Identification of host cell proteins involved in *Shigella flexneri* pathogenesis

MABEL YUEN TENG LUM, BSc (Hons)

Submitted for the degree of Doctor of Philosophy

Discipline of Microbiology and Immunology,
School of Molecular and Biomedical Science, The University of Adelaide

April 2014
CONTENTS

Abstract ... ix
Declaration ... xi
Publications .. xiii
Acknowledgements ... xv
Abbreviations ... xvii

Chapter 1: Introduction .. 1

1.1 *Shigella* ... 3

1.2 Pathogenesis .. 4
 1.2.1 Overview .. 4
 1.2.2 Initial stages of infection .. 4
 1.2.3 Induction of macrophage cell death ... 4
 1.2.4 Enterocyte invasion and cell-to-cell spreading ... 5
 1.2.5 Innate immune responses ... 7
 1.2.6 Delay in epithelial cell death .. 8

1.3 *Shigella* IcsA protein .. 10
 1.3.1 Identification .. 10
 1.3.2 Structural organisation .. 11
 1.3.3 Polar localisation ... 11
 1.3.4 IcsA and LPS interaction ... 13
 1.3.4.1 *S. flexneri* LPS ... 13
 1.3.4.2 Role of LPS in IcsA polar localisation ... 14

1.4 Actin-based motility (ABM) .. 15
 1.4.1 Actin treadmilling .. 15
 1.4.2 Arp2/3 complex ... 16
 1.4.3 Neural Wiskott-Aldrich syndrome protein (N-WASP) ... 16
 1.4.4 *Shigella* ABM and comet tail ... 17
 1.4.5 *L. monocytogenes* ABM and comet tail ... 19

1.5 *Shigella* cell-to-cell spreading ... 21
 1.5.1 Bacterial factors .. 22
 1.5.2 Host factors .. 23
1.5.2.1 Tight junction, adherens junction and gap junction proteins .. 23
1.5.2.2 Myosin light chain kinase (MLCK) .. 26
1.5.2.3 Cytoplasmic factors ... 27
1.6 Host proteins examined in this study ... 28
1.6.1 Dynamin II .. 28
1.6.2 Dynamin-related protein 1 (Drp1) ... 32
1.6.3 Myosin IIA .. 36
1.7 Aims and hypotheses .. 38

Chapter 2: Materials and Methods ... 39

2.1 Chemicals, enzymes and reagents .. 41
 2.1.1 Buffers and Reagents ... 41
 2.1.2 Chemicals ... 41
 2.1.3 Antibodies ... 41
 2.1.4 Transfection ... 42

2.2 Bacterial strains, plasmids and growth conditions .. 42
 2.2.1 Bacterial strains and plasmids .. 42
 2.2.2 Growth media and conditions ... 42

2.3 Nucleic acid methods ... 43
 2.3.1 Plasmid preparation ... 43
 2.3.2 Preparation of electrocompetent E. coli and S. flexneri ... 43
 2.3.3 Electroporation .. 43

2.4 Protein techniques .. 44
 2.4.1 Preparation of HeLa lysate extracts ... 44
 2.4.2 SDS-PAGE .. 44
 2.4.3 Western transfer and detection ... 44

