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James W Kijas3, Hutton V Oddy5, Graham E Gardner6, Cedric Gondro5 and Ross L Tellam3*

Abstract

Background: In livestock populations the genetic contribution to muscling is intensively monitored in the progeny
of industry sires and used as a tool in selective breeding programs. The genes and pathways conferring this
genetic merit are largely undefined. Genetic variation within a population has potential, amongst other
mechanisms, to alter gene expression via cis- or trans-acting mechanisms in a manner that impacts the functional
activities of specific pathways that contribute to muscling traits. By integrating sire-based genetic merit information
for a muscling trait with progeny-based gene expression data we directly tested the hypothesis that there is
genetic structure in the gene expression program in ovine skeletal muscle.

Results: The genetic performance of six sires for a well defined muscling trait, longissimus lumborum muscle
depth, was measured using extensive progeny testing and expressed as an Estimated Breeding Value by
comparison with contemporary sires. Microarray gene expression data were obtained for longissimus lumborum
samples taken from forty progeny of the six sires (4-8 progeny/sire). Initial unsupervised hierarchical clustering
analysis revealed strong genetic architecture to the gene expression data, which also discriminated the sire-based
Estimated Breeding Value for the trait. An integrated systems biology approach was then used to identify the
major functional pathways contributing to the genetics of enhanced muscling by using both Estimated Breeding
Value weighted gene co-expression network analysis and a differential gene co-expression network analysis. The
modules of genes revealed by these analyses were enriched for a number of functional terms summarised as
muscle sarcomere organisation and development, protein catabolism (proteosome), RNA processing, mitochondrial
function and transcriptional regulation.

Conclusions: This study has revealed strong genetic structure in the gene expression program within ovine
longissimus lumborum muscle. The balance between muscle protein synthesis, at the levels of both transcription and
translation control, and protein catabolism mediated by regulated proteolysis is likely to be the primary determinant of
the genetic merit for the muscling trait in this sheep population. There is also evidence that high genetic merit for
muscling is associated with a fibre type shift toward fast glycolytic fibres. This study provides insight into mechanisms,
presumably subject to strong artificial selection, that underpin enhanced muscling in sheep populations.

Background
The genetic contribution to complex traits such as mus-
cling in livestock production animals is often intensively
monitored. The information is used as a tool in selective
breeding programs, based on the relative genetic perfor-
mances of sires, to enhance desirable traits within the

population. This sire-based genetic information for a com-
plex trait, which is typically the result of polygenic effects,
is generated by extensive progeny testing for the trait [1].
The molecular mechanisms underpinning this genetic
merit within a population are typically undefined but are
likely to arise from polygenic changes in gene transcription
mediated by genetic variation in promoters, transcriptional
regulatory elements such as enhancers and insulators, and
mRNA splicing sites as well as variants affecting mRNA
turnover. Although there are several additional mechan-
isms that could impact phenotype independent of gene
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transcription including changes in protein intrinsic activity
and mRNA translational efficiency, it has been suggested
that polygenic transcriptional changes are probably the
major influence on variation in complex traits within a
population [2]. Genetic variation could alter gene expres-
sion via cis- or trans-acting mechanisms in a manner that
impacts the functional activities of specific pathways that
directly contribute to the trait [3]. The identification of
these pathways has been an important goal of mammalian
genomics.
One of the major advantages of using livestock to inves-

tigate the genetic and biological bases of complex traits is
that the industry holds comprehensive genetic perfor-
mance data for sires based on quantitative trait measure-
ments made from large numbers of their progeny. The
Poll Dorset breed of sheep has been intensively bred for
rapid growth rate and superior muscling characteristics
[1]. In particular, there is strong emphasis in breeding pro-
grams for the trait Eye Muscle Depth (EMD), which is
measured ultrasonically in longissimus lumborum muscle
at the ‘C’ site (45 mm from the centre of the spine)
between the 12th and 13th rib in the progeny of breeding
sires. Estimated breeding values (EBVs; a measure of rela-
tive genetic performance compared with a contemporary
group) for this trait have been determined for many sires.
Hence, sires with varying genetic performances for this
trait can be identified from industry databases.
By integrating sire-based EBV information with pro-

geny-based gene expression data obtained by microarray
analysis we directly tested the hypothesis that there is
genetic structure to gene expression in ovine skeletal
muscle. Moreover, we employed an integrated systems
biology approach using both an EBV weighted gene co-
expression network analysis (WGCNA) and a differential
gene co-expression network analysis to identify highly
connected genes correlated with the trait and differen-
tially connected genes in the high and low EBV sire

groups, thereby identifying major functional pathways
contributing to the genetics of enhanced muscling [4-6].

Results and Discussion
The genetics of Eye Muscle Depth in sheep
Six Poll Dorset sires with extensive progeny records were
selected on the basis of having a range of EBVs for the
Eye Muscle Depth (EMD) (Table 1). EMD is a skeletal
muscling trait measured by ultrasound at a predefined
site in longissimus lumborum skeletal muscle in year-
lings. The EBVs are predictions of the sire’s relative
genetic merit for the EMD trait based on progeny perfor-
mance data collected from large numbers of animals over
two seasons (2003/2004 and 2004/2005). Positive and
negative EBVs indicate sire genetic performance better or
worse than the industry wide average set for a baseline
population in 2001. Three sires (sires I, II and III) were
in the top 1st to 15th percentiles for all industry sires for
this trait (high muscling group) and two sires (sires IV
and VI), each with EBVs of -1.07 were in the 95th percen-
tile (low muscling group), while one sire (sire V) had an
EBV of +0.9 (45th percentile). By contrast with the sire
based percentile rankings for the high muscling group,
sire V was included in the low muscling sire group. A
total of 40 half sib progeny derived from the six sires
were selected for microarray analysis using RNA
extracted from longissimus lumborum skeletal muscle.
The number of progeny sampled for each sire is shown
in Table 1.

Microarray gene expression analysis of skeletal muscle
samples
The bovine Affymetrix microarray was used to measure
gene expression in muscle samples from each of 40 pro-
geny produced from the six selected sires. Previous studies
have extensively validated the use of this microarray with
ovine samples, although there is some data loss due to

Table 1 The genetics of Eye Muscle Depth (EMD) in Poll Dorset sheep

Sire EMD EBV1,2 Accuracy3

(%)
Percentile
Ranking4

Muscling Group Progeny ID Progeny

I 2.95 93 1 High 1-7 7

II 1.49 97 15 High 8-11 4

III 1.78 98 10 High 12-19 8

IV -1.07 97 95 Low 20-27 8

V 0.90 90 45 Low5 28-35 8

VI -1.07 93 95 Low 36-40 5
1Estimated Breeding Value of a sire for the yearling Eye Muscle Depth (EMD) trait measured by progeny testing. EBVs were derived from data extracted from
LAMBPLAN [45].
2EMD EBV (mm) is a measure of the difference in the trait from the industry-wide contemporary average set in 2001.
3Accuracy reflects the number of progeny with phenotype information used to calculate the EBV. Accuracy ranges from 0-99% and indicates the probability of an
EBV changing with the addition of more progeny data. The magnitude of possible change decreases as accuracy increases. Accuracy below 75% is regarded as
low, between 76-90% as medium and above 90% as high.
4Percentile ranking of the sire amongst contemporaries for the EMD trait.
5Sire group V was classed in the low muscling sire group because of its percentile ranking relative to sires in the high muscling group.
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species specific differences in probe set sequences [7-9].
The microarray data were initially processed by using the
Affymetrix processing software MAS5 and significantly
expressed genes were subsequently filtered for the inde-
pendent MAS5 flag calls of present or marginal in all 40
microarrays thereby yielding 5394 probes. This was a
highly conservative strategy designed to select for genes
that were transcribed in all of the muscle samples. These
data were then used as input for unsupervised hierarchical
clustering analysis. Figure 1 shows the hierarchical cluster
analysis, which used signals from the 5394 genes in each
of the 40 samples. There was strong association of gene
expression with sire group (Figure 1(a)) (P = 1.30E-8;
Fischer’s Exact Test). Moreover, the data also showed
strong correlation with sire EBV status (Figure 1(b)) (P =
7.6E-12; Fischers Exact Test). Thus, there was substantial
genetic structure to the gene expression program in the
progeny skeletal muscle samples suggesting that this
directly contributed to the EBV status of the sires. The ori-
gins of this effect could reflect the impact of genetic varia-
tion on gene expression at the time of sampling or involve
changes at earlier developmental times. One trivial alter-
native possibility is that this program simply reflected a

