Postmarketing Vaccine Safety Surveillance Using Data Linkage: The Issue Of Consent

Jesia G. Berry
BHSc(Hons), MPH

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Medicine

February 2013

Discipline of Public Health
School of Population Health
Faculty of Health Sciences
The University of Adelaide
Australia
Contents

Abstract... iv
Declaration .. vii
Publications during candidature... viii
Conference presentations during candidature.. ix
Awards arising out of this thesis ... xi
Acknowledgements ... xii
Abbreviations .. xiv
List of Figures .. xviii
List of Tables .. xix

1 Introduction ... 1
1.1 Thesis objective ... 4
1.2 Thesis outline ... 5

2 Literature review ... 7
2.1 Population health surveillance using data linkage ... 7
2.1.1 Developments internationally and in Australia ... 8
2.1.2 Best practice protocol and privacy considerations ... 11
2.1.3 Linkage methods ... 14
2.1.4 Benefits and limitations of data linkage .. 15
2.2 Vaccine safety surveillance .. 18
2.2.1 Changes to the immunisation schedule in Australia .. 19
2.2.2 Prelicensing vaccine safety testing in Australia.. 20
2.2.3 Postlicensing vaccine safety surveillance in Australia .. 21
2.2.4 Developments internationally and in Australia ... 23
2.2.5 Study designs to detect adverse reactions to vaccines .. 27
2.2.6 Rationale for developing data linkage capacity for vaccine safety surveillance in Australia... 27
2.2.7 Challenges in the implementation of data linkage in Australia.................................... 31
2.3 The feasibility of consent for data linkage .. 32
2.3.1 Australia’s legislative framework and consent waivers ... 32
2.3.2 Legislative requirements of the Australian Childhood Immunisation Register (ACIR)... 36
2.3.3 Translation of legislation into practice: experience of two vaccine safety studies 38
2.3.4 Consent options for epidemiological studies.. 39
2.3.5 The ethical principles of consent ... 41
2.3.6 Practical considerations of consent .. 43
2.3.7 Community preferences for consent .. 46
2.3.8 Cost-benefit evaluation of consent options ... 50
6 Publication — Public perspectives on consent for the linkage of data to evaluate vaccine safety ... 145
 6.1 Preface ... 145
 6.2 Statement of authorship ... 146
 6.3 Article .. 148
 6.3.1 Abstract .. 148
 6.3.2 Introduction .. 149
 6.3.3 Methods .. 152
 6.3.4 Results ... 154
 6.3.5 Discussion ... 163
 6.4 Additional discussion ... 167

7 Generalisability of the findings ... 169
 7.1 The internal and external validity of the RCT ... 169
 7.2 A comparison of findings in the RCT and population survey 171
 7.3 Summary ... 176

8 Findings and conclusion ... 181
 8.1 Key findings and contributions ... 182
 8.1.1 An RCT of the opt-in and opt-out approach to gain parental consent 182
 8.1.2 Parent and public perspectives on consent for the linkage of data to evaluate vaccine safety .. 187
 8.2 Limitations and future directions ... 189
 8.3 Concluding remarks ... 191

9 References .. 195

Appendix 1 Vaccine Assessment using Linked Data (VALiD) Working Group . 213
Appendix 2 Ethical approval for the Randomised Controlled Trial 215
Appendix 3 Ethical approval for maternal and infant death screening 219
Appendix 4 Study invitation material: opt-in arm .. 225
Appendix 5 Study invitation material: opt-out arm ... 233
Appendix 6 Telephone survey ... 241
Appendix 7 Preliminary results distributed to parents ... 257
Appendix 8 Health Monitor survey 2011 — March ... 263
Abstract

Background: Linked electronic administrative health care databases are a valuable resource that can be used for postmarketing safety surveillance of medicines and vaccines. Australian legislation mandates that individual consent is required for the collection, use and dissemination of health information. However, the requirement for consent is not absolute; a waiver of consent may be granted by an appropriately constituted human research ethics committee, provided certain qualifying criteria are met and the research (or other activity) is deemed to be substantially in the public interest. In Australia, data linkage research projects are recommended to abide by a best practice protocol, whereby individual privacy is preserved as researchers only receive files of pre-linked data with no personal identifiers. Ethical approval of a waiver of consent is required for the disclosure of identifiable demographic information to an authorised data linkage unit for the purpose of creating a master linkage key. However, some ethics committees and data custodians still require informed consent.

