ADAMTS1 IS A PROMOTER OF METASTATIC CELL BEHAVIOUR IN MAMMARY CANCER CELLS

Izza Maria Doreen A. Tan

Robinson Institute
School of Paediatrics and Reproductive Health
Research Centre for Reproductive Health
Discipline of Obstetrics and Gynaecology
University of Adelaide, Adelaide
Australia
“The ones crazy enough to think they can change the world are the ones that do”

- Steve Jobs

“It always seem impossible until it’s done”

-Nelson Mandela

“Everything is okay in the end. If its not okay, its not the end”

- John Lennon
Abstract

Metastatic disease is the primary cause of mortality in breast cancer. It is characterised by the dissemination of cancer cells from the primary site, infiltration into vessel networks and the establishment of new tumour growth in secondary tissues. Several events are required for metastasis to occur, including enhancement of cell-matrix adherence, augmented motility and invasiveness. The extracellular matrix (ECM) environment plays a vital role in the processes involved in metastatic progression and undergoes aberrant remodelling to permit and support the metastatic cascade.

Metalloproteinases are a group of enzymes that play a major role in ECM remodelling. The ADAMTS metalloproteinase family has been implicated in the re-organisation of the tumour microenvironment associated with cancer development and metastatic disease progression. Of the 19 ADAMTS proteases, considerable attention has been devoted to the role of its first member ADAMTS1 in cancer metastasis.

Both exogenous overexpression and upregulation of the endogenous ADAMTS1 gene have been strongly associated with metastatic disease in breast cancer. The MMTV-PyMT transgenic breast cancer model recapitulates in vivo metastasis and ablation of Adamts1 impeded the aggressive advancement and growth of pulmonary metastases. The signalling pathways and mechanistic events through which ADAMTS1 mediates its pro-metastatic effects are currently unknown. The aim of this present study is to therefore identify the causal events imposed by ADAMTS1 to promote breast cancer metastasis, with much focus on its role in matrix adhesion, cell migration and invasion.

Using isolated primary mammary carcinoma cells PyMT/Adamts1\(^{+/+}\), PyMT/Adamts1\(^{+-}\) and PyMT/Adamts1\(^{--}\) mice, I performed real-time assessment of cell-matrix adhesion, motility and invasion and found diminished capacity of PyMT/Adamts1\(^{+-}\) cells to adhere to matrigel and migrate towards a chemoattractive environment. Consistent with the reciprocal approach, introduction of Adamts1 into the MCF10A breast cell line induced the inverse effect, promoting cell adhesion and motility in cells overexpressing Adamts1. Cell-matrix adhesion is a major cue for the determination of front-rear polarity necessary in cell migration and hence, the influence of ADAMTS1 on cell-matrix adhesion underpinned its effects on breast cancer cell migration. Breast cancer cell invasion was unaffected by loss or gain of Adamts1, suggesting a redundant role for ADAMTS1 in this process.
To unravel the transcriptional differences and mechanistic pathways induced by ADAMTS1, microarray analysis was undertaken with PyMT/Adamts1+/+ and PyMT/Adamts1−/− mammary tumours. Remarkably, only 2 differentially regulated genes were identified from our analysis. Further investigation of the most dysregulated gene, BC018473, revealed a non-homologous inheritance of this strain specific gene, which unfortunately prevented conclusions being drawn on the underlying genetic effects attributable to Adamts1 ablation.

This study was the first to present a novel role for ADAMTS1 in the promotion of breast cancer cell adhesion to the ECM. This capacity to dynamically modulate adhesion through ADAMTS1 is important in cell migration and highlights a potential mechanism by which ADAMTS1 promotes breast cancer metastasis.
Declaration

This thesis contains no material, which has been accepted for the award of any other degree or diploma in other university or tertiary institution. The content of this thesis is an original body of work and does not contain any published material written by another person, except where due reference has been made.

I give consent to this copy of my thesis, when deposited in the University Library, to be made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give consent for the digital version to be made available via the University’s digital thesis repository, the Library catalogue and web search engines, unless permission has been granted by the University to restrict access for a period of time.

The author acknowledges that copyright of published work listed below contained within this thesis resides with the copyright holder/s of the publication.

Acknowledgements

I first would like to express my gratitude for the guidance and support provided by my supervisors, Dr Darryl Russell and Dr Carmela Ricciardelli throughout my PhD, especially during the writing of this thesis. I thank them for granting me the opportunity to undertake a PhD study with them and for the knowledge and expertise they have shared with me. I am grateful for the time and effort they have devoted to help me succeed and overcome the challenges I’ve confronted in my study.