sire-based genetic effect independent of direct contribu-
tion to the muscling EBV status. This is unlikely as the tis-
sue examined for gene expression was the same as that
measured to establish the EBV status of the sires. In addi-
tion, analyses of enriched gene functions and pathways
detailed below were highly relevant to a muscling pheno-
type. There is no a priori reason why this would occur if
these results were due to an indirect sire based genetic
effect. The gene expression profile of one sire group (VI;
coloured dark blue in Figure 1(a)) proved an exception as
it was not consistent with the EBV status of the sire in the
context of the results from the other sire groups. The pro-
geny of this sire showed much greater variability in gene
expression compared with other sire groups (results not
shown).
To further dissect this gene expression information a

systems biology approach using gene networks was sub-
sequently employed.

Gene expression network construction
The architecture of gene expression networks may provide
insight into the biological mechanisms underpinning the
genetics of the EMD trait. A gene co-expression network
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Figure 1 Hierarchical cluster analysis showing the genetic architecture of gene expression in skeletal muscle. Unsupervised hierarchical
cluster dendrogram of gene expression was undertaken using 40 skeletal muscle samples derived from the progeny of six sires characterised as
having high or low EBVs for the trait EMD (Eye Muscle Depth). Clustering was undertaken by using GeneSpring GX software (Agilent
Technologies) with selection for “condition tree” and “gene tree” with “Standard Correlation”. Rows represent individual animals while columns
represent genes. Different colours in the heat map represent gradients of gene expression levels: red, higher expression; blue, lower expression;
yellow, no difference in gene expression. The branch lengths indicate the correlation with which samples were joined, with longer branches
indicating a lower correlation. Individual genes could not be resolved at this magnification. (a) Branch length coloured for sire group. Sire group
I, light blue; II, red; III, brown; IV, yellow; V, purple; VI, dark blue (the colours do not correspond with any of those used in subsequent network
analyses). (b) Branch length coloured for sire EBV for EMD: red, high EBV group; yellow, low EBV group.
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analysis relies on the hypothesis that a strong correlation
in mRNA expression levels for a group of genes implies
that these genes work cooperatively in contributing to a
trait. The degree of connectivity of a gene in the network
is simply the number of other genes that show correlated
expression with that gene.
A component of the weighted gene co-expression net-

work (WGCNA) approach [5,10] was initially employed
to construct the network. This approach has been
widely employed to build a weighted gene co-expression
network based on gene expression and the absolute
Pearson correlation coefficient between gene expression
levels to detect clusters of genes correlated with a trait
[4,11-13]. The GC-RMA microarray data processing
algorithm was used to generate the primary gene
expression data input for gene network construction.
The 3,500 most connected genes (genes showing corre-
lated expression with many other genes) in each of the
high and low muscling datasets (5,223 unique genes in
the combined set) were employed for initial network

construction using the WGCNA package, which is a
connectivity based method that detects clusters of highly
interconnected genes based on soft thresholding using a
power function and scale free topology [5]. The adja-
cency matrix was calculated by raising the correlation
matrix of gene expression profiles to a power b, which
was chosen based on the scale-free topology criterion. A
b value of 4 was chosen (R2 = 0.8). Modules of genes
were defined using the topological overlap measure
(TOM), which shows the degree of overlap in shared
neighbours between pairs of genes in the network [14].
The TOM-plot visualized this relative interconnected-
ness between pairs of genes and showed how modules
(clusters of highly interconnected genes) were created.
Modules were defined using the Dynamic Tree Cutting
algorithm on a dendrogram created from the dissimilar-
ity-TOM matrix, which was calculated using the adja-
cency matrix [15]. This construction led to the
identification of 42 modules, with each containing more
than 40 genes (Figure 2). These modules were then used

Figure 2 Hierarchical clustering dendrogram of the Topological Overlap Measure (TOM) matrix for the gene expression data. The
topological overlap measure plot shows clusters of highly interconnected genes (modules). Genes were assigned to modules named by the
colours below the dendrogram using the static tree cutting method. A total of 42 modules each containing more than 40 genes was used as
input for the subsequent WGCNA and the differential coexpression network analyses.
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for the WGCNA and the differential network analyses.
Each module was uniquely identified by a colour name.

Weighted gene co-expression network analysis (WGCNA)
The identified modules were then selected on the basis
of their module correlation (MC), which is the absolute
correlation between the module eigengene (a representa-
tive gene expression profile for the module), and sire
EBV for EMD. Further, genes in the identified modules
were then retained based on their intra-modular con-
nectivity (a single gene measure of connectivity within a
module) and the absolute correlation of the gene
expression with the sire EBV for EMD. Four modules
were identified: Module VioletWGCNA (MC = 0.54, 39
genes), Module CyanWGCNA (MC = -0.52, 88 genes),
Module TanWGCNA (MC = -0.52, 33 genes) and Module
LightgreenWGCNA (MC = -0.42, 42 genes). Additional
File 1 lists the genes present in these four WGCNA
modules.

Figure 3 shows the expression profiles of the module
eigengenes for the four identified WGCNA modules for
each sire group. The module eigengene is a representative
gene expression profile that summarises the expression
profiles of all genes in the module. The first three sire
groups (I-III) had high EBVs for EMD while the last three
(IV-XI) represented the lower muscling sire groups. In all
four WGCNA modules the relative trends for the module
eigengenes were coordinate in sire groups I, II, IV and V
suggesting functional interactions of the genes within
these modules. Of particular note was the VioletWGCNA

module, which was the most different by comparison with
other modules. In this module there was strong corre-
spondence between sire module eigengenes and high mus-
cling EBV status. The sire group III eigengenes were not
coordinate with the other sire groups in all modules. The
reasons for this are not clear but could reflect different
mechanisms underpinning the high EBV status for this
sire group. Sire group VI, which corresponded with the

Figure 3 Sire group expression profiles of eigengenes for the identified WGCNA modules. Four WGCNA modules were selected on the
basis of their module correlation (MC), which is the absolute correlation between the module eigengene and the quantitative EBV status. Genes
in these modules were then retained based on their intra-modular connectivity (a single gene measure of connectivity within a module) and the
absolute correlation of the gene expression with the EBV for EMD. Module Violet WGCNA (MC = 0.54, 39 genes), Module Cyan WGCNA (MC = -0.52,
88 genes), Module Tan WGCNA (MC = -0.52, 33 genes) and Module Lightgreen WGCNA (MC = -0.42, 42 genes). The eigengene expression of each
sire group is uniquely coloured. Sire group I (red; high EBV); sire group II (orange, high EBV); sire group III (yellow, high EBV); sire group IV (green,
low EBV); sire group V (blue, low EBV); sire group VI (purple, low EBV). Each bar within a sire group represents a single animal. There is no
relationship between sire group colour and module colour name.

