TARGETING POST-SURGICAL STAPHYLOCOCCUS AUREUS IN CHRONIC RHINOSINUSITIS

Joshua Jervis-Bardy M.B.B.S.
Axial non-contrast CT image of a 54 yo female patient with surgically-recalcitrant chronic rhinosinusitis, with maxillary sinus mucosal thickening evident. *Staphylococcus aureus* is frequently cultured from swabs taken from both her maxillary sinuses.
To my darling Maggie, the kindest person I know
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Joshua Jervis-Bardy and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Dr. Josh Jervis-Bardy
Table of Contents

Declaration ... 4
Acknowledgements ... 8
Publications arising from this thesis ... 10
Awards arising from this thesis .. 11
Presentations arising from this thesis ... 12
Abbreviations used in this thesis .. 14
List of tables ... 15
List of figures ... 16
Thesis summary ... 17

Chapter One: Systematic Review of Literature .. 19

1.1 Defining the disease: Staphylococcus aureus, chronic rhinosinusitis and post-surgical recalcitrance... 20
 1.1.1 Chronic Rhinosinusitis: Definitions ... 20
 1.1.2 Chronic Rhinosinusitis: Burden of disease .. 21
 1.1.3 Chronic Rhinosinusitis: Theories of Aetiology ... 22
 1.1.4 Chronic Rhinosinusitis: Medical and Surgical Management 28
 1.1.5 Staphylococcus aureus: The microbiology of Chronic Rhinosinusitis 32
 1.1.6 Staphylococcus aureus: Virulence Mechanisms ... 33
 1.1.7 Staphylococcus aureus: The biofilm life-cycle ... 36
 1.1.8 Staphylococcus aureus: Outcomes following Sinus Surgery 38
 1.1.9 Staphylococcus aureus: Nasal and extra-nasal infection ... 40

1.2 Defining the treatment agent: Staphylococcus aureus and the antimicrobial treatment spectrum .. 41
 1.2.1 Staphylococcus aureus and antibiotics .. 42
 1.2.2 Staphylococcus aureus and disinfectants .. 45
 1.2.3 Staphylococcus aureus and bacteriophages .. 46
 1.2.4 Staphylococcus aureus and iron competition .. 47
 1.2.5 Staphylococcus aureus and enzymatic disruption of the biofilm matrix 47
 1.2.6 Staphylococcus aureus and mechanical disruption of the biofilm matrix 48
1.2.7 Staphylococcus aureus biofilm and surfactant..........................48
1.2.8 Staphylococcus aureus biofilm and laser48
1.2.9 Staphylococcus aureus and environmental manipulation- gas composition49
1.2.10 Staphylococcus aureus and environmental manipulation- probiotics50
1.2.11 Staphylococcus aureus and environmental manipulation- adjuncts to the host immune response ...50

1.3 Defining the treatment technique: maximising topical delivery to the sinuses53
1.3.1 Sinus rinse bottle ..54
1.3.2 Neti-pot ...55
1.3.3 Bulb syringe ...56
1.3.4 Nebulization ..57
1.3.5 Sniffing inhalation ...58
1.3.6 Nasal sprays ...58
1.3.7 Nasal drops/syringe ...59
1.3.8 Catheter instillation and Endoscopic instillation ..60
1.3.9 General device considerations ..62

1.4 Chapter one: Summary and studies to be performed62

Chapter Two: An Evaluation of Mupirocin ... 65

2.1 Microbiological outcomes following mupirocin nasal rinses for symptomatic, Staphylococcus aureus-positive chronic rhinosinusitis following endoscopic sinus surgery ..66

Statement of Authorship ...67

2.1.1 Abstract ...68
2.1.2 Introduction ...69
2.1.3 Materials and Methods ...70
2.1.4 Results ..71
2.1.5 Discussion ..74
2.1.6 Conclusion ...76

2.2 A randomised trial of mupirocin sinonasal rinses versus saline in surgically-recalcitrant staphylococcal chronic rhinosinusitis ..77

Statement of Authorship ...78

2.2.1 Abstract ...79
2.2.2 Introduction ...80
2.2.3 Materials and Methods ...81
2.2.4 Results ..85
2.2.5 Discussion ..89
2.2.6 Conclusion ..92

Chapter Three: An Ideal Treatment .. 93

3.1 Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of Manuka Honey: potential implication in chronic rhinosinusitis .. 94

