The underlying molecular regulators and their effects on mineralisation in the trabecular bone microenvironment and osteoblast of primary hip osteoarthritis

Duminda Dananjaya Kumarasinghe (BBiotech, Hons)

Thesis by Publication submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

August, 2012

The Discipline of Pathology
School of Medical Sciences
Faculty of Health Sciences
The University of Adelaide
South Australia
Australia
<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>An update on primary hip osteoarthritis including altered Wnt and TGF-β associated gene expression from the bony component of the disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Abstract</td>
</tr>
<tr>
<td>1.2</td>
<td>The aetiology of primary OA</td>
</tr>
<tr>
<td>1.3</td>
<td>Risk factors for primary OA</td>
</tr>
<tr>
<td>1.4</td>
<td>The inverse relationship between primary OA and fracture</td>
</tr>
<tr>
<td>1.5</td>
<td>Molecular changes in the bone of primary OA</td>
</tr>
<tr>
<td>1.6</td>
<td>Altered expression of Wnt molecules in primary OA</td>
</tr>
<tr>
<td>1.7</td>
<td>Altered expression of TGF-β molecules in primary OA</td>
</tr>
<tr>
<td>1.8</td>
<td>Conclusions</td>
</tr>
<tr>
<td>1.9</td>
<td>Acknowledgements</td>
</tr>
<tr>
<td>1.10</td>
<td>References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary</td>
</tr>
<tr>
<td>2.2</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.3</td>
<td>Methods</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Human bone samples</td>
</tr>
<tr>
<td>2.3.2</td>
<td>RNA extraction and real-time polymerase chain reaction (PCR)</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Histomorphometric analysis</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Data analysis</td>
</tr>
<tr>
<td>2.4</td>
<td>Results</td>
</tr>
</tbody>
</table>
Chapter 3 Evidence for the dysregulated expression of TWIST1, TGFβ1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients

3.1 Summary...23
3.2 Introduction...23
3.3 Methods ...24
 3.3.1 Bone samples..24
 3.3.2 Primary OA and CTL osteoblast cultures.................24
 3.3.3 Calcium apposition...24
 3.3.4 Energy dispersive x-ray spectroscopy (EDS) microanalysis of mineral composition...24
 3.3.5 RNA and Real-time PCR....................................24
 3.3.6 Data analysis..24
3.4 Results...25
 3.4.1 Mineralisation measures and gene expression levels in OA osteoblasts......25
 3.4.2 Temporal patterns of mineralisation independent of group.......................25
 3.4.3 Temporal patterns of gene expression independent of group.......................25
 3.4.4 Group specific correlations in gene expression..25
 3.4.5 Associations between gene expression and mineral measures26
 3.4.6 Comparisons of gene and mineral associations between groups against zero.27
 3.4.7 Temporal changes in the relationships between gene expression and mineral measures ...27
3.5 Discussion..27
Chapter 4 Altered expression and association with mineral composition of PHEX, MEPE and DMP1 in osteoblasts from primary hip osteoarthritis

4.1 Abstract
4.2 Introduction
4.3 Methods
4.3.1 Human bone samples
4.3.2 Primary OA and CTL osteoblast cultures
4.3.3 Calcium apposition and energy-dispersive x-ray (EDS) microanalysis of mineral composition
4.3.4 RNA and real-time PCR analysis from primary osteoblasts
4.3.5 Data analysis
4.4 Results
4.4.1 Gene expression and mineral measures in OA and CTL osteoblasts
4.4.2 Group specific correlations in gene expression
4.4.3 Group specific correlations between gene expression and mineral measures
4.4.4 Comparison of associations between gene expression and mineral measures
4.4.5 Temporal changes in the relationship between gene expression and mineral measures during osteoblast differentiation
4.5 Discussion
4.6 List of abbreviations
4.7 Conflicts of interest
4.8 Acknowledgements
4.9 Contributions
4.10 References
4.11 Tables
4.12 Figure legends
4.13 Figures

Chapter 5 Thesis conclusions
Thesis abstract

Primary hip osteoarthritis (OA) is emerging as a dynamic pathology, developing over a long period and involving many tissue types of the joint, including the bone. Previous studies have established differential gene expression, changes in microarchitectural indices, altered cellular characteristics and material properties in the bone of primary hip OA. These studies suggest that OA is a systemic disease involving the bone and validate the assessment of molecular changes to further investigate this complex disease. The aim of the studies herein was to further characterise the altered gene expression profile in both OA bone and osteoblasts, and compare these with control (CTL) bone and cells, respectively. The first study examined differential gene expression, histomorphometric indices and relationships between these, in femoral trabecular bone from OA patients and CTL subjects, with the aim of identifying molecular changes consistent with structural and remodelling indices in the OA pathology. The second and third studies used primary osteoblasts derived from female hip OA cases against CTL to investigate the expression of candidate OA disease genes during osteoblast differentiation and mineralisation, in terms of calcium apposition and elemental composition of the mineral.