Kogelman et al. BMC Genomics 2011, 12:607
http://www.biomedcentral.com/1471-2164/12/607

Page 5 of 17



atypical sire group revealed in Figure 1, generally showed
variation in the direction of the module eigengene relative
to other sire groups and considerable variation even within
the sire group, unlike the others. This may indicate that
genes contributing to EBV status may be segregating
within this sire group and therefore generating a greater
range in progeny performance data. Overall, these results
again demonstrate strong genetic architecture in gene
expression as a function of both sire group and EBV
status.

Functional enrichment analysis of genes in WGCNA
modules
Functional enrichment analysis was used to assign biolo-
gical relevance to the genes present in each of the four
WGCNA modules in the context of module eigengenes
for the sire groups. These analyses used AgriGO [16], the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) [17,18]) or Gene Set Enrichment

Analysis (GSEA) [19]. While there is overlap in the func-
tionalities of these databases, each also has unique
capabilities.
Genes present in the CyanWGCNA module were

strongly enriched for GO terms associated with protein
catabolism mediated by the proteosomal components,
ubiquitin mediated proteolysis and threonine endopepti-
dases (AgriGO analysis; Figure 4). This was also appar-
ent from analysis of individual functional categories
using DAVID e.g. KEGG pathway (proteosome; P =
2.16E-9) and INTERPRO Protein Domain (proteosome
alpha subunit; P = 1.42E-10). The proteosome consists
of a highly ordered macromolecular complex of multica-
talytic proteases which function in energy dependent
regulated proteolysis. Before a protein is degraded, it is
first flagged for destruction by the ubiquitin conjugation
system, which ultimately results in the attachment of a
polyubiquitin chain to the target protein. The protea-
some’s regulatory cap binds the polyubiquitin chain,

(a) (c)(b)

Molecular Function

Biological 
Process

Cellular Component

Figure 4 Hierarchical tree graphs of over-represented GO terms for genes in the CyanWGCNA module. Hierarchical tree graphs of over-
represented gene ontology (GO) terms for genes in the Cyan WGCNA module were constructed using AgriGO [16]. Boxes in the graphs represent
GO terms labelled by GO number, term definition and statistical information. Significant terms (adjusted P ≤ 0.05) are coloured. The degree of
colour saturation of a box is positively correlated to the enrichment level of the term. Solid, dashed, and dotted lines represent two, one and
zero enriched terms at both ends connected by the line. GO categories: (a) Molecular Function; (b) Biological Process; (c) Cellular Component.
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unfolds the protein, and feeds the protein into the pro-
teasome’s proteolytic core for destruction. Additional
File 2 shows a table listing enriched clusters of terms
using the DAVID functional annotation clustering
approach, which gives a higher level perspective of func-
tional term enrichments. The highest ranked cluster,
which contained 26 terms, had an enrichment score of
6.88 (-log (geometric mean of the enriched term
P-values)) and was represented by terms relating to the
proteosome, ubiquitin mediated proteolysis and proteoly-
sis. A second related cluster (enrichment score = 1.24)
continued the focus on regulation of protein
metabolism.
The positive eigengenes for the three low muscling sire

groups in the CyanWGCNA module suggest increased
emphasis on protein catabolism in these groups. Consis-
tent with this conclusion, previous studies of muscle
deposition in sheep divergently selected for yearling
growth rate over ten generations indentified enhanced
protein degradation in hind-limb muscle in lines of these
animals selected for low growth [20]. Conversely, the
negative eigengenes for two of the high muscling sire
groups in this module suggest decreased emphasis on pro-
tein catabolism, which is consistent with more skeletal
muscle protein in these two groups. Next, the genes within
the CyanWGCNA module were examined by using GSEA
for enrichment of conserved cis-acting regulatory motifs.
This database included conserved gene-associated anon-
ymous motifs in the human, mouse, rat and dog genomes
and conserved gene-associated transcription factor binding
motifs. The conserved motifs were restricted to a ‘promo-
ter’ sequence window corresponding to ± 2 kb of the tran-
scription start site. Additional File 3 shows that this
module was associated with four enriched transcription
factor motifs (binding sites for NFE2L1 (nuclear factor
erythroid 2-related factor 1; confusingly sometimes called
NRF1), NRF1 (nuclear respiratory factor 1), GABPB2
(GA-binding protein subunit beta-1) and one anonymous
motif), which may participate in limiting muscle formation
in the low EBV sire group. Interestingly, NRF1 induces
expression of the key promyogenic transcription factor
MEF2A (myocyte-specific enhancer factor 2 A) and has
roles in regulating mitochondrial biogenesis and proteo-
some synthesis [21,22]. The enrichment for this transcrip-
tion factor motif in the genes present in this module is
consistent with a dual functional role for NRF1 in poten-
tially balancing myogenesis and mitochondria production
with energy dependent protein catabolism. It may also be
speculated that in the high muscling sire groups repre-
sented by sire groups I and II, there is decreased emphasis
on mitochondria biogenesis, which could reflect a fibre
type shift toward fast twitch glycolytic fibres. These fibres
are known to contain fewer mitochondria than slow twitch
oxidative fibres [23].

Module TanWGCNA was enriched for terms associated
with RNA processing as defined by DAVID functional
annotation clustering (enrichment score = 2.53; Additional
File 2). Consistent with this, analysis of the KEGG pathway
showed enrichment for the splicosome (P = 0.03). The for-
mer analysis also revealed a relatively small cluster
enriched for terms associated with the cytoskeleton but
this was below the threshold for cluster significance (data
not shown). AgriGO analysis confirmed enrichment for
cytoskeleton protein binding (P = 0.007) in the GO Mole-
cular Function category but there were no other signifi-
cant GO terms in the Biological Process and Cellular
Component GO categories (results not shown). The eigen-
gene sire group pattern for this module is similar to that of
the CyanWGCNA module. Thus, there was increased
emphasis on RNA turnover and cytoskeletal reorganisa-
tion in the low muscling sire groups. A single transcription
factor binding motif (GABPA; GA-binding protein alpha
chain) was enriched in promoters of genes in this module
(Additional File 3). This transcription factor is also
involved in nuclear control of mitochondria function [24].
Functional terms representing protein synthesis at the