Statement of Authorship .. 95

3.1.1 Abstract ..96
3.1.2 Introduction ..97
3.1.3 Materials and Methods ..98
3.1.4 Results ...100
3.1.5 Discussion ..102
3.1.6 Conclusion ...104

Chapter Four: Is there an ideal treatment window? ... 105

4.1 What is the origin of Staphylococcus aureus in the early post-operative sinonasal cavity? ... 106

Statement of Authorship .. 107

4.1.1 Abstract ...108
4.1.2 Introduction ..109
4.1.3 Materials and Methods ..110
4.1.4 Results ...112
4.1.5 Discussion ..116
4.1.6 Conclusion ...119

Synopsis .. 120

Concluding statement ... 123

References .. 125
Acknowledgements

Many have contributed to the completion of this thesis. Without the generous, and often thankless, efforts of others this body of work would never have progressed past its infancy. Whilst my thanks are simply offered here in writing, it is over the years to come I hope to truly repay the kindness and support I have received from so many.

Firstly, to Professor PJ Wormald, who has provided mentorship and inspiration from the very first day I wandered into the Department of Otolaryngology at The Queen Elizabeth Hospital. The simple facts are that without Prof's support I would never have embarked on a PhD, never have written a paper and would almost certainly never have become a trainee in Otolaryngology.

Thank you to Dr. Tan, for your guidance and supervision- especially during the early years. Without this encouragement I would have never embarked upon a higher degree.

I cannot thank my co-researchers enough for their support- few have given so much time, effort, support and knowledge freely and without expectations of anything in return. Thank you. To Rowan, who in the very early days first gave me an opportunity to be involved in a project. Andrew, who started me on the road to the PhD by giving me an idea to run with and later closely collaborating on almost all of my work. To Alkis, who expertly designed the trial that would become the centrepiece of the entire thesis. And to Sam, who has acted as a role model quite literally on a daily basis for the past half-decade and counting.

To those that have helped at either The Queen Elizabeth and/or Memorial Hospitals- Lyn, Tracey, Irene, Graeme, Deepti, Camille, Marc, Yuresh, Brendan, Matt, Ed, Amanda, Sathish, Ahmed, Neil, Daniel, Damien, Dijana and Sarah. Thank
you for providing ideas, help when needed, and sometimes just a friendly ear to
discuss a new idea.

It is impossible to try and express in words ones gratitude for the love and support
given over a lifetime by ones parents- and even harder with mine- so I wont even try. I would like to acknowledge, however, that my father had his own PhD candidature interrupted (and ultimately suspended) by the birth of his first child. And I'm not sure this thesis would have come close to anything Dad could have come up with had I not come along. Strangely enough, Mum has recently embarked on a PhD of her own- a wonderful achievement in its own right.

I would also like to acknowledge my brothers- Jake, Nick and Dan. A more talented trio I have yet to come across. Trying to keep up with you boys has provided me with more inspiration and drive over the last 4 years than almost anything else.

On a personal note, I cannot thank enough my fiancée Maggie. Her unwavering support- whilst herself combining work with study towards a Masters degree- has been a constant reminder of the joys of life outside of research and the hospital.

Lastly, no achievement in my life can pass without mention of the late Alistair ‘Scotchy’ Gordon OAM. The years spent training under Scotchy were a constant lesson in hard-work and perseverance that shaped a life-long attitude for setting and then achieving goals. I’m sure Scotchy would have cared little for the content of this thesis, but I’m equally sure he would have appreciated the challenge and effort it has taken to pull it all together.
Publications arising from this thesis

In chronological order:

Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of Manuka honey: Potential Implication in Chronic Rhinosinusitis.
Jervis-Bardy J, Foreman A, Bray S, Tan L, Wormald PJ.

What is the origin of Staphylococcus aureus in the postoperative sinonasal cavity?
Jervis-Bardy J, Foreman A, Boase S, Valentine R, Wormald PJ.

Microbiological outcomes following mupirocin nasal rinses for symptomatic, Staphylococcus aureus–positive chronic rhinosinusitis following endoscopic sinus surgery.
Jervis-Bardy J, Wormald PJ.
International Forum of Allergy and Rhinology 2012;2:111-5.

A randomised trial of mupirocin sinonasal rinses versus saline in surgically-recalcitrant staphylococcal chronic rhinosinusitis.
Jervis-Bardy J, Boase S, Foreman A, Psaltis A, Wormald PJ.
Laryngoscope 2012;
Awards arising from this thesis

In chronological order:

Best Presentation, Laboratory Higher Degree Students (2nd Year)

The Queen Elizabeth Hospital Research Day, Adelaide 2010.
Presentations arising from this thesis

In chronological order:

Treatment of the recalcitrant infection

Manuka Honey: A treatment for chronic rhinosinusitis?