2.5 Tissue culture ... 45
 2.5.1 Growth and maintenance of HeLa monolayers .. 45
 2.5.2 Splitting and seeding HeLa cells .. 45
 2.5.3 Bacterial preparation for infection ... 46
 2.5.4 Plaque assay ... 46
 2.5.5 Infectious focus assay .. 47
 2.5.6 Invasion assay and immunofluorescence (IF) microscopy .. 47
2.5.7 MitoTracker® Red CMXRos labelling ... 48
2.5.8 Protrusion formation .. 48
2.5.9 Lactate dehydrogenase (LDH) cytotoxicity assay ... 49
2.5.10 siRNA reverse transfection of HeLa cells ... 49
2.5.11 siRNA re-transfection for HeLa cell assays ... 50
 2.5.11.1 HeLa cell lysate extracts for Western immunoblotting 50
 2.5.11.2 Plaque assay .. 50
 2.5.11.3 Infectious focus assay ... 50
 2.5.11.4 Invasion assay, IF microscopy and MitoTracker® Red CMXRos labelling ... 51
 2.5.11.5 LDH cytotoxicity assay ... 51
2.5.12 Assay for growth of intracellular bacteria ... 52
2.6 Microscopy and imaging .. 52
 2.6.1 Mounting medium .. 52
 2.6.1.1 IF microscopy .. 52
 2.6.1.2 Protrusion formation ... 53
 2.6.2 Microscopy ... 53
 2.6.2.1 Indirect quantification of protein levels by IF .. 53
2.7 Animal studies .. 54
 2.7.1 Preparation of bacterial stocks for ocular infection ... 54
 2.7.2 Ocular infection and intraperitoneal (IP) injections of Balb/c mice 55
 2.7.3 Scoring of ocular inflammation .. 55
 2.7.4 Sectioning and H&E staining of mice eyes and eye lids 55
2.8 Statistical analysis ... 55

Manuscripts ... 59

Chapter 3: Impact of dynasore an inhibitor of dynamin II on Shigella flexneri infection
.. 61

Title Page ... 63
Statement of Authorship ... 65
3.1 Abstract .. 67
3.2 Introduction .. 68
3.3 Materials and methods .. 71
 3.3.1 Bacterial strains and growth media ... 71
3.3.2 DNA methods..71
3.3.3 Chemicals and antibodies..71
3.3.4 Reverse transfection and HeLa cell lysate preparation73
3.3.5 SDS-PAGE and Western immunoblotting ...74
3.3.6 Plaque assay ...74
3.3.7 Infectious focus assay ...74
3.3.8 Invasion assay and IF microscopy ...75
3.3.9 Protrusion formation ..76
3.3.10 Assay for growth of intracellular bacteria ...76
3.3.11 LDH cytotoxicity assay ...76
3.3.12 Ethics statement ..77
3.3.13 Mouse Sereny test ...77
3.3.14 Sectioning and H&E staining of mouse eyes and eyelids77
3.3.15 Statistical analysis ...78
3.4 Results ...79
 3.4.1 Dynamin II is important for S. flexneri cell-to-cell spreading but not protrusion formation ..79
3.4.2 Dynamin II is localised to the F-actin tail and protrusions of S. flexneri, adjacent to N-WASP ...85
3.4.3 Effect of dynasore on S. flexneri infection of mice ..88
3.4.4 Effect of dynasore on mice infected with a low inoculum of S. flexneri 2457T92
3.4.5 Effect of dynasore on S. flexneri-induced HeLa cell death92
3.5 Discussion ..97
3.6 Acknowledgements ...101
3.7 Supplementary data ...102

Chapter 4: Dynamin-related protein Drp1 and mitochondria are important for Shigella flexneri infection ..109

4.1 Abstract ..115
4.2 Introduction ...116
4.3 Materials and methods ..120
4.3.1 Bacterial strains and growth media ... 120
4.3.2 Chemicals and antibodies .. 120
4.3.3 Reverse transfection and HeLa cell lysate preparation 121
4.3.4 SDS-PAGE and Western immunoblotting ... 121
4.3.5 Plaque assay ... 121
4.3.6 Infectious focus assay .. 122
4.3.7 Invasion assay and IF microscopy ... 122
4.3.8 MitoTracker® Red CMX Ros labelling .. 123
4.3.9 Protrusion formation .. 124
4.3.10 Assay for growth of intracellular bacteria .. 124
4.3.11 LDH cytotoxicity assay ... 124
4.3.12 Ethics statement .. 125
4.3.13 Mouse Sereny test .. 125
4.3.14 Statistical analysis ... 125
4.4 Results ... 126
 4.4.1 S. flexneri induces Drp1-mediated cell death in HeLa cells 126
 4.4.2 S. flexneri induces non-apoptotic cell death in HeLa cells 128
 4.4.3 S. flexneri infection induces mitochondrial fragmentation 129
 4.4.4 Drp1 is important for S. flexneri cell-to-cell spreading but not protrusion formation ... 135
 4.4.5 Drp1 is not localised to the S. flexneri F-actin tails 139
 4.4.6 Effect of Mdivi-1 on S. flexneri infection of mice .. 139
4.5 Discussion ... 141
4.6 Acknowledgements ... 144
4.7 Supplementary data ... 145