level of ribosome protein function (KEGG Pathway; P =
1.22E-29) were strongly enriched in Module Light-
greenWGCNA. Additional File 4 shows AgriGO hierarchical
tree graphs for each of the GO categories, which are con-
sistent with this conclusion. DAVID functional annotation
clustering not only revealed over-representation of ribo-
some function in this module (enrichment score = 20) but
additionally suggested that mitochondrial function was
also enriched (enrichment score = 1) (Additional File 2).
The sire group eigengenes for the LightgreenWGCNA mod-
ule indicate that the expression of genes encoding ribo-
some proteins is positively correlated with the low
muscling group. One possible explanation for this finding
is that in the low muscling animals there is increased
emphasis on enhancement of the ribosome protein
machinery as compensation for constraints on muscle for-
mation at the levels of myogenesis or myofibril hypertro-
phy responses. The enrichment for terms associated with
mitochondrial function in this module is consistent with
shifts toward slow twitch oxidative fibres in the low mus-
cling group and fast twitch glycolytic fibres with lower
mitochondrial content in the high EBV sire group. GSEA
analysis indicated enrichment in this module for an anon-
ymous promoter motif and the motif for binding by the
ELK1 transcription factor (E twenty-six (ETS)-like tran-
scription factor 1) (Additional File 3). The latter protein
binds KLF4 (Krueppel-like factor 4) and acts cooperatively
with histone deacetylases to suppress smooth muscle cell
differentiation and postnatal growth [25,26]. This therefore
suggests a transcription factor mediated regulatory
mechanism which impacts both muscle cell formation and
general protein synthesis in the low muscling group.
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Module VioletWGCNA initially did not achieve signifi-
cance for any functional terms. However, the striking rela-
tionship between this module and sire group EBV status
(with the exception of sire group 6; Figure 3) suggested
that further analysis was warranted. Consequently,
AgriGO functional analysis was performed using less strin-
gent parameters (P < 0.1 and ≥ 2 genes/term). This analy-
sis identified muscle sarcomere organisation (p = 0.02) and
muscle development (P = 0.02) in the GO category Biologi-
cal Process while several terms relating to skeletal muscle
fibre structure (contractile fibre, myofibril, sarcomere) were
revealed in the Cellular Component category (Additional
File 5). These data were consistent with coordinate
emphasis on muscle structural components in the high
muscling sire group. GSEA analysis identified three anon-
ymous motifs and four motifs corresponding to known
transcription factor binding sites (MEIS1 (homeobox pro-
tein Meis1), TGIF (TGFB-induced factor homeobox 1),
RUNX1 (runt-related transcription factor 1) and TITF
(thyroid transcription factor 1)) (Additional File 3). MEIS1
has been implicated in regulation of myogenesis through
its control of the transcription of MYOD1 (myogenic dif-
ferentiation 1), a pivotal promyogenic transcription factor
and myostatin, a negative regulator of myogenesis [27,28].
RUNX1 has been shown to be involved in the mainte-
nance of skeletal muscle [29]. Thus, increased muscle pro-
tein synthesis driven by myogenesis is probably a
significant contributor to the high muscling sire groups.
The VioletWGCNA module contained a number of nota-

ble genes in addition to those encoding proteins directly
contributing to skeletal muscle fibre structure. ATP2A1
encodes a Ca2+-ATPase that facilitates the ATP coupled
translocation of calcium from the cytosol to the sarcoplas-
mic reticulum, and is intimately involved in muscle excita-
tion and contraction. This protein isoform characterises
fast twitch glycolytic muscle fibres (also known as type
IIb), which contain fewer mitochondria than oxidative
fibres [23,30]. This is consistent with decreased emphasis
on mitochondria in the high muscling sire group as
already suggested from analyses of the LightgreenWGCNA,
TanWGCNA and CyanWGCNA modules. The VioletWGCNA

module also contained two additional genes whose
encoded proteins, RYR1 (ryanodine receptor) and SRL
(sarcalumenin), are also actively involved in calcium trans-
port and storage in the sarcoplasmic reticulum. Collec-
tively, this information suggests increased emphasis on
sarcoplasmic reticulum function in the high muscling sire
groups. This organelle controls the dynamics of calcium
release and uptake during muscle contraction and is
essential for normal muscle function [31]. Calcineurin A
alpha (PPP3CA), another gene in this module, has key reg-
ulatory roles in skeletal muscle development, regeneration
and hypertrophy and is therefore consistent with higher
muscling occurring in sire groups I-III [32]. The module

also contained DICER1, which encodes an important
enzyme required for miRNA maturation. Several miRNA
are known to be positive regulators of myogenesis [33,34]
and DICER1 is essential for muscle development [35].
Interestingly, a simple binary comparison between the
high and low muscling sire groups demonstrated that
DICER was one of the most up-regulated genes (5.2 fold;
adjusted P = 1.68e-5; result not shown). Enhanced
DICER1 activity could lead to increased levels of mature
miRNA thereby promoting increased myogenesis in the
high muscling sire groups. The identification of several
genes within this module that are known to regulate skele-
tal muscle formation confirms that the gene expression
network analysis using the WGCNA approach provides
valuable insight into the pathways regulating muscling
which contribute to the muscling EBV.

Differential co-expression network analysis
Another independent method to analyse these data used a
differential co-expression network approach (CoXpress)
which identified modules that were differentially co-
expressed i.e. network modules containing genes that were
highly correlated with the high muscling trait but not the
low muscling trait and visa versa [6]. The hypothesis being
tested was that the extremes of the muscling EBV trait
were the result of changes in emphasis on specific biologi-
cal pathways. Specific differentially connected modules
were identified by comparing the behaviour of the 42 gene
network modules for the high and low muscling EBV trait.
A module was defined as differentially co-expressed when
it was significantly different from random in one condition
but not in the other condition. The conditions were high
and low EBV status for EMD. The approach uses a resam-
pling method to calculate a P-value for each module.
Genes in the modules were then retained based on differ-
ent criteria than for WGCNA and hence the gene contents
of the identified modules were not identical when compar-
ing this analysis with the WGCNA method. Genes in the
differentially co-expressed modules were retained only if:
(i) the intra-modular connectivity was > 0.6, and; (ii) the
intra-modular connectivity with other modules was < 0.6.
Five of the originally identified 42 modules were differen-
tially co-expressed (Table 2). One module was found to be
non-random in the high muscling group and random in
the low muscling group (VioletDiff) and vice versa for the
remaining four modules (LightgreenDiff, SalmonDiff, Green-
yellowDiff and OrangeDiff). Thus, the genes in the Violetdiff
module may play a direct role in enhancing muscle devel-
opment as they were highly connected in the high mus-
cling sire group and correlated with EBVs for this group
but not in the low muscling group. The remaining four
modules were highly connected in the low muscling sire
groups suggesting that the genes in these modules repre-
sented regulatory networks suppressing muscle formation

Kogelman et al. BMC Genomics 2011, 12:607
http://www.biomedcentral.com/1471-2164/12/607

Page 8 of 17



and maintenance. The genes present in these modules are
listed in Additional File 1.

Functional enrichment analysis of genes in differentially
co-expressed modules
AgriGO analysis of the genes present in the VioletDiff

module identified enrichment for contractile fibre and
myofibril in the GO Cellular Component category (Addi-
tional File 6). These functional term enrichments are con-
sistent with the high muscling EBVs being driven by
increased muscle protein synthesis. DAVID functional
annotation clustering identified aspects of endonuclease
activity, protein catabolism and vesicle mediated transport
as enriched although they were only weakly significant
(enrichment scores 1.73, 1.20 and 1.12, respectively)
(Additional File 7). In contrast with the AgriGO analysis,
muscle structural components did not reach significance
in the DAVID annotation clustering analysis. The reasons
for this are not clear but are likely due to differences in
inherent methodologies and significance thresholds (the
high stringency option was used in the DAVID analysis).
GSEA analysis identified five anonymous motifs and four
motifs corresponding to transcription factor binding sites
in the promoters of genes in this module (Additional File
3). Of the latter it is noted that C/EBP (CCAAT/enhan-
cer-binding protein alpha) is essential for establishment
and maintenance of energy homeostasis in neonates and it
has a strong role in the development of adipose tissue
[36]. One possibility is that there is cross-talk between reg-
ulatory mechanisms that govern muscle formation and
adipose tissues in these animals. Motifs for TGIF, MEIS1
and RUNX1 binding were also identified in this analysis,
as for the VioletWGCNA module.
The Light-greenDiff module, as for the WGCNA analysis,

was strongly enriched for ribosome protein function
(KEGG Pathway; P = 1.32E-79) (Additional Files 7 and 8;
DAVID functional annotation clustering and AgriGO ana-
lysis, respectively). There was also enrichment for mito-
chondrial function. This differentially expressed module
was only significant for the low muscling EBV category
and therefore it was consistent with previous conclusions