A number of alterations in gene expression, histomorphometric indices and correlations were identified in OA bone compared to CTL. Notably, significant relationships observed in CTL bone between critical components of the Wnt/β-catenin signalling pathway (e.g. CTNNB1) and regulators of osteoblastogenesis (e.g. TWIST1) with indices of bone formation and structure were absent in OA bone. Conversely, the expression of MMP25, a regulator of matrix degradation, and indices of bone resorption were correlated exclusively in OA.

In the second study fundamental differences in osteoblast behaviour were identified in cells cultured *ex vivo* from OA bone. The Ca:P ratio was significantly more varied in OA compared to CTL. Calcium apposition and mineral composition changed significantly
over time. Genes associated with osteoblast differentiation were analysed with respect to the mineral measures. TWIST1 mRNA expression was elevated and correlated with SMAD3 mRNA levels in the OA cohort during the time course. Associations were observed between TNAP, OCN, TWIST1, TGF\(\beta\)1, SMAD3 mRNA levels and mineral measures in OA against CTL. Temporal differences between SMAD3 mRNA expression and mineral composition were also found in OA.

The third study concerned genes involved directly with the regulation of osteoblast/osteocyte mediated mineralisation. Analysis revealed that PHEX and PTEN mRNA expression were higher and more varied in OA. PHEX mRNA expression correlated with PTEN throughout the time course in OA cultures, both genes also correlated with Ca apposition. Other OA-specific patterns of gene correlations were identified, including those between MEPE and OCN, and MEPE and DMP1. Additionally, associations between gene expression and mineral measure were significantly different in OA; including those between MEPE and Ca apposition, as well as the Ca:P ratio, DMP1 and the Ca:P ratio, and PTEN and the Ca:C and P:C ratios.

Together, these findings suggest that inherent molecular changes in the bone and importantly, its constituent osteoblasts, contribute to the pathology of primary hip OA. These studies strongly imply that at least in the case of primary hip OA, the bone should be considered as an important contributor to the disease aetiology. The differentially expressed molecules identified herein associated with microarchitectural and compositional changes offer avenues for further experimental investigations and, potentially, novel therapeutic targets.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Duminda D Kumarasinghe and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis as listed below resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

List of copyright holders:

Kumarasinghe DD, Hopwood B, Kuliwaba JS, Atkins GJ & Fazzalari NL (2011). An update on primary hip osteoarthritis including altered Wnt and TGF-β associated gene expression from the bony component of the disease. Rheumatology 50(12): 2166-2175. © The Author 2011. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For permissions please contact Journals Customer Service Department Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK, Ph: +44 (0)1865353907, Fax: +44 (0)1865353485, email: journals.permissions@oup.com

correlations in the trabecular bone in primary hip osteoarthritis. Osteoarthritis and Cartilage 18(10): 1337-1344. © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. For permissions please contact Osteoarthritis Research Society International (OARSI) 15000 Commerce Parkway Suite C, Mount Laurel, New Jersey 08054, USA, Ph: +1 8564391385, Fax: +1 8564390525, email: oarsi@oarsi.org

Kumarasinghe DD, Sullivan T, Kuliwaba JS, Fazzalari NL & Atkins GJ (2012). Evidence for the dysregulated expression of TWIST1, TGFβ1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients. Osteoarthritis & Cartilage [in press]. © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved. For permissions please contact Osteoarthritis Research Society International (OARSI) 15000 Commerce Parkway Suite C, Mount Laurel, New Jersey 08054, USA, Ph: +1 8564391385, Fax: +1 8564390525, email: oarsi@oarsi.org

Kumarasinghe DD, Fazzalari NL & Atkins GJ (2012). Altered expression and association with mineral composition of PHEX, MEPE and DMP1 in osteoblasts from primary hip osteoarthritis. Arthritis Research & Therapy [under review]. © pending as Kumarasinghe et al.; licensee BioMed Central Ltd. This may become an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Duminda D. Kumarasinghe
Statement of Authorship

An update on primary hip osteoarthritis including altered Wnt and TGF-β associated gene expression from the bony component of the disease (Review)

Rheumatology 2011; 50(12): 2166-2175

KUMARASINGHE, D.D. (Candidate)
Reviewed and assessed papers, interpreted findings, prepared draft manuscript and acted as corresponding author.