Objective: The overall objective of this thesis was to examine the issue of consent in the context of postmarketing surveillance of vaccine safety using data linkage. A randomised controlled trial (RCT) was used for the primary aim of determining which method of obtaining parental consent (opt-in or opt-out) provided the highest participation rate. The secondary aims of the RCT were to examine reasons for participation and non-participation, socio-demographic factors, consent preferences and attitudes towards a data linkage study of vaccine safety. For this, a follow-up telephone interview of a parent from each family enrolled in the RCT was conducted. The generalisability of findings from the
follow-up telephone interview was examined by repeating selected questions in a population-based survey sample of South Australians.

Method: A total of 1129 families of children born at a South Australian hospital in 2009 were enrolled in a single-blind parallel group RCT of opt-in and opt-out consent at six weeks post-partum, with four weeks to respond by reply form, telephone or email. Interviews were conducted at 10 weeks post-partum (response rate 91%, n=1026). Computer-assisted telephone interviewing (CATI) of rural and metropolitan South Australian residents was conducted in 2010 (response rate 56%, n=2002).

Results: The participation rate was 21% (n=120/564) in the opt-in arm and 96% (n=540/565) in the opt-out arm \(\chi^2 (1 \text{df}) = 567.7, P<0.001 \). Participants in the opt-in arm were more likely than non-participants to be older, married or in a de facto relationship, university educated and of higher socioeconomic status. Participants in the opt-out arm were similar to non-participants, except men were more likely to opt out.

Substantial proportions did not receive, understand or properly consider study invitations, and opting in or opting out behaviour was often at odds with parents’ stated underlying intentions. Three-fifths of the parents in the opt-in and opt-out arms reported reading the information (63% vs 67%, \(P=0.11 \)), but only two-fifths correctly identified the health records to be linked (43% vs 39%, \(P=0.21 \)). Parents who actively consented (opted in) were more likely than those who passively consented (did not opt out) to correctly identify the data sources (60% vs 39%, \(P<0.001 \)).

Data linkage for postmarketing surveillance of vaccines was widely supported by parents enrolled in the RCT and by the wider community (96% and 94% respectively) and there was trust in its privacy protections (84% and 75%). The majority also preferred minimal or no direct involvement: either opt-out consent (40% and 40%) or no consent (30% and 31%). Only a quarter preferred opt-in consent (24% and 25%). Over half gave higher
priority to rapid vaccine safety surveillance (61% and 56%) rather than first seeking parental consent (21% and 27%), while one in seven was undecided (15% and 15%).

Despite generally vaccinating their children (91% and 96%) and trusting vaccines as safe (90% and 92%), many were concerned that vaccines may be ineffective (42% and 40%) and may cause serious reactions (62% and 53%).

Conclusions: The opt-in approach resulted in low participation and a biased sample that would render any subsequent data linkage to be not feasible, whereas the opt-out approach achieved high participation and a representative sample.

Neither the opt-in nor opt-out approach was effective in achieving informed consent. The study’s purpose was poorly understood, although comprehension was moderately better when parents actively rather than passively consented. Nonetheless, most parents and the general public supported data linkage for vaccine safety surveillance. A system utilising opt-out consent or no consent was preferred to one using opt-in consent.

These findings should inform public health policy and practice; the waiver of consent afforded under current privacy regulations for data linkage studies meeting all appropriate criteria should be granted by ethics committees, and supported by data custodians.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other institution and affirms that to the best of my knowledge, the thesis contains no material previously published or written by another person, except where due reference is made in the text of thesis.

- I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

- The author acknowledges that copyright of published works contained within this thesis (as listed on the next page) resides with the copyright holder(s) of those works.

- I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed..
Jesia Berry (Candidate)
Date ..
Publications during candidature

Conference presentations during candidature

• Berry JG. *A study of opt-in and opt-out consent for checking the safety of vaccines using data linkage*. Expert presentation for the ‘Vaccine Safety Data Linkage Community Forum’ Citizens’ Jury; 2011 Mar 26; Adelaide.

• Berry JG. *Using multiple imputation to fill in missing data for a randomised controlled trial of opt-in and opt-out consent to data linkage*. University of Adelaide, School of Population Health Seminar Series; 2011 Apr 7; Adelaide.