Chapter 5: Myosin IIA is essential for Shigella flexneri cell-to-cell spread 153

Title Page... 155
Statement of Authorship... 157
5.1 Abstract ... 159
5.2 Introduction ... 160
5.3 Materials and methods .. 163
 5.3.1 Bacterial strains and growth media .. 163
 5.3.2 Chemicals and antibodies ... 164
 5.3.3 Reverse transfection and HeLa cell lysate preparation 164
 5.3.4 SDS-PAGE and Western immunoblotting .. 165
 5.3.5 Plaque assay .. 165
 5.3.6 Infectious focus assay .. 166
 5.3.7 Invasion assay and IF microscopy ... 166
 5.3.8 MitoTracker® Red CMX Ros labelling ... 167
 5.3.9 Protrusion formation .. 168
 5.3.10 Assay for growth of intracellular bacteria .. 168
 5.3.11 LDH cytotoxicity assay 168
 5.3.12 Ethics statement .. 169
 5.3.13 Mouse Sereny test ... 169
 5.3.14 Statistical analysis .. 170
5.4 Results ... 171
 5.4.1 S. flexneri induces Drp1-mediated cell death in HeLa cells 171
 5.4.2 S. flexneri induces non-apoptotic cell death in HeLa cells 173
 5.4.3 S. flexneri infection induces mitochondrial fragmentation 174
 5.4.4 Drp1 is important for S. flexneri cell-to-cell spreading but not protrusion formation ... 178
 5.4.5 Drp1 is not localised to the S. flexneri F-actin tails 182
 5.4.6 Effect of Mdivi-1 on S. flexneri infection of mice 182
5.5 Discussion ... 186
5.6 Acknowledgements .. 189
5.7 Supplementary data ... 190
5.3.2 Chemicals and antibodies ...163
5.3.3 Reverse transfection and HeLa cell lysate preparation164
5.3.4 SDS-PAGE and Western immunoblotting ...164
5.3.5 Plaque assay ...164
5.3.6 Infectious focus assay ..165
5.3.7 Invasion assay and immunofluorescence (IF) microscopy165
5.3.8 Indirect quantification of protein levels by IF ..166
5.3.9 Protrusion formation ...166
5.3.10 Assay for growth of intracellular bacteria ..167
5.3.11 Statistical analysis ..167
5.4 Results ..168
5.4.1 MLCK and myosin IIA are essential for S. flexneri cell-to-cell spreading in HeLa cells ...168
5.4.2 MLCK and myosin II inhibitors do not affect bacterial replication and protrusion formation ..171
5.4.3 Myosin IIA is localised to the S. flexneri F-actin tail ..173
5.4.4 Two distinct myosin IIA staining patterns are observed in HeLa cells infected with S. flexneri R-LPS and ∆icsA strains ...176
5.5 Discussion ..181
5.6 Acknowledgements ...185

Chapter 6: Overall Discussion and Conclusions ...187
6.1 Introduction ..189
6.2 Discussion ..190
6.2.1 Role of dynamin II, Drp1 and myosin IIA ..190
6.2.2 Alternative therapeutic approaches to improve shigellosis symptoms192
6.3 Conclusions ..194

Bibliography ...195
Abstract

Shigella flexneri is the etiological agent of bacillary dysentery (shigellosis). It is transmitted via the faecal-oral route and is a significant human pathogen due to the high morbidity among children <5 years in developing countries. The key pathogenic features of *Shigella* include cell death induction in myeloid immune cells and circumventing cell death in colonic epithelial cells, the site of bacterial infection. *Shigella* also interact with host proteins to initiate *de novo* actin synthesis to facilitate its intra- and intercellular spread to disseminate in the host.