I hereby certify that the statement of contribution is accurate:

Signed

.................................Date

HOPWOOD, B.
Supervised work, helped with interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed

.................................Date

KULIWABA, J.S.
Supervised work, helped with interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed

.................................Date

ATKINS, G.J.
Supervised work, helped with interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed

.................................Date
FAZZALARI, N.L.

Supervised work, helped with interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed... ..Date................................. 21/12/2011
Statement of Authorship

Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis

Osteoarthritis and Cartilage 2010; 18(10): 1337-1344

KUMARASINGHE, D.D. (Candidate)

Performed data analysis on all samples, interpreted data, wrote manuscript and acted as corresponding author.

I hereby certify that the statement of contribution is accurate:

Signed ..Date. 6/12/11

PERILLI, E.

Assisted with data interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed... ..Date. 6/12/11

TSANGARI, H.

Assisted with data analysis and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed..... ..Date. 7/12/11

TRUONG, L.

Assisted with data analysis and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed..... ..Date. 3/12/11

x
KULIWABA, J.S.

Supervised development of work, helped in data interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed...Date...6/12/11

HOPWOOD, B.

Assisted with data analysis, supervised development of work, helped in data interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed.. ...Date.......1/12/11

ATKINS, G.J.

Supervised development of work, helped in data interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed...Date.......4/12/11

FAZZALARI, N.L.

Supervised development of work, helped in data interpretation and manuscript evaluation.

I hereby certify that the statement of contribution is accurate:

Signed...Date......21/12/2011
Statement of Authorship

Evidence for the dysregulated expression of TWIST1, TGFβ1 and SMAD3 in differentiating osteoblasts from primary hip osteoarthritis patients

Osteoarthritis & Cartilage 2012: submitted

KUMARASINGHE, D.D. (Candidate)

Performed analysis on all samples, analysed and interpreted data, wrote manuscript.

Certification that the statement of contribution is accurate:

Signed. ..Date. 27/02/12...

SULLIVAN, T.

Assisted with data analysis and manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis:

Signed... ..Date. 29/02/12...

KULIWABA, J.S.

Supervised work, helped with interpretation and manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis:

Signed... ..Date. 29/02/12...

FAZZALARI, N.L.

Supervised work, helped with interpretation and manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis:

Signed...... ..Date. 28/02/2012
ATKINS, G.J.

Supervised work, helped with interpretation and manuscript evaluation and acted as corresponding author.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis:

Signed... ...Date.../\/\/
Statement of Authorship

Altered expression and association with mineral composition of PHEX, MEPE and DMP1 in osteoblasts from primary hip osteoarthritis

Arthritis Research & Therapy 2012: submitted

KUMARASINGHE, D.D. (Candidate)

Performed analysis on all samples, analysed and interpreted data, wrote manuscript.

Certification that the statement of contribution is accurate:

Signed ..Date 12/06/12

FAZZALARI, N.L.

Supervised work, helped with interpretation and manuscript evaluation.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis:

Signed.. ..Date 10/6/2012

ATKINS, G.J.

Supervised work, helped with interpretation, manuscript evaluation and acted as corresponding author.

Certification that the statement of contribution is accurate and permission is given for the inclusion of the paper in the thesis:

Signed ..Date 12/06/12
Acknowledgements

Firstly I would like to thank my principal advisors Professor Nicola Fazzalari and Associate Professor Gerald Atkins for their wisdom, foresight, knowledge, guidance, and support. I would also like to thank my co-advisor Dr Blair Hopwood for his support. Their supervision has ensured the success of my candidature and created an intellectually fulfilling, as well as personally rewarding experience.

Funding support for this work from an Australian Postgraduate Award, the University of Adelaide and SA Pathology is gratefully acknowledged. I would like to thank members of the Bone and Joint Research Lab in SA Pathology; Dr Julia Kuliwaba, Ms Lena Truong, Ms Helen Tsangari, Dr Geetha Mohan, Dr Arash Badiei, Dr Lachlan Smith and Dr Egon Perilli for their generous help and support in the lab. Likewise I would also like to thank members of the Bone Cell Biology Lab at the University of Adelaide; Ms Shelley Hay, Ms Cristina Vincent, Ms Katie Welldon, Mr Asiri Wijenayaka and Dr Masakazu Kogawa for their generous guidance and support in the cell biology lab. I would also like to thank my colleagues at the University of Adelaide, Mr Thomas Sullivan and Ms Erandi Samarakoon for their assistance with statistical analyses and figures.