that the low muscling EBV trait was associated with
increased emphasis on protein translation, perhaps as a
compensatory mechanism, and increased mitochondria
formation or function. GSEA analysis confirmed enrich-
ment for the ELK1 motif as was demonstrated for the
Light-greenWGCNA module (Additional File 3).
The Green-yellowDiff module, which was significantly

co-expressed only for the low muscling trait, was weakly
enriched for terms generally relating to RNA processing,
transcription factor activity and regulation, and ubiqui-
tin-mediated protein catabolism (Additional Files 7 and
9). This differentially expressed module was associated
with the low muscling EBV trait and therefore it is sug-
gested that this trait was primarily the result of both
enhanced RNA processing and enhanced protein cata-
bolism. GSEA predicted ten enriched promoter motifs
of which six were known transcription factor binding
motifs (Additional File 3). Of these transcription factors,
PAX3 (paired box 3) was particularly noteworthy as it is
a marker of resident myogenic progenitor cells [37].
This may indicate that PAX3 links muscle RNA and
protein turnover with maintenance of myogenic pro-
genitor cells in the low muscling trait. SREBP1 (sterol
regulatory element-binding protein 1) was also identified
in this analysis. It links control of muscle mass with
lipid metabolic pathways, thus connecting muscle for-
mation with energy regulation [38].
Analysis of the SalmonDiff module only revealed weak

enrichment for terms summarised as carbohydrate meta-
bolism and RNA processing (Additional File 7). GSEA
revealed seven enriched transcription factor motifs and
one anonymous motif (enrichment scores = 1.12 and
1.02, respectively) (Additional File 3). SREBP1 was again
identified. Also of note was GATA6, which has been
implicated as a negative regulator of cardiac muscle
development [39].
The OrangeDiff module showed enrichment for regula-

tion of transcription and protein catabolism (Additional
File 7). The latter term was consistent with the low mus-
cling status in sire groups IV-VI. GSEA analysis revealed
three anonymous motifs and seven enriched transcription

Table 2 Differentially co-expressed modules defined by CoXpress1

Module Gene no. P-value2 P-value2 Mean correlation Mean correlation Mean correlation difference

LM HM LM HM HM - LM

VioletDiff 51 0.61 0.00 0.03 0.59 + 0.56

LightgreenDiff 103 0.00 0.66 0.39 0.02 - 0.37

SalmonDiff 126 0.00 0.77 0.37 0.01 - 0.36

GreenyellowDiff 141 0.00 0.88 0.30 0.03 - 0.27

OrangeDiff 74 0.02 1.00 0.27 0.01 - 0.26
1A module was differentially co-expressed when the pairwise correlations were not random in one condition (p < 0.05) and random in the other condition (p >
0.3) [6]. The conditions were high or low sire EBV status for EMD. HM, high muscling EBV; LM, low muscling EBV.
2The P-value is a measure of the significance that a module differs from random.
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factor motifs including motifs for C/EBP and MEF2A
(Additional File 3). The latter, as mentioned above, is a
pivotal promyogenic transcription factor while the for-
mer was also identified in the VioletDiff module.
While the WGCNA and differential co-expression net-

work analyses are inherently different in their
approaches, both yielded broadly similar conclusions in
terms of the relationships between the sire groups and
the functional term enrichments associated with identi-
fied modules. Higher resolution of the analyses could be
anticipated by increasing the number of progeny per
sire and the number of sire groups although there was
surprisingly strong genetic architecture in the gene
expression patterns in the current investigation given
the restricted number of sires groups evaluated.

Conclusions
There was strong genetic architecture to the gene expres-
sion program in skeletal muscle samples taken from the
progeny of sires characterised by a range of EBVs for
EMD (Figure 1). The genetic basis of population variation
for most complex traits, like muscling, is thought to be
the result of contributions from a large number of poly-
morphic genes each of small effect size. Within an animal
many genes act by coordinate activation and repression
of specific biological pathways to elicit cumulative effects
on the muscling trait. Genetic variations in these genes
are likely to contribute to variation in the trait within the
population. The current gene expression network ana-
lyses identified pathways operating in skeletal muscle
that are likely to contribute to quantitative trait variation
in the trait EMD, a measure of muscle yield. Polymorphic
variations in a subset of genes encoding proteins directly
participating in these pathways, their regulation or in
early developmental processes underpinning the forma-
tion of these pathways are likely to be responsible for
genetic variation in the EMD trait.
Gene co-expression network analyses are more likely to

identify modules containing co-regulated genes whose
encoded proteins directly contribute to structural units
such as muscle fibres, proteosomes, ribosomes and mito-
chondria, all of which were identified in the current ana-
lyses. Genes involved in regulating the formation of these
structural units are likely to be a primary source of the
genetic variation determining sire EBV status. The strong
proteosome signature (CyanWGCNA module) indicated
that there was increased emphasis on protein degradation
in the low muscling EBV groups. The enrichment for the
NRF1 transcription factor binding motif in the promoters
of genes in this module is consistent with the role for
NRF1 in regulating 26 S proteosome formation [22].
Therefore, NRF1 and its related counterpart NFE2L1 are
potential candidates for examination of genetic variation
contributing to variation in the EMD trait. Regulators

possibly contributing to the genetic variation in muscle
fibre formation included PPP2CA (calcineurin) and
DICER1, which were identified in the VioletWGCNA and
VioletDiff modules. These genes are known to control
muscle function and formation. Calcineurin has a key
role in the hypertrophy response of skeletal muscle and
DICER1 is essential for muscle formation as it catalyses
the processing of pre-miRNA, some of which are essen-
tial for myogenesis [32-35,40].
Figure 5 summarises the major pathway contributions

to the quantitative variation in the EMD trait. It is recog-
nised that the model is likely to be an oversimplification.
At the model’s core is muscle accretion mediated by
enhanced myogenesis, muscle fibre hypertrophy and
decreased protein catabolism i.e. the key biological deter-
minant dictating EBV status is the balance between mus-
cle fibre protein accretion and turnover. An additional
contribution includes mRNA processing. The differential
gene expression network analysis suggests that the EMD
trait is the result of different emphases on these func-
tional pathways in the high and low muscling groups. For
example, the high EBV status is more likely to be
mediated by increased muscle protein formation and not
by decreased muscle protein degradation, whereas low
EBV status may primarily be the result of increased
emphasis on protein degradation. By contrast, the
enhanced muscling arising from the action of some hor-
monal growth promotants is predominately mediated by
decreased protein degradation [41].
Enhanced muscling is probably also linked with a fibre

type shift toward fast twitch glycolytic fibres, which have
fewer mitochondria than slow twitch oxidative fibres.
Consistent with this conclusion, direct examination of
the longissimus lumborum muscle in the progeny of Poll
Dorset sires characterised by high EBVs for EMD demon-
strated an increased proportion of fast twitch glycolytic
Type IIb fibres compared with progeny from sires with
low EBVs for this trait, although the number of myofibres
and overall size of myofibres for each fibre type were
unaffected by EBV [42]. These results indicate that
intense genetic selection for increased EMD in this sheep
population is also likely to select for increased glycolytic
fibres in the longissimus muscle. Whether this impacts
on the overall growth performance of the animals
through differing metabolic emphases in skeletal muscle
is not known. The same study showed that total RNA
and total protein were higher in the progeny of high
muscling sires. This result is also consistent with the
model shown in Figure 5.
Analysis of the promoters of genes in the identified

modules often suggested that specific transcription fac-
tors provided multi-functional linkages between the pro-
cesses of muscle formation, protein turnover and energy
homeostasis. For example, the transcription factor NRF1
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linked regulation of the formation of the energy depen-
dent proteosome with mitochondrial biogenesis, while C/
EBP linked muscle formation with adipose tissue forma-
tion and energy homeostasis. Thus, these highly inte-
grated regulatory systems provide increased opportunity
for feedback control mechanisms that maintain muscle
mass within genetically predefined limits but also in a
state that is responsive to the overall energy balance in
the animal. This may be a consistent theme in the genet-
ics underpinning variation in muscling. It is interesting
to note that five of the enriched transcription factor
motifs (for binding of NRF1, NFE2L1, RUNX1, TGIF1
and MEIS1) were also indentified in an analysis of bovine
skeletal muscle development using gene expression infor-
mation and a different analysis methodology [43].
The future challenge is to identify causal genetic poly-

morphisms contributing to variation in the EMD trait.
The integration of high density SNP information with
these network analyses, especially using highly con-
nected hub genes, may accelerate the discovery of cis-
acting genetic polymorphisms that alter gene expression
and thereby directly contribute to this muscling trait
[4,44].