• Berry JG. *A randomised trial of consent options in data linkage for vaccine safety surveillance*. University of Adelaide, School of Population Health, Higher Degree by Research Symposium; 2010 Oct 1; Adelaide.
• Berry JG. *The feasibility of data linkage using routine administrative datasets for vaccine safety surveillance in Australia*. University of Adelaide, School of Population Health Seminar Series; 2009 Apr 24; Adelaide.

Poster presentations:

Awards arising out of this thesis

Student travel bursary award. $400 award given in recognition of exemplary abstracts.

Australasian Epidemiological Association (AEA) of Australia Conference ‘Combining Tradition and Innovation’; 2011 Sep 19-21; Perth.

Acknowledgements

‘There’s more to life than books, you know. But not much more.’
Morrissey

I would like to sincerely thank the Australian Research Council for funding this work. A collective thank you to all the members of the Vaccine Assessment using Linked Data (VALiD) Working Group who provided continual advice and feedback, as well as funding support.

To Phil Ryan, thank you for being an encouraging mentor and supervisor over the years, and first sparking my interest in statistics and epidemiology. I will miss your wry, sharp-witted quirkiness and gruff (but secretly kind) manner.

To Mike Gold, whose vision and enthusiasm made my PhD possible and who provided thoughtful supervision and expert insight on all things vaccine related.

To Katherine Duszynski, whose dedication, patience, and intellect helped our team surmount many obstacles, and whose professionalism and friendship was unwavering.

To Annette Braunack-Mayer who provided valuable ethics expertise, as well as interjecting light humorous relief into our team meetings.

To Vicki Xafis, my fellow PhD candidate on the VALiD study, for helpful contributions.

A special thanks to Jill Carlson for her joviality, persistence and engaging interviewing manner, which helped make the randomised controlled trial a success. Also, Jill Edwards, Tina Evans, and Dorothy Galuszka from the Women’s and Children’s Hospital, as well as Catherine Leahy, who provided much appreciated support.
To my fellow PhD candidates who shared this journey with me, and occasionally a glass of wine: Lisa, Oana, Allison, Adriana, George, Emily, Tessa, Vicki, Marianne, and Derek. In particular, heartfelt thanks go to Lisa Yelland for her friendship and endless patience with explaining statistical concepts. Also, thanks to Adriana Parrella for lightening the experience with humorous chats and commiseration.

To my friends and their families who put up with my limited availability over the past four years but never forgot me: Jessica Broadbent, Michael Blake, Adam Wheeler, Melanie Bagg, Saskia Szivatz, Sue Pillion, and Julia Walman. Also, to my old school friends: Annemarie Holub and Judith Swithenbank.

I dedicate this thesis to the memory of Caroline MacIntosh (nee Cook), whose joyful smile, subtle mischievousness and steadfast friendship I miss constantly. How I wish you were still here to celebrate my turn at the Botanic Hotel, like we did for you.

Thanks goes to my family for their support — my brother and sisters, nieces and nephews, great-niece and great-nephews, my late grandparents who are sorely missed, my parents, parents-in-law, and sisters-in-law and their families.

Finally, but most importantly, my gratitude goes to my husband Shawn La Fou for his love, dedication and constancy. I hope the reward of a little one will make the sacrifices we both made all worthwhile!
Abbreviations