Finally I would like to especially thank my parents Devapriya Githal Kumarasinghe and Damayanthi Rangani Kumarasinghe as well as my sister Dilini Ishanthi Kumarasinghe for their generosity, patience, guidance and support throughout my candidature.
Publications

Published abstracts and scientific communications

Kumarasinghe DD, Hopwood B, Atkins GJ & Fazzalari NL (2009). *Underlying molecular regulators of primary hip osteoarthritis and their role in the inverse relationship with osteoporosis*. Faculty of Health Sciences Research Expo, University of Adelaide, Adelaide, Australia. (Poster)

cohorts. Australian Society for Medical Research Scientific Meeting, South Australian Division, Adelaide, Australia. (Podium)

signalling in osteoblast differentiation and its effects on bone pathology. Australian Society for Medical Research Scientific Meeting, South Australian Division, Adelaide, Australia. *(Poster)*

Prizes and awards

SA Pathology Medical Staff Specialist Fund Travel Award, 2009

Honourable mention in the Hanson Institute South Australian Research News, 2008

The Healthy Aging Research Cluster Best Poster Prize, 2008

The Healthy Aging Research Cluster Best Poster Prize, 2007

Australian Postgraduate Award, 2006-2010
List of figures and tables

Figure 1.6.1 The canonical Wnt pathway and differentially expressed molecules from the bone of primary hip OA. (A) The canonical Wnt pathway in its activated state with a bound Wnt protein, the FZD and LRPs, as well as downstream binding of axin-preserving b-catenin, which goes on to initiate transcription. (B) The canonical Wnt pathway in its inactive state. The FZD receptor is instead bound by a soluble frizzled-related protein (sFRP). The axin, glycogen synthase kinase 3 (GSK3) and APC complex then degrades b-catenin. (C) A list of differentially expressed molecules and downstream targets of the canonical Wnt pathway from the bone of primary hip OA cases.

Figure 1.6.2 Two non-canonical Wnt signalling pathways and differentially expressed molecules from the bone of primary hip OA. (A) The Wnt/JNK pathway in its active form, including the cytosolic complex of Prickle, DVL and DAAM1 ultimately initiating JNK nuclear translocation and transcription, as well as the Ras homologue gene family member A (RHOA) signalling cascade. (B) The Wnt/Ca pathway depicted in its active state. The G-coupled FZD receptor initiates a cytosolic complex, which mediated by calcium leads to calmodulin-dependent protein kinase II (CAMKII), which subsequently effects cell polarity, adhesion and shape. (C) A list of differentially expressed molecules and downstream targets of the non-canonical Wnt pathways from the bone of primary hip OA cases.

Figure 1.7.1 A condensed version of the active TGF-b signalling cascade and differentially expressed molecules from the bone of primary hip OA. (A) Notable components of the large and complex TGF-b signalling pathway include major cytosolic mediators SMAD2, SMAD3, SMAD anchor for receptor activation (SARA) and growth factor receptor-bound protein 2 (GRB2). Critical downstream mediators also include TGF-b-activated kinase 1 (TAK1) and mitogen-activated protein 3 kinase 1 (MAP3K11). The transduction proteins lead to three critical transcription factors, MAPK 14 (p38), JNK and MAPK 1 (ERK), inducing a large number of different genes, including ALP. (B) A list of differentially expressed molecules and downstream targets of the TGF-b signalling pathway from the bone of primary hip OA cases.

Figure 2.4.1 a) Photomicrograph of a 5 mm section of trabecular bone section from the IT region of the proximal femur of a primary hip OA case (×2.5 magnification). (b) Photomicrograph of a 5 mm section of trabecular bone section from the IT region of the proximal femur of a CTL case (×2.5 magnification).

Table 2.4-1 Comparison of the expression of molecular regulators and structural and remodelling indices between OA patients and CTL cases.

Table 2.5-1 Correlations in gene expression amongst molecular regulators and between...
structural indices in OA patients and CTL cases ...18

Table 2.5-2 Correlations in gene expression amongst molecular regulators and structural and remodelling indices from OA and CTL cases ...19

Figure 3.4.1 (A) Alizarin red stains from primary osteoblast cultures differentiated over 42 days generated from the IT trabecular bone of a female hip OA case and a CTL. (B) Calcium apposition generated from quantified alizarin red stains from primary osteoblast cultures differentiated over 42 days generated from the IT trabecular bone of age and sex-matched female hip OA and CTL cases, values are means ± standard error of the mean (S.E.M.) of quadruplicate stains. (C) Images produced by scanning electron microscopy at 2000× magnification from primary osteoblast cultures differentiated over 42 days generated from the IT trabecular bone of a female hip OA case and a CTL. (D) Ca:P ratios assessed using energy-dispersive x-ray microanalysis from primary osteoblast cultures differentiated over 42 days generated from the IT trabecular bone of age and sex-matched female hip OA and CTL cases, values are means ± S.E.M. of quadruplicate scans. ..26