Methods
Animals
Six Poll Dorset sires with a range of Estimated Breeding
Values (EBVs) of accuracy greater than 90% for the year-
ling trait Eye Muscle Depth (EMD) were identified in
Australian industry flocks using LAMBPLAN [45] (Table
1). These sires were crossed with merino ewes and large
numbers of progeny were subsequently assessed for a
number of performance traits. Sheep were bred from a
research flock raised at University of New England
(NSW, Australia). The EMD trait is correlated with mus-
cle yield and is based on ultrasonic measurement of ‘eye’
muscle depth at the ‘C’ site (45 mm from the midline
between the 12th and 13th rib) in longissimus lumborum
muscle. The EBV for EMD measured the genetic differ-
ence (in mm) in the trait for a sire based on two seasons
of yearling progeny data (2003-2004; 2004-2005) com-
pared with contemporary sire groups set as a baseline in
2001. Typically, each sire was progeny tested using sev-
eral hundred offspring. The high muscling sire group
(sires I-III) represented sires with EBVs in the 1st-15th

percentiles. All other sires (sires IV-VI) were categorised
into a lower muscling sire group where their EBVs were

Figure 5 Major pathways contributing to the genetics of the trait eye muscle depth. The diagram summarises the major pathways
implicated in the genetics of enhanced muscling in sheep longissimus lumborum skeletal muscle. Arrows denote feed forward effects while
truncated lines denote repression.
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in the 45th-95th percentiles. Although sire V had an EBV
of +0.9 it was placed into the lower muscling category
because of its percentile ranking (45th) relative to the
rankings of sires in the high muscling group (1st-15th per-
centiles). None of the animals carried the known myosta-
tin or callipyge mutations, both of which result in
enhanced muscling (results not shown).

Biological samples
A total of 40 progeny (18 month old ewes) from the 6 sires
(4-8 animals/sire) were identified and these were used for
microarray analysis of skeletal muscle samples. Sheep were
euthanized at commercial abattoirs for sample collection
in accordance with the animal ethics guidelines of Univer-
sity of New England (NSW). A sample of longissimus lum-
borum muscle was dissected from each animal at the same
pre-determined site within 15 minutes of euthanasia, snap
frozen under liquid nitrogen and stored at -80°C until sub-
sequent RNA extraction.

RNA extraction and cDNA synthesis
Total RNA was extracted from 0.5 g of longissimus lum-
borum muscle from each animal by pulverisation under
liquid nitrogen followed by extraction using Trizol
reagent (Invitrogen). RNA (100 μg) for each sample was
further purified by Dnase1 (Ambion) treatment followed
by spin column purification by using an Rneasy Mini Kit
(Qiagen) and on-column Dnase1 treatment. The RNA
was quantified spectrophotometrically and its integrity
verified by the OD260/OD280 absorption ratio (> 1.8) and
by visualization on an agarose gel. cDNA synthesis was
undertaken with 5 μg of isolated total RNA per sample
using MMLV Superscript III reverse transcriptase (Invi-
trogen) and an anchored oligo-T18 primer combined
with random hexamers [9].

Microarray gene expression data
Microarray gene expression data were obtained by using
the Affymetrix GeneChip® Bovine Genome Array (Affy-
metrix, Santa Clara, CA), which contains 23,995 probe
sets representing ~19,000 UniGene clusters (Bovine Uni-
Gene Build 57). Target labelling, hybridisations, fluidics
and chip scanning to obtain an intensity value for each
probe were performed as described elsewhere [9]. Micro-
array data have been deposited at the National Centre for
Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) (Accession number GSE20552). The
microarray is deficient in full representation of myosin
heavy chain genes, which are often used to define skeletal
muscle fibre composition [7].

Microarray data processing
Previous studies indicated that the bovine Affymetrix
microarray can be used for analysis of ovine gene

expression although there was some minor data loss due
to species specific sequence differences in the probe sets
[7-9]. Several probe set algorithms were available for pro-
cessing microarray data. All of the algorithms, which
include MAS5 (Microarray Suite), RMA (Robust Multi-
chip Average), GC-RMA (Robust Multichip Average with
adjustment for GC content of probes) and PLIER (Probe
Logarithmic Intensity Error), have strengths and weak-
nesses [46,47]. Consequently, two primary microarray pro-
cessing strategies were undertaken. The first method was
a highly conservative analysis using MAS5 (Microarray
Suite) in combination with its independent flag calls of
present, marginal and absent i.e. only probe-sets with sig-
nificant signal above background and having flag calls of
present or marginal in all 40 microarrays were used. A
detailed description of MAS5 analysis can be found else-
where [7,9]. The signal for a specific probe-set was calcu-
lated from the weighted average of all probe signals in the
probe set using One-step Tukey’s Biweight estimates and
summarized as log2 scaled averages. This approach has led
to good correspondence between microarray and qRT-
PCR analyses [7-9]. These probe sets were then filtered to
include only those with MAS5 flag calls of present or mar-
ginal in all samples. These data, which consist of 5,394
genes, were used for hierarchical clustering analysis.
MAS5 is less robust for detecting differentially expressed
probes across treatments however it does not attempt to
normalise data across microarrays. In this sense it is a
more unbiased estimate of gene expression intensities and
therefore more suitable for clustering of the entire dataset.
The second method used GC-RMA for data processing,
which was then used as input for subsequent gene net-
work constructions. GC-RMA is more robust than MAS5
for identification of differentially expressed genes and it
removes scatter at low intensity signals and accounts for
differences in probe GC content. In this case, Mismatch
intensities and the independent MAS5 flag calls were not
used as this could have eliminated interesting genes that
were expressed but in only a subset of animals. GC-RMA
data analysis is described elsewhere [48]. Annotation of
probe-sets was previously described [9] and since then has
been augmented by multifaceted searches of several publi-
cally available resources based on the Btau 4.0 bovine gen-
ome assembly [49,50]. The term ‘probe-set’ was largely
replaced by ‘gene’ in subsequent text. Some probes sets
could not be uniquely annotated and were therefore not
used in the functional enrichment analyses. Gene symbols
are placed in italics except when used in the context of a
protein.

Unsupervised hierarchical clustering
Unsupervised hierarchical cluster analysis used as input
MAS5 data filtered for the flag calls of present or mar-
ginal in all 40 microarrays. This combination is a highly
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conservative approach to data analysis. The data were
analysed using GeneSpring GX software (Agilent Tech-
nologies) with selection for “condition tree” and “gene
tree” with “Standard Correlation”. Fischer’s Exact test cal-
culated in GeneSpring was used to determine the signifi-
cance of the association between gene expression and
sire group or sire EBV status.