ABS Australian Bureau of Statistics
ACIR Australian Childhood Immunisation Register
ACSOM Advisory Committee on the Safety of Medicines
ACT Australian Capital Territory
ACTRN Australian New Zealand Clinical Trials Registry
AEA Australasian Epidemiological Association
AEFI Adverse Event(s) Following Immunisation
AIHW Australian Institute of Health and Welfare
APSU Australian Paediatric Surveillance Unit
ARC Australian Research Council
ASGC Australian Standard Geographical Classification
CATI Computer-Assisted Telephone Interviewing
CDC Centers for Disease Control and Prevention
CDL Centre for Data Linkage
CEO Chief Executive Officer
CHEReL Centre for Health Record Linkage
CI Confidence Interval
CONSORT Consolidated Standards of Reporting Trials
CYWHS Children, Youth and Women’s Health Service
DAEN Database of Adverse Event Notifications
DEC Departmental Ethics Committee
DLU Data Linkage Unit
DTP Diphtheria-tetanus-pertussis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>Emergency Department</td>
</tr>
<tr>
<td>EMR</td>
<td>Electronic Medical Record</td>
</tr>
<tr>
<td>FCS</td>
<td>Fully conditional specification</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>H1N1</td>
<td>Pandemic influenza A</td>
</tr>
<tr>
<td>Hep B</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>Hib</td>
<td>Haemophilus influenzae type B</td>
</tr>
<tr>
<td>HIPAA</td>
<td>Health Insurance Portability and Accountability Act Privacy Rule</td>
</tr>
<tr>
<td>HIPPO</td>
<td>Health Informatics, Policy and Performance Outcomes Unit</td>
</tr>
<tr>
<td>HMO</td>
<td>Health Maintenance Organization</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillomavirus</td>
</tr>
<tr>
<td>HREC</td>
<td>Human Research Ethics Committee</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IHDLN</td>
<td>International Health Data Linkage Network</td>
</tr>
<tr>
<td>IPV</td>
<td>Inactivated poliovirus vaccine</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile range</td>
</tr>
<tr>
<td>IRR</td>
<td>Incidence rate ratio</td>
</tr>
<tr>
<td>IRSD</td>
<td>Index of Relative Socio-economic Disadvantage</td>
</tr>
<tr>
<td>MACSS</td>
<td>Multipurpose Australian Comorbidity Scoring System</td>
</tr>
<tr>
<td>MAR</td>
<td>Missing at random</td>
</tr>
<tr>
<td>MCV4</td>
<td>Meningococcal conjugate vaccine</td>
</tr>
<tr>
<td>MenCCV</td>
<td>Meningococcal C conjugate vaccine</td>
</tr>
<tr>
<td>MMR(V)</td>
<td>Measles-mumps-rubella(-varicella)</td>
</tr>
<tr>
<td>MNAR</td>
<td>Missing not at random</td>
</tr>
<tr>
<td>MVNI</td>
<td>Multivariate normal distribution</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NCIRS</td>
<td>National Centre for Immunisation Research and Surveillance</td>
</tr>
<tr>
<td>NCRIS</td>
<td>National Collaborative Research Infrastructure Strategy</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NHS</td>
<td>National Health Service</td>
</tr>
<tr>
<td>NICU</td>
<td>Neonatal Intensive Care Unit</td>
</tr>
<tr>
<td>NIP</td>
<td>National Immunisation Program</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>NT</td>
<td>Northern Territory</td>
</tr>
<tr>
<td>OPR</td>
<td>Office of Product Review</td>
</tr>
<tr>
<td>OPV</td>
<td>Oral poliovirus vaccine</td>
</tr>
<tr>
<td>7vPCV</td>
<td>Seven-valent pneumococcal conjugate vaccine</td>
</tr>
<tr>
<td>13vPCV</td>
<td>Thirteen-valent pneumococcal conjugate vaccine</td>
</tr>
<tr>
<td>PAEDS</td>
<td>Paediatric Active Enhanced Disease Surveillance</td>
</tr>
<tr>
<td>PHAA</td>
<td>Public Health Association of Australia</td>
</tr>
<tr>
<td>PHRN</td>
<td>Population Health Research Network</td>
</tr>
<tr>
<td>PIAG</td>
<td>Patient Information Advisory Group</td>
</tr>
<tr>
<td>PRISM</td>
<td>Post-licensure Rapid Immunization Safety Monitoring system</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>RR</td>
<td>Relative Risk</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SAEFVic</td>
<td>Surveillance of Adverse Events Following Vaccination in Victoria</td>
</tr>
<tr>
<td>SAVeS</td>
<td>South Australian Vaccine Safety Data Linkage Pilot Project</td>
</tr>
<tr>
<td>SCCS</td>
<td>Self-controlled case series</td>
</tr>
<tr>
<td>SCR</td>
<td>Summary care record</td>
</tr>
<tr>
<td>SEIFA</td>
<td>Socio-Economic Indexes For Areas</td>
</tr>
<tr>
<td>SURE</td>
<td>Secure Unified Research Environment</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>TdaP</td>
<td>Tetanus-diphtheria-acellular pertussis</td>
</tr>
<tr>
<td>TGA</td>
<td>Therapeutic Goods Administration</td>
</tr>
<tr>
<td>TIV</td>
<td>Trivalent influenza vaccination</td>
</tr>
<tr>
<td>TP</td>
<td>Thrombocytopenic purpura</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom of Great Britain and Northern Ireland</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>VAESCO</td>
<td>Vaccine Adverse Event Surveillance and Communication</td>
</tr>
<tr>
<td>VALiD</td>
<td>Vaccine Assessment using Linked Data study</td>
</tr>
<tr>
<td>Vic</td>
<td>Victoria</td>
</tr>
<tr>
<td>VSD</td>
<td>Vaccine Safety Datalink</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>WADLS</td>
<td>Western Australia Data Linkage System</td>
</tr>
<tr>
<td>WCH</td>
<td>Women’s and Children’s Hospital</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1: Well developed data linkage systems worldwide in 200828 9