Thank you to all the past and present staff in the Discipline of Obstetrics and Gynaecology for their friendly, smiling faces and technical assistance. I’d like to especially acknowledge Ms Kate Frewin, who has taught me many of the experimental protocols performed in this project. Also, to fellow postgraduate students in the MSN Level 2 office, whom I’ve shared the peaks and throughs of my PhD journey with – thank you for creating a friendly, happy and comforting environment.

The studies conducted in my project were financially supported by grant funding from the National Health and Medical Research Council. I would like to thank the Australian government and the Robinson Institute for supporting my postgraduate scholarships, and the Discipline of Obstetrics and Gynaecology and the Research Centre for Reproductive Health for funding travel opportunities.

Last but not the least, undertaking my PhD would have been next to impossible if without the advice, help and moral support of my family, in particular my parents, Antonio and Cynthia, my siblings Harold and Rhea, my nephew, Rhys and my grandmother, Erlinda. Thank you for keeping me well fed, entertained and distracted. I especially would like to acknowledge and thank my parents whose hard work and perseverance has given me a better life in Australia. I am eternally grateful for your unconditional love, patience and guidance. Anything I’ve achieved and will achieve is inspired by both of you.
Publications arising from thesis

2. de Aaro Tan I, Frewin K, Ricciardelli C & Russell DL. “ADAMTS1 promotes the adhesion of mammary cancer cells to structural proteins that make up the extracellular matrix and basement membrane that in turn promotes cancer cell migration”. In preparation
Abstracts arising from thesis

5. de Arao Tan I, Frewin K, Ricciardelli C & Russell DL. “The metalloproteinase Adamts1 increases the capacity of mammary cancer cells to adhere to extracellular components”. Faculty of Health Sciences Postgraduate Conference, Adelaide, SA, August 2011

Table of Contents

Title page

Abstract ... III
Declaration ... V
Acknowledgements ... VI
Publications arising from thesis .. VII
Abstracts arising from thesis ... VIII
Table of contents ... IX
List of figures ... XIII
List of tables .. XV
Abbreviations .. XVI

CHAPTER 1 – Introduction

1.1. Introduction .. 3
1.2. The synthesis, structure and protein interactions of ADAMTS1 .. 5
1.3. Epigenetic downregulation of ADAMTS1 in primary cancers .. 7
1.4. ADAMTS1 expression in cancer ... 9
 1.4.1. ADAMTS1 is downregulated as prostate cancer becomes castrate resistant 9
 1.4.2. ADAMTS1 promotes hepatocellular carcinoma by aggravating liver fibrosis 12
 1.4.3. Upregulated expression of ADAMTS1 promotes breast cancer progression 15
1.5. ADAMTS1 in metastatic cancer .. 16
1.6. ADAMTS1-mediated pathways in cancer development and metastasis 17
 1.6.1. Angiogenesis ... 17
 1.6.2. Cell proliferation .. 19
 1.6.3. Cell survival .. 20
 1.6.4. Cell migration and invasion ... 23
1.7. Conclusion .. 25
CHAPTER 2 – ADAMTS1 enhances breast cancer cell adhesion to the extracellular matrix

2.1. Introduction ... 29
2.2. Materials and methods .. 30
 2.2.1. Animals .. 30
 2.2.2. DNA extraction .. 31
 2.2.3. PCR genotyping and gel electrophoresis ... 31
 2.2.3.1. MMTV-PyMT ... 31
 2.2.3.2. ADAMTS1 ... 32
 2.2.4. Isolation and propagation of mammary cancer cells ... 34
 2.2.5. Viral transduction of 2756 knockout primary mammary cancer cells 34
 2.2.6. Generation of MCF10A-Adams1 and MCF10A-GFP clones 35
 2.2.7. Quantitative real-time RT-PCR .. 36
 2.2.8. Immunocytochemistry .. 37
 2.2.9. Quantification of cytokeratin-positive mammary epithelial carcinoma cells.......... 37
 2.2.10. Real-time cell based assay .. 38
 2.2.10.1. In vitro proliferation assay ... 38
 2.2.10.2. In vitro adhesion assay ... 38
 2.2.11. Statistics .. 39
2.3. Results .. 41
 2.3.1. Isolated primary cells from Adams1+/+, Adams1+/- and Adams1-/- PyMT mammary tumours were predominantly mammary epithelial cancer cells 41
 2.3.2. PyMT/Adams1-/- primary cells exhibited reduced adhesion to Matrigel™ compared with Adams1+/+, Adams1+/- primary mouse mammary cancer cells 45
 2.3.3. Induced Adams1 expression in knockout primary mammary carcinoma cells did not affect cell adhesion due to poor transduction efficiency ... 48
 2.3.4. Lentiviral transduction of Adams1 in MCF10A mammary epithelial cells promoted cell adhesion to matrigel ... 51
2.4. Discussion ... 55
CHAPTER 3 – ADAMTS1 accelerates mammary cancer cell migration does not alter mammary cancer cell invasion