Gene expression network construction
GC-RMA was used for primary signal generation and
normalisation for subsequent network analyses [48].
Probe sets whose mean expression levels were very low
(log2 probe intensity < 2.35) or whose expression levels
varied little (S.D. < 0.01) over the experimental samples
were removed. This left 13,409 of 23,995 probe-sets.
The exclusion of some probe-sets was undertaken on
the basis that non-changing genes provide little informa-
tion in a gene co-expression setting. All statistical ana-
lyses for network constructions were performed in the R
statistical programming environment using the Biocon-
ductor open source package [51,52]. In order to analyse
the data within a weighted gene co-expression network
analysis (WGCNA; [5]) framework in a reasonable time
frame, the size of the data set was first reduced by selec-
tion based on connectivity, which is a measure of the
number of genes showing pairwise co-expression with a
specific gene. The connectivity of a particular gene is
defined as the sum of the connection strengths between
that particular gene and all other genes in the network.
Genes with a high connectivity are thought to be biolo-
gically important as they reflect tightly regulated pro-
cesses and when this connectivity changes these genes
likely contribute to an altered phenotype. The 3,500
most highly connected genes in each of the high and
low muscling datasets (giving a combined unique set of
5,223 genes) were selected for construction of gene co-
expression networks.
Networks were created by using a component of the

WGCNA framework of Langfelder and Horvath [5]. A
summary of network terms and an example of applica-
tion of the WGCNA framework can be found elsewhere
[4]. First, the co-expression similarity was calculated
from the expression values by using the Pearson correla-
tion coefficient and then it was transformed into an adja-
cency matrix using a ‘soft thresholding’ approach which
maintained the continuous nature of the similarity mea-
sure matrix [4]. The co-expression similarity was raised
to a power b (soft thresholding) to maintain high similar-
ity measures as high adjacencies but lower similarity
measures were pushed towards an adjacency of zero.
Beta was chosen based on the scale-free topology criter-
ion [10] whereby the linear regression model fitting index
(R2) was used to quantify how well the network satisfied
this criterion. We chose b in the interval (1,15), which

maximised the scale-free topology fit (R2 ≥ 0.8). To
define clusters of genes in the data set, the adjacency
matrix was used to calculate the topological overlap mea-
sure (TOM), which shows the degree of overlap in shared
neighbours between pairs of genes in the network [14]. A
topological overlap of 1 means that two genes share all
the same neighbourhood-genes, while a topological over-
lap of 0 means that two genes don’t share any neighbour-
hood genes. A TOM-plot visualized this relative
interconnectedness between pairs of genes and showed
how modules (clusters of highly interconnected genes)
were created. Modules were defined using the Dynamic
Tree Cutting algorithm [5,15] on a dendrogram created
from the dissimilarity TOM matrix. Modules were
required to initially have a minimum of 40 members and
these were then used as input into the WGCNA and dif-
ferential co-expression network analyses. Forty two mod-
ules were identified. The relative merits of these network
approaches have been previously discussed [4,53].

Weighted gene co-expression network analysis
The modules defined above were then selected on their
module correlation (MC), which is the absolute correla-
tion between the module eigengene (a representative
gene expression of the module) and sire EBV for EMD.
Only modules with MC greater than 0.4 were selected for
further analysis. Genes within those modules were then
retained in the modules based on their intra-modular
connectivity and their correlation with the EBV status.
The intra-modular connectivity is a single gene measure
of connectivity within a module [10]. It is calculated by
taking the correlation between a particular gene and the
module eigengene. Thus, genes in selected modules were
only retained in the selected modules if: (i) their intra-
modular connectivity was > 0.6; (ii) their intra-modular
connectivity with other modules was < 0.6, and; (iii) the
absolute correlation of the gene expression with the EBV
status was > 0.5. The retained genes in the identified
modules were subsequently analysed by functional
enrichment analysis (see below).

Differential co-expression network
It was hypothesized that gene expression profiles of mod-
ules were up- or down-regulated in a manner that contrib-
uted to the muscling phenotype of the sire group. The
coXpress R-package was used for differential co-expres-
sion analysis of the pre-defined modules [6]. The software
uses a re-sampling method to calculate a P-value for each
of the 42 predefined modules. Briefly, coXpress generated
10,000 data sets made up of modules of equal size to the
original data set, but comprised of randomly assigned
genes. For each module a null distribution was generated
using the t-statistic calculated for each of the 10,000 repli-
cates. The t-statistic of the original modules was then

Kogelman et al. BMC Genomics 2011, 12:607
http://www.biomedcentral.com/1471-2164/12/607

Page 13 of 17



compared to the null distribution and a P-value was calcu-
lated to determine if it was significantly different from ran-
dom (P < 0.05) or not different from random (P > 0.3).
These t-statistics and P-values were calculated for both
the low- and high-muscling EBV conditions. A module
was then defined as differentially co-expressed when it
was significantly different from random in one condition
but not in the other condition. In these analyses the corre-
lation of the genes with the muscling status was already
taken into account and therefore genes in the identified
modules were retained based on different criteria than for
WGCNA. Genes in the differentially co-expressed mod-
ules were retained in the selected modules only if: (i) their
intra-modular connectivity was > 0.6, and; (ii) their intra-
modular connectivity with other modules was < 0.6. Only
modules retaining 15 or more genes were then selected
for functional enrichment analysis.

Module names
All defined modules were assigned a name based on a col-
our. However, genes in the modules were retained based
on different criteria in the two network analyses and for
that reason the lists of genes in each analysis for the same
module were not necessarily identical. To delineate this
difference in the module gene content, a subscript was
added to each module name. For the WGCNA analysis
“WGCNA” was added as a subscript to the module name
and for the differential co-expression network analysis
“Diff” was added as a subscript.

Functional enrichment analyses
Functional enrichment analysis was used to assign biologi-
cal relevance to the gene network modules by using
AgriGO [16,54]), the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID) [17,18,55] or
Gene Set Enrichment Analysis (GSEA) [19,56]. In general,
conservative default parameters were used in these ana-
lyses. The genes present on the Affymetrix microarray
were used as the background for statistical analyses. All P-
values were corrected for multiple testing using the Benja-
mini method. Unannotated probe sets were removed from
analyses. These arise from incomplete annotation of the
bovine genome sequence, non-unique gene assignments
or incorrect probe-set construction. AgriGO was designed
to provide visualisation of gene ontology (GO) information
focussed on agricultural species by presentation of hier-
archical tree graphs of overrepresented GO terms. The
information inside the box for a significant term, included:
gene ontology (GO) term; adjusted P-value; GO descrip-
tion; item number mapping the GO in the query list and
background, and; total numbers for the query list and
background. Boxes with smaller adjusted P-values were
coloured darker and redder. Uncoloured boxes contained
terms with adjusted P-values greater than 0.05. Solid,

dashed, and dotted lines represent two, one and zero
enriched terms at both ends connected by the line, respec-
tively. DAVID provides a comprehensive set of functional
annotation tools and statistical methods for identification
of enriched biological terms within gene data sets. To
obtain a higher level perspective of any term enrichments,
Functional Annotation Clustering was performed in
DAVID. This higher level analysis displayed similar func-
tional annotations together based on overlaps of genes
associated with each function term and therefore gives a
clearer overview of gene function information associated
with large datasets. A cluster enrichment score (- log (geo-
metric mean of the P-values for terms in the cluster))
greater than 1.0 was considered significant. The conserva-
tive High Stringency option was used. Conserved gene-pro-
moter associated anonymous motifs present in the human,
mouse, rat and dog genomes and conserved gene-promo-
ter associated transcription factor binding sites were iden-
tified using GSEA. The conserved anonymous motifs and
transcription factor binding sites were restricted to a
sequence window of ± 2 kb of the consensus transcription
start site. Motifs are defined in the TRANSFAC (v. 7.4)
database [57]. In some instances slightly different motifs
for binding of the same transcription factor have been
reported. The output from GSEA is an enrichment score,
describing the imbalance in the distribution of ranks of
gene expression in each gene set. The number of genes in
the overlap (k) was set at ≥ 3. The enrichment score was
normalized according to size of the gene sets which were
then ranked according to the normalized enrichment
score. The default False Positive Rate (FDR) q-value setting
(FDR q-value < 0.25) was used as the cut-off.