Figure 2.2: The Population Health Research Network2 .. 10

Figure 2.3: How does data linkage work? An example illustrating data linkage of vaccination and hospital morbidity data .. 13

Figure 2.4: Four components of the VALiD study .. 30

Figure 2.5: Cost-benefit comparison for the different forms of consent according to study size110 .. 52

Figure 3.1: Flow diagram of opt-in compared with opt-out trial ... 75

Figure 4.1: Flow diagram of opt-in compared with opt-out trial ... 93

Figure 4.2: Parental responses when asked about the return or non-return of the reply form with missing data imputed by multiple imputation ... 97

Figure 4.3: A comparison of observed and imputed values for selected variables.. 108

Figure 5.1: Flow diagram of opt-in compared with opt-out trial ... 122

Figure 7.1: Parent and public perspectives on consent for the linkage of data to evaluate vaccine safety .. 174

Figure 7.2: Parent and public opinions on the relative importance of obtaining consent or checking vaccine safety .. 174

Figure 7.3: Vaccination practices and safety concerns among parents in the two studies ... 176

Figure 7.4: Public perspectives on consent for the use of data from medical records ... 179
List of Tables

Table 2.1: Examples of data linkage studies for vaccine safety surveillance25
Table 2.2: Survey results of available data linkage infrastructure in 2007 for monitoring childhood vaccine safety by country...............................26
Table 3.1: RCTs of opt-in and opt-out consent ...67
Table 3.2: Eligibility criteria and rationale ..73
Table 4.1: Baseline characteristics of mothers at trial entry (complete cases)93
Table 4.2: Demographic characteristics of participants and non-participants in data linkage for vaccine safety surveillance with missing data imputed by multiple imputation...95
Table 4.3: Imputation Model 1: variables used to impute sex for parents who were not interviewed ..106
Table 4.4: Imputation Model 2: variables used to impute missing socio-demographic and interview responses about the topic of consent for all parents in the trial ...107
Table 4.5: Patterns of missingness of data for variables in substantive analysis109
Table 4.6: Examples of key phrases used to classify parental responses in Figure 4.2 of the main paper..110
Table 4.7: Baseline characteristics of mothers at trial entry (complete cases)125
Table 4.8: Understanding of data linkage for childhood vaccine safety surveillance ..127
Table 4.9: Opinions regarding consent to data linkage for childhood vaccine safety surveillance ..129
Table 4.10: Opinions on the relative importance of obtaining consent or checking vaccine safety ...131
Table 4.11: General views on vaccine safety and surveillance..............................132
Table 4.12: Vaccine safety concerns and parental compliance with two-month immunisations by the age of 10 weeks for babies.................................135
Table 4.13: Imputation Model 3: variables used to impute missing interview responses about the topics of data linkage, vaccine safety and effectiveness, and vaccination practices for all parents in the trial..............................141
Table 4.14: Patterns of missingness of data for variables in substantive analysis143
Table 6.1: Household demographics of survey respondents (n=2002): South Australia, 2011
Table 6.2: Opinions regarding consent to data linkage for childhood vaccine safety surveillance (n=2002)
Table 6.3: Opinions on the relative importance of obtaining consent or checking vaccine safety (n=2002)
Table 6.4: General views on vaccine safety and surveillance (n=2002)
Table 6.5: Vaccine safety concerns and vaccination practices among parents and guardians (n=601)
Table 7.1: Demographic characteristics of the interviewed parents and survey respondents
Table 7.2: Parent and public perspectives on vaccine safety and surveillance