The in vitro activity of Manuka Honey on S. aureus biofilms is time and dose dependent: Potential implications for treatment of persistent mucosal infection following endoscopic sinus surgery.

Methyloglyoxal-infused honey mimics the anti-S. aureus biofilm activity of Manuka Honey: Potential implications in Chronic Rhinosinusitis.
Australasian Rhinological Society ASM, Sydney, September 2010.

The etiology of sinonasal Staphylococcus aureus following surgery for Chronic Rhinosinusitis.
American Rhinologic Society ASM, Boston, USA, September 2010.

Understanding CRS and novel topical therapies.
St. Vincent's Hospital FESS Course, Sydney, August 2011.

Microbiological outcomes following Mupirocin nasal rinses for symptomatic, S. aureus-positive Chronic Rhinosinusitis following endoscopic sinus surgery.
Management of the recalcitrant sinus infection.

Mupirocin nasal rinses versus placebo in recalcitrant, Staphylococcus aureus-positive chronic rhinosinusitis: a randomised controlled trial.
Australasian Society of Otolaryngology Head & Neck Surgery ASM, Adelaide, April 2012.

Frontiers in Otolaryngology, Melbourne, July 2012.
Abbreviations used in this thesis

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRS</td>
<td>Allergic fungal rhinosinusitis</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>CAZS</td>
<td>Citric acid/Zwitterionic surfactant</td>
</tr>
<tr>
<td>CRS</td>
<td>Chronic Rhinosinusitis</td>
</tr>
<tr>
<td>CRSsP</td>
<td>Chronic Rhinosinusitis sans (without) polyposis</td>
</tr>
<tr>
<td>CRSwP</td>
<td>Chronic Rhinosinusitis with polyposis</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EM</td>
<td>Eosinophilic mucous</td>
</tr>
<tr>
<td>EML</td>
<td>Endoscopic modified Lothrop</td>
</tr>
<tr>
<td>ESS</td>
<td>Endoscopic sinus surgery</td>
</tr>
<tr>
<td>FDA</td>
<td>Federal Drug Authority</td>
</tr>
<tr>
<td>FESS</td>
<td>Functional endoscopic sinus surgery</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluorescence in situ hybridisation</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>Human immunodeficiency virus/Acquired immunodeficiency syndrome</td>
</tr>
<tr>
<td>IQR</td>
<td>Inter-quartile range</td>
</tr>
<tr>
<td>MGO</td>
<td>Methylglyoxal</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infra-red</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphonuclear</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomized controlled trial</td>
</tr>
<tr>
<td>SNOT-20</td>
<td>Sino-Nasal Outcome Test (20)</td>
</tr>
<tr>
<td>SW</td>
<td>Shock-wave</td>
</tr>
<tr>
<td>TGA</td>
<td>Therapeutic Goods Administration</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual analogue scale</td>
</tr>
</tbody>
</table>
List of tables

Table 1. Antimicrobial agents that directly target the biofilm can be classified according to the targeted biofilm component/s. ...42
Table 2. Antimicrobial agents proposed in the rhinology literature, specifically for treating with an anti- S. aureus biofilm intent ..52
Table 3. The percentage of patients previously known to have nasal polyposis, eosinophilic mucin, and/or a previous intra-operative S. aureus culture amongst those included in this study ..72
Table 4. Inclusion and exclusion criteria ..81
Table 5. Baseline patient demographics and clinical characteristics ..82
Table 6. Contents of treatment kit ..83
Table 7. pH and MGO concentration of tested honeys ...98
Table 8. Biocidality of various honeys at differing concentrations in CSF broth ..101
Table 9. Biocidality of methylglyoxal-only solution ...102
Table 10. Trend to culture S. aureus post-ESS depending on swab and biofilm status ...115
Table 11. Proportion of patients with (present) or without (absent) pre-operative risk factors progressing to culture S. aureus post-ESS ...115
List of figures