3.1. Introduction ..60
3.2. Materials and methods ...62
 3.2.1. Cell culture ..62
 3.2.2. Quantitative real-time RT-PCR ...62
 3.2.3. Real time cell-based assay ...62
 3.2.3.1. In vitro migration assay ...63
 3.2.3.2. In vitro invasion assay ...63
 3.2.4. Statistics ..67
3.3. Results ..67
 3.3.1. Loss of Adamts1 impeded mammary carcinoma cell migration ..67
 3.3.2. The loss of Adamts1 did not alter the invasive capacity of Adamts1+/− 1omMCC 70
 3.3.3. Adamts1 overexpression in non-transformed MCF10A cells promotes cell migration over 45hrs ..73
 3.3.4. Adamts1 overexpression in MCF10A cells had no effect on cell invasion76
3.4. Discussion ..79

CHAPTER 4 – Differential gene expression analysis of mammary tumours derived from PyMT/Adamts1+/− and PyMT/Adamts1−/− mice

4.1. Introduction ...83
4.2. Materials and methods ...85
 4.2.1. Generation of PyMT/Adamts1+/−, PyMT/Adamts1+/− and PyMT/Adamts1+/− breeding colony ..85
 4.2.2. Microarray ..85
 4.2.3. Genotyping ..86
 4.2.3.1. BCO18473 ...86
 4.2.3.2. Rnf160 ..86
4.2.4. Quantitative RT-PCR ... 87
4.2.5. Statistics ... 88
4.3. Results ... 88
 4.3.1. Microarray .. 88
 4.3.2. PyMT/Adamts1+/− mammary tumours expresses a non-coding transcript of Adamts1 ... 93
 4.3.3. Validation of Rnf160 upregulation in PyMT/Adamts1+/− ... 96
 4.3.4. Long non-coding RNA BC018473 is downregulated in PyMT/Adamts1+/− mammary tumours ... 98
 4.3.5. Strain imbalance between the two Adamts1 cohorts ... 101
 4.3.6. Cell-based experiments and published mouse cohorts possess homogenous strain mixing in Adamts1+/− and Adamts1−/− mice ... 101
4.4. Discussion ... 105

CHAPTER 5 – Conclusion and future directions

 5.1. Promoted matrix adhesion is a novel prometastatic behaviour associated with the ADAMTS1 metalloprotease ... 110
 5.2. Potential mechanisms underlying the role of ADAMTS1 in cell-ECM adhesion 112
 5.3. Clinical significance ... 115
 5.4. Summary and future directions .. 116

