL USED WITHIN THIS THESIS ... 171
Abstract

This thesis presents an investigation into the direct CO\textsubscript{2} laser post processing of optical fibres, with a specific emphasis on soft glass compositions. It presents novel techniques for the fabrication of soft glass optical fibre based devices, novel techniques for the direct measurement of glass melt properties and the optical characterization of all fabricated devices, including a novel technique for measuring the evolution of ultra-short pulses along sub-wavelength tapered optical fibre.

New photonic devices fabricated from soft glass optical fibres are of scientific interest due to the high non-linearity and high refractive index. However for the increased understanding and controlled fabrication of such devices, measured values of the physical properties of the glass melts are required, and for many new materials this information is either unavailable or must be obtained for the exact conditions that the devices are produced.

This thesis presents new methods for the measurement of surface tension and viscosity at the same conditions as the fabrication of the optical devices presented, through the use of a scanning CO\textsubscript{2} laser. It also reports previously unpublished surface tension values for several glass compositions and investigates the effect the glass making environment had on the resulting surface tensions.

Novel fabrication techniques for new soft glass optical devices are also presented, including the pressurised tapering of Bismuth MOF using an elliptical CO\textsubscript{2} laser beam control the rate of microstructure collapse or expansion such as to produce a photonic crystal device whereby the zero dispersion wavelength varies as a function of displacement along the taper length.

The direct CO\textsubscript{2} laser tapering of silica and soft glass optical fibres to sub-wavelength diameters is also presented as well as the production of new high Q factor optical
microsphere’s resonators of diameters <10µm, fabricated from Er-Yb co-doped tellurite glass, and attached to tapers situated near the un-tapered optical fibre for mechanical stability.
Acknowledgements

Just before beginning my PhD my primary supervisor Jesper referred to me as an uncut diamond in terms of my experimental work. Now I’m finished I can’t help but feel somewhat cut and polished, though I think I’m still a little sore from the process ;)

Firstly I would like to thank my extremely loving and understanding partner Beth and my mother Eleanor for putting up with me disappearing off to university at weird hours in the morning and all weekends to go work in the lab.

I’ve had the opportunity of working with some very good researchers who were pointed in my direction by my co-supervisor Tanya Monro. The first I encountered was Dominic Murphy, who lifted me out of a very major slump and helped get my first conference paper out, though on reflection I really should have pushed further and turned it into a journal article. The second is Heike, who helped me get my first journal paper out and set me to measuring just about every known composition of soft glass ;). Hopefully I get the opportunity of working with these people again.

Without the support of friends it is next to impossible survive a PHD. I can say this with absolute certainty: without the friendship of Miftar Ganija I would have given up on my PHD. Having friends to talk openly with about physics, politics and the pain and the suffering associated with research definitely has kept me moderately sane.

When you have been doing a PHD for as long as I have, you have you rely on a lot of people’s help. Without the staff from the School of Chemistry and Physics and their friendly support I would be in deep water, as well as out of work!

Big thanks to all the optics group members, past and present. One of the benefits of working in physics is getting to know some very interesting people from a diverse range of backgrounds. Thanks to all those who have supported me throughout the years, especially Jesper who has known me the longest and always had my back.
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

SIGNED…………………………

DATE…………………………

Supervisors: Prof. Jesper Munch, Prof Tanya M. Monro.
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light in vacuum 299,792,458 m·s⁻¹</td>
</tr>
<tr>
<td>dBm</td>
<td>Power ratio in decibels of the measured power relative to 1mW</td>
</tr>
<tr>
<td>fs</td>
<td>Femtosecond</td>
</tr>
<tr>
<td>I</td>
<td>Intensity of electromagnetic radiation</td>
</tr>
<tr>
<td>Iₐ</td>
<td>Absorbed intensity</td>
</tr>
<tr>
<td>Iᵢ</td>
<td>Incident intensity of dielectric interface</td>
</tr>
<tr>
<td>Iᵣ</td>
<td>Reflected intensity</td>
</tr>
<tr>
<td>Iₜ</td>
<td>Transmitted intensity</td>
</tr>
<tr>
<td>k</td>
<td>Nonlinear refractive index, extinction coefficient</td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>ń</td>
<td>Complex refractive index ń=n+ik</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
</tr>
<tr>
<td>Q</td>
<td>Quality factor of a resonator</td>
</tr>
<tr>
<td>R</td>
<td>Reflectance to Iᵢ</td>
</tr>
<tr>
<td>T⁰⁻⁷.⁶</td>
<td>Also commonly referred to as the softening point, defined as the glass temperature in Kelvin when the viscosity is 10⁻⁷.⁶ Pa·S</td>
</tr>
<tr>
<td>Tₕ</td>
<td>Glass transition temperature in Kelvin</td>
</tr>
<tr>
<td>ɣ</td>
<td>Surface tension</td>
</tr>
<tr>
<td>ε₀</td>
<td>Permittivity of free space: 8.854187817620×10⁻¹² Fm⁻¹</td>
</tr>
<tr>
<td>ηₐ</td>
<td>Geometric efficiency of absorption</td>
</tr>
<tr>
<td>η</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength of electromagnetic radiation</td>
</tr>
<tr>
<td>Λ</td>
<td>Pitch: Periodic spacing between the centre of holes in micro-structured optical fibre, or the periodic separation between induced effective refractive index changes in long period gratings</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>ɷ and ɷ₀</td>
<td>Beam radius, and minimum beam radius</td>
</tr>
<tr>
<td>α</td>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity ~9.8ms⁻²</td>
</tr>
</tbody>
</table>
Terms and Acronyms

<table>
<thead>
<tr>
<th>Term or Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>BS</td>
<td>Beam Splitter</td>
</tr>
<tr>
<td>fused silica</td>
<td>amorphous SiO₂</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width Half Maximum of a Gaussian distribution</td>
</tr>
<tr>
<td>HeNe laser</td>
<td>Helium-Neon laser in this thesis operating at 632.8nm</td>
</tr>
<tr>
<td>KLM</td>
<td>Kerr Lens Mode-locked</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Polariser</td>
</tr>
<tr>
<td>MOF</td>
<td>Micro-structured Optical Fibre</td>
</tr>
<tr>
<td>OPL</td>
<td>Optical Path Length</td>
</tr>
<tr>
<td>OSA</td>
<td>Optical Spectrum Analyser</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>Soft Glass</td>
<td>A glass with a low softening point relative to pure fused silica</td>
</tr>
<tr>
<td>SPM</td>
<td>Self-Phase Modulation</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface Plasmon Resonance</td>
</tr>
<tr>
<td>Ti:sapphire</td>
<td>Ti-doped alumina, Al₂O₃∶Ti</td>
</tr>
<tr>
<td>WLS</td>
<td>White Light Source, in the context of this thesis is either a super-continuum source, or tungsten filament based source.</td>
</tr>
</tbody>
</table>