Figure 1. The aetiopathogenic relationships behind CRS ... 23
Figure 2. Chronic rhinosinusitis treatment algorithm .. 32
Figure 3. Biofilm sub-group analysis of patient-reported symptoms before and after surgery .. 39
Figure 4. Relative sinonasal distribution versus the practicality (cost, cleaning, ease of technique) of various topical delivery techniques ... 54
Figure 5. The Neti-pot .. 56
Figure 6. The Yamik catheter device .. 61
Figure 7. The cumulative percentage of patients progressing to post-treatment microbiological failure following topical mupirocin ... 74
Figure 8. Flow chart from enrollment to analysis ... 86
Figure 9. Immediate post-treatment culture results from patients in both the mupirocin and control arms ... 86
Figure 10. The change in Lund-Kennedy endoscopic score from baseline to immediately following treatment .. 87
Figure 11. Comparison of the Lund-Kennedy endoscopic score at baseline, immediate post-treatment and delayed post-treatment visits in patients from the mupirocin group .. 88
Figure 12. Intra-operative S. aureus screen results distribution ... 113
Figure 13. Post-ESS, The Lund-Kennedy score is significantly greater where S. aureus is cultured .. 116
Thesis summary

The research contained within this thesis is an investigation of topical antimicrobial treatments in a subset of patients with Chronic Rhinosinusitis (CRS). For the purposes of this manuscript, our ‘patient of interest’ has persistent disease following sinus surgery (‘surgically-recalcitrant disease’) and a sinonasal cavity that similarly persistently cultures *Staphylococcus aureus*.

To begin with, an extensive literature review is presented in three parts. Firstly, the definition, epidemiology, socioeconomic burden, aetiopathogenic theories and the management of CRS are discussed. From the literature review, it is clear that CRS is disease without a unifying, underlying aetiopathogenic factor, nor does there exist a universal panacea for the treatment of the surgically-recalcitrant patient. Of promise, however, recent research suggests that there may be merit in aggressively targeting the presumed *S. aureus* biofilm bioburden in these patients with topical antimicrobials. Secondly, therefore, we progressed to explore the myriad of possible antimicrobial agents for use as topical treatments in CRS. This exhaustive list includes a number of anti-biofilm strategies that have unknown treatment potential in CRS, as many have not previously been mentioned, let alone evaluated, in the Rhinological literature to-date. Thirdly, recognizing the importance of device selection in delivering topical treatment to the sinuses, we reviewed the potential delivery modalities currently available for this purpose.

The research investigation commenced with two studies evaluating the efficacy of mupirocin sinonasal rinses in recalcitrant *S. aureus*-positive CRS. Following from two small studies reported in the literature, we felt it was important to firstly evaluate this treatment in a prospective randomized control trial, and secondly, to retrospectively assess a much larger cohort. The former study revealed that mupirocin treatment was greatly superior compared to placebo in removing culturable *S. aureus* from the sinuses. Additionally, it improved both the endoscopic appearance of the sinonasal cavity and patient-reported symptoms
following treatment, although only the endoscopic examination results were significantly different when compared to those observed in the placebo arm. The latter study demonstrated that long-term, well after the mupirocin treatment is complete, *S. aureus* is again readily cultured in these patients; it appears, therefore, that whilst mupirocin is a promising treatment, there is a significant rebound following cessation of treatment. We also determined that thankfully, however, the rate of induced resistance mupirocin is very low.

The third study performed was an in vitro assessment of the anti-biofilm activity of Manuka (*Leptospermum scoparium*) honey. In this study we demonstrated that Manuka honey is not active against *S. aureus* biofilms at concentrations amenable to delivery using a rinse bottle; however, there is sufficient activity when Manuka honey is fortified with exogenous methylglyoxal (MGO). MGO has recently been identified as the active constituent in Manuka honey. These finding are significant, because Manuka honey may be suitable as a long-term treatment option by virtue of its excellent resistance profile. Whereas fears of inducing treatment-resistant bacterial strains limit the long-term use of traditional antibiotics (such as mupirocin), Manuka honey may be a suitable long-term or even maintenance therapy in surgically-recalcitrant *S. aureus*-positive CRS.

Our final study aimed to evaluate the origins of sinonasal *S. aureus* following sinus surgery, as previous studies have shown culture rates of this organism to increase in the post-operative period. We had previously hypothesized that this increase in culture-rate may be a result of biofilm activity. In this current study, we indeed identified biofilm dispersal as the likely underlying causal factor. As a result, we now further suggest that the early post-operative period may be an ideal treatment window in which to treat with antimicrobials given the vulnerable state of the dispersed biofilm during this time. Rather than being a treatment agent study like the other papers in this thesis, this treatment time evaluation may ultimately precipitate early anti-biofilm intervention trials in the future.