CHAPTER 6 – Bibliography .. 118
List of figures

Figure 1.1 – ADAMTS1 protein synthesis and function ... 6
Figure 1.2 – ADAMTS1 expression in normal and corresponding cancer tissues 8
Figure 1.3 – Aggravation of inflammatory response in liver fibrosis by ADAMTS1 to promote hepatoacellular carcinoma ... 14
Figure 1.4 – ADAMTS1 mediated pathways to promote proliferation and cell survival of breast cancer cells .. 22
Figure 2.1 – Schematic representation of annealing sites of Adamts1 genotyping primers 33
Figure 2.2 – Real-time cell proliferation and adhesion assays with the xCelligence system 40
Figure 2.3 – PyMT/Adamts1−/− mice have smaller mammary tumours than Adamts1+/+ and Adamts1+/− littermates, and isolated 1°mMCC were predominantly of mammary epithelial cancer cell type ... 42
Figure 2.4 – Cell adhesion is impaired in PyMT/Adamts1−/− mammary cancer cells 46
Figure 2.5 – Cell adhesion of #2756 Adamts1 null 1°mMCC transduced to overexpress Adamts1 ... 49
Figure 2.6 – Adamts1 overexpression in MCF10A cells ... 52
Figure 2.7 – Cell adhesion of MCF10 breast cancer cell line overexpressing Adamts1 54
Figure 2.8 – Schematic representation of ECD-integrin motif in ADAMTS1 57
Figure 2.9 – Potential pathways facilitated by ADAMTS1 to promote mammary cancer cell adhesion to the ECM .. 58
Figure 3.1 – Real-time invasion and migration assessment using the xCelligence system 65
Figure 3.2 – Loss of Adamts1 impedes primary mammary cancer cell migration 69
Figure 3.3 – Adamts1+/− 1°MCC exhibited accelerated cell invasion than Adamts1+/+ cells 72
Figure 3.4 – Migration of wild type MF10A, MCF10A-Adamts1 and MCF10A-GFP cells over 45 hours 74
Figure 3.5 – Invasion of wild type MCF10A, MCF10A-Adamts1 and MCF10A-GFP cells over 45 hours 77
Figure 4.1 – PyMT/Adamts1+/+ and PyMT/Adamts1−/− mammary tumour samples assessed in microarray90 Figure 4.2 – PCA plot of sample distribution based on global gene expression patterns 92
Figure 4.3 – Confirmation of Adamts1 genotypes .. 94
Figure 4.4 – Rnf160 transcript expression .. 97
Figure 4.5 – Downregulation of BC018473 transcript in PyMT/Adamts1−/− mammary tumours 99
Figure 4.6 – Unequal representation of BC018473 is unique to the microarray cohort......................... 103
Figure 5.1 – The role of ADAMTS1 in mammary cancer cell adhesion and how it may influence the migration and invasion of PyMT/Adamts1+/+ and PyMT/Adamts1−/− mammary carcinoma cells .. 114
List of tables

Table 1.1 – ADAMTS1 expression with cancer progression .. 11
Table 1.2 – ADAMTS1-mediated pathways in cancer progression and metastasis 24
Table 2.1 – Genotyping PCR primers: MMTV-PyMT and Adamts1 ... 33
Table 2.2 – RT-PCR primers: Adamts1 and ADAMTS1 ... 37
Table 4.1 – Genotyping PCR primers: BC018473 and Rnf160 .. 87
Table 4.2 – Gene expression analysis of PyMT/Adams1+/+ vs PyMT/Adams1−/− breast tumours 89
Table 4.3 – Individual microarray probe sets against specific exons of Rnf160 96
Table 4.4 – BC018473 microarray expression across different mouse strains detected in other studies107
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^oMCC</td>
<td>primary mouse mammary cancer cell</td>
</tr>
<tr>
<td>ADAMTS1</td>
<td>a disintegrin and metalloproteinase with thrombospondin motifs 1</td>
</tr>
<tr>
<td>*Adams1^+/−</td>
<td>Adams1 knockout</td>
</tr>
<tr>
<td>*Adams1^+/-</td>
<td>Adams1 heterozygous</td>
</tr>
<tr>
<td>*Adams1^+/+</td>
<td>Adams1 wild type</td>
</tr>
<tr>
<td>ADPC</td>
<td>androgen dependent prostate cancer</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AR</td>
<td>androgen receptor</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>C-terminal</td>
<td>carboxyl terminal</td>
</tr>
<tr>
<td>cDNA</td>
<td>complementary deoxyribonucleic acid</td>
</tr>
<tr>
<td>CHO</td>
<td>chinese hamster ovary</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>CRC</td>
<td>colorectal carcinoma</td>
</tr>
<tr>
<td>CRPC</td>
<td>castrate resistant prostate cancer</td>
</tr>
<tr>
<td>DMEM</td>
<td>dulbecco’s minimum essential medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxyribonucleic triphosphate</td>
</tr>
<tr>
<td>ECD</td>
<td>glutamic acid-cysteine-aspartic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethlyenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>ER</td>
<td>estrogen receptor</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GFP</td>
<td>green fluorescent protein</td>
</tr>
<tr>
<td>GSE</td>
<td>genomic spatial event</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RANKL</td>
<td>nuclear kappa B</td>
</tr>
<tr>
<td>RGD</td>
<td>arginine-glycine-asparagine</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of mean</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin ribonucleic acid</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>TNFα</td>
<td>tumour necrosis factor alpha</td>
</tr>
<tr>
<td>TSP</td>
<td>thrombospondin</td>
</tr>
<tr>
<td>U/ml</td>
<td>units per ml</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume percentage solution</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume percentage solution</td>
</tr>
<tr>
<td>wt</td>
<td>wild type</td>
</tr>
<tr>
<td>μg</td>
<td>microgram</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
</tbody>
</table>