Table 3.4-1 Comparison of variance in calcium apposition, mineral composition and normalised gene expression from primary osteoblast cultures between OA and CTL cases over a 42-day time-course ..26

Table 3.4-2 Comparison of fixed effects in calcium apposition, mineral composition and normalised gene expression from primary osteoblast cultures between OA and non-OA CTL cases over a 42-day time-course ...27

Figure 3.5.1 mRNA expression from primary osteoblast cultures differentiated over 42 days generated from the IT trabecular bone of age and sex-matched female hip OA and CTL cases. Values are means ± S.E.M. of triplicate reactions and normalised to GAPDH (A) & (B) TNAP, (C) & (D) OCN, (E) & (F) TWIST1, (G) & (H) WNT5B, (I) & (J) TGFβ1, (K) & (L) SMAD3 ..28

Table 3.5-1 Specific analysis of day by day differences in calcium apposition, mineral composition and normalised gene expression from OA and CTL primary osteoblast cultures over a 42-day time-course ..29

Table 3.5-2 Linear correlations (r) in normalised gene expression specific to each day from OA and non-OA CTL primary osteoblast cultures over a 42-day time-course. ..29

Table 3.5-3 The comparison of associations from OA and CTL primary osteoblast cultures over a 42-day time-course between normalised gene expression and mineral measures using LMEM. The fit of the two LMEMs from OA and CTL for each association was assessed using a likelihood-ratio test generating an F-value and a subsequent P-value.30

Table 3.5-4 Specific assessment against zero (no association at all) of associations between normalised gene expression and mineral measures assessing calcium apposition and composition in OA and non-OA CTL primary osteoblast cultures over a 42-day time-course. ..30

Table 3.5-5 Specific analysis of temporal differences against zero (no association at
all) within associations between normalised gene expression and mineral measures assessing calcium apposition and composition in OA and non-OA CTL primary osteoblast cultures over a 42-day time-course.

Table 4.10-1 Forward and reverse primer sequences used to assess gene expression from primary osteoblast cultures between osteoarthritis (OA) and control (CTL) cases over a 42 day time-course.

Table 4.10-2 Linear correlations in gene expression specific to each day from osteoarthritis (OA) and non-OA control (CTL) primary osteoblast cultures over a 42 day time-course.

Table 4.10-3 Linear correlations between gene expression and mineral measures specific to each day from osteoarthritis (OA) and non-OA control (CTL) primary osteoblast cultures over a 42 day time-course.

Table 4.10-4 The comparison of associations from osteoarthritis (OA) and control (CTL) primary osteoblast cultures over a 42 day time-course between gene expression and mineral measures using linear mixed effects modelling (LMEM). The fit of the two LMEMs from OA and CTL for each association was assessed using a likelihood ratio test generating an F-value and a subsequent p-value.

Table 4.10-5 Specific analysis of temporal differences against zero (no association at all) within associations between gene expression and mineral measures assessing calcium apposition and composition in osteoarthritis (OA) and non-OA control (CTL) primary osteoblast cultures over a 42 day time-course.

Figure 4.12.1 Osteoblasts sourced from the IT bone of 5 hip OA and 5 CTL donors were cultured over a 42 day time course under conditions permissive for differentiation and mineralisation. Real-time RT-PCR analysis was performed for the expression of A) TNAP, B) OCN, C) PHEX, D) MEPE, E) DMP1 & F) PTEN mRNA relative to that of the housekeeping gene, GAPDH. Data shown are the means ± SEM pooled from all donors’ cells for each cohort.

Figure 4.12.2 Mineral measures from osteoblasts sourced from the IT bone of 5 hip osteoarthritis (OA) and 5 control (CTL) donors over a 42 day differentiation and mineralisation time course. Pooled values ± SD are presented for each cohort. Differences over specific days were calculated using the base quadruplicate for Calcium apposition or the base octuplicate for the Electron dispersive spectroscopy (EDS) measures at each time point with the application of a t-test to compare OA against CTL, significant differences are denoted by asterisk. A) Calcium apposition by Alizarin Red, B) EDS Ca:P ratio, C) EDS Ca:C ratio & D) EDS P:C ratio.