The potential influence of SNP positioned within probes
sets
It is possible that SNP within probe sets confound inter-
pretation of the gene expression data [58,59]. This possi-
bility is unlikely to be a dominant influence for the
following reasons. (i) The Affymetrix gene expression
probe set for each gene consists of eleven 25 mers and
thus SNP within a single oligonucleotide probe have
minimal impact on the probe set signal. (ii) The software
used for processing the microarray data typically deem-
phasizes outlier probes within the probe set and thus the
resulting probe set signal is not sensitive to genetic varia-
tion. Moreover, there is strong correlation between
bovine and ovine probe set signals for skeletal muscle
samples indicating that even interspecies sequence varia-
tion does not affect the probe set signal for the majority
of genes (> 75%) [9]. There is also strong correspondence
between microarray probe set signals and qRT-PCR sig-
nals [7-9]. The latter analysis frequently used amplicons
outside of the probe set region. (iii) The frequency of
overlap of SNP within probe sets has been calculated for
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rodents and humans and shown to be a minor influence
[59,60]. Moreover, direct investigations of probe sets by
resequencing have revealed that the impact of probe
based SNP on the detection of cis-acting QTLs is limited
[61]. (iv) If SNP do overlap with probe sets then there is
no a priori reason why there should be gene clustering
according to EBV status for EMD or gene set enrichment
corresponding to specific terms e.g. muscle fibre struc-
tural proteins. In the former case, the highly conservative
present or marginal MAS5 flag call filter required for all
40 microarrays in the hierarchical clustering analysis
shown in Figure 1 would have eliminated any probe sets
adversely affected by SNP variation in the animal popula-
tion and yet there was still strong genetic structure in the
dataset.

Additional material

Additional file 1: Genes in the identified WGCNA modules and the
differential gene co-expression network modules. This file lists the
genes present in the identified WGCNA modules and the differential
gene co-expression network modules. Each module was identified by a
colour name. The Affymetrix probe set, gene symbol and gene name are
listed. Some probe sets could not be uniquely annotated.

Additional file 2: Functional annotation clustering of genes present
in the identified WGCNA modules. Summary table listing enriched
functional annotation clusters and functional terms associated with
genes in the identified WGCNA modules. The analysis was performed
using DAVID analysis tools, which provide a higher order perspective of
functional term enrichments as enriched clusters of terms [18].
Conservative parameters were used in the analysis. P-values were
corrected for multiple testing using the Benjamini correction. The
enrichment score for a Functional Annotation Cluster is the -log
(geometric mean of the term P-values within the cluster). Enrichment
scores ≥1.0 were considered significant. No enriched functional
annotation clusters were identified for genes in the VioletWGCNA module
using these parameters.

Additional file 3: Enriched motifs present in the promoters of genes
in the identified WGCNA and differentially connected modules.
Genes present in each of the identified WGCNA and differentially
connected modules were examined by using GSEA for enrichment of
conserved cis-acting regulatory motifs [19]. The database within GSEA
included gene-associated anonymous motifs conserved in the human,
mouse, rat and dog genomes and conserved gene-associated
transcription factor binding sites. The motifs were restricted to a
‘promoter’ sequence window corresponding to ± 2 kb of the
transcription start site. P-values ≤ 0.05 were considered significant.

Additional file 4: Hierarchical tree graphs of over-represented GO
terms for genes in the LightgreenWGCNA module. Hierarchical tree
graphs of over-represented gene ontology (GO) terms for genes in the
LightgreenWGCNA module were constructed using AgriGO [16]. Boxes in
the graphs represent GO terms labelled by GO number, term definition
and statistical information. Significant terms (adjusted P ≤ 0.05) are
coloured. The degree of colour saturation of a box is positively correlated
to the enrichment level of the term. Solid, dashed, and dotted lines
represent two, one and zero enriched terms at both ends connected by
the line, respectively. GO categories: (a) Molecular Function; (b) Biological
Process; (c) Cellular Component.

Additional file 5: Hierarchical tree graphs of over-represented GO
terms for genes in the VioletWGCNA module. Hierarchical tree graphs
of over-represented gene ontology (GO) terms for genes in the
VioletWGCNA module were constructed using AgriGO [16]. Boxes in the
graphs represent GO terms labelled by GO number, term definition and
statistical information. The analysis was performed using less stringent

parameters (adjusted P < 0.1 and ≥ 2 genes/term) than the default
parameters. Significant terms are coloured. The degree of colour
saturation of a box is positively correlated to the enrichment level of the
term. Solid, dashed, and dotted lines represent two, one and zero
enriched terms at both ends connected by the line, respectively. GO
categories: (a) Biological Process; (b) Cellular Component.

Additional file 6: Hierarchical tree graphs of over-represented GO
terms for genes in the VioletDiff module. Hierarchical tree graphs of
over-represented gene ontology (GO) terms for genes in the VioletDiff
module were constructed using AgriGO [16]. Boxes in the graph
represent GO terms labelled by GO number, term definition and
statistical information. The analysis was performed using default
parameters. Significant terms are coloured (adjusted P ≤ 0.05). The
degree of colour saturation of a box is positively correlated to the
enrichment level of the term. Solid, dashed, and dotted lines represent
two, one and zero enriched terms at both ends connected by the line,
respectively. Only the Cellular Component GO category was significant.

Additional file 7: Functional annotation clustering of genes present
in the differential gene co-expression modules. Summary table listing
enriched functional annotation clusters and functional terms significantly
associated with the genes in the identified differential gene co-
expression modules. The analysis was performed using DAVID analysis
tools which provide a higher order perspective of functional term
enrichments [18]. Conservative analysis parameters were used in the
analysis. P-values were corrected for multiple testing using the Benjamini
correction. The enrichment score for a Functional Annotation Cluster is
the -log (geometric mean of the term P-values within the cluster).
Enrichment scores ≥ 1.0 were considered significant.

Additional file 8: Hierarchical tree graphs of over-represented GO
terms for genes in the Light-greenDiff module. Hierarchical tree
graphs of over-represented gene ontology (GO) terms for genes in the
Light-greenDiff module were constructed using AgriGO [16]. Boxes in the
graphs represent GO terms labelled by GO number, term definition and
statistical information. The analysis was performed using default
parameters. Significant terms are coloured (adjusted P ≤ 0.05). The
degree of colour saturation of a box is positively correlated to the
enrichment level of the term. Solid, dashed, and dotted lines represent
two, one and zero enriched terms at both ends connected by the line,
respectively.

Additional file 9: Hierarchical tree graphs of over-represented GO
terms for genes in the Green-yellowDiff module. Hierarchical tree
graphs of over-represented gene ontology (GO) terms for genes in the
Green-yellowDiff module were constructed using AgriGO [16]. Boxes in
the graphs represent GO terms labelled by GO number, term definition
and statistical information. The analysis was performed using default
parameters. Significant terms are coloured (adjusted P ≤ 0.05). The
degree of colour saturation of a box is positively correlated to the
enrichment level of the term. Solid, dashed, and dotted lines represent
two, one and zero enriched terms at both ends connected by the line,
respectively. Only terms in the Biological Process GO category were
significant.
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