In this thesis, the role of three host proteins: myosin IIA, dynamin II, and dynamin-related protein 1 (Drp1) during *Shigella* cell-to-cell spreading was examined. The myosin IIA specific kinase, myosin like chain kinase (MLCK), was previously shown to be important for *Shigella* plaque formation. Myosin IIA and MLCK have also been implicated in septin caging of non-motile *Shigella* which are targeted for degradation. Chemical inhibition and siRNA knockdown of myosin IIA reduced *Shigella* plaque formation. Curiously HeLa cells infected with *Shigella* mutants defective in cell-to-cell spreading have significantly reduced myosin IIA levels when quantified by immunofluorescence microscopy.

Dynamin II and Drp1 are members of the dynamin superfamily. Both proteins have self-assembly driven GTPase activation. Dynamin II is important for clathrin-mediated endocytosis and pinches the budding clathrin-coated vesicle, and Drp1 is essential for mitochondrial fission. It was hypothesized that *Shigella* protrusion formation into adjacent host cells resembles endocytic and exocytic processes, and components of these processes may facilitate *Shigella* dissemination. When dynamin II GTPase was inhibited with dynasore and dynamin II was knocked down with siRNA, *Shigella* cell-to-cell spreading was significantly reduced. The *in vivo* efficacy of dynasore was tested in a murine Sereny model. No significant reduction in inflammation was observed but mice were protected against weight loss during infection. Further experimentation suggested dynasore protected mice against cytotoxic effects from the three secretion system (TTSS) effectors expressed by *Shigella* during infection.

Drp1 was investigated in this thesis as dynasore also inhibits the GTPase of this mitochondrial fission protein. Mitochondrial fission is important in maintaining mitochondrial
dynamics and also in events downstream of intrinsic apoptosis and programmed necrosis pathways activation. Loss of mitochondrial function in Shigella-induced epithelial cell death has been reported previously. Hence the role of Drp1 in Shigella plaque formation and HeLa death was examined with the Drp1-specific inhibitor, Mdivi-1, and siRNA knockdown. HeLa cell death was significantly reduced; suggesting loss of mitochondrial function observed previously may now be attributed to Drp1 and subsequent Drp1-mediated mitochondrial fission. The impairment in Shigella cell-to-cell spreading in the absence of Drp1 suggests maintaining an intact mitochondrial network is essential for Shigella lateral spread since loss of Drp1 function would result in excessive mitochondrial fusion, leading to formation of net-like or perinuclear structures.

The outcomes of this thesis highlight the importance of host proteins during different stages of Shigella infection. By improving our understanding on the host and bacteria interaction, future work on novel approaches to prevent Shigella dissemination can be developed.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Adelaide, Australia, April 2014

__
Mabel Yuen Teng Lum
Publications

Lum M & Morona R (2014). Dynamin-related protein Drp1 and mitochondria are important for *Shigella flexneri* infection. *Int J Med Microbiol* 304, 530-541.

Acknowledgements

First and foremost, I would like to thank the Australian Government for my scholarship.

I would like to thank my supervisor A/Prof Renato Morona for what has been a challenging project. Thank you for all the support and guidance over the past few years. I would also like to thank Luisa Van Den Bosch for the preliminary experiments and for imparting all her TC skills. I am grateful to Dr Stephen Attridge who was instrumental in setting up the animal model. I have enjoyed working with you. I would also like to thank members of the Morona laboratory for proof reading bits of my thesis, helpful suggestions, assistance with experiments, kind words of encouragement and putting up with my whinging.

Thank you to all my friends in the MLS building: Min, Pratiti, Donald, Rethish, Zarina, Alex, and Long, for always lending an ear. Also a big thank you to Donald, Min and Pratiti for the yummy cakes, desserts, snacks, dinner dates and shopping sprees. A shout-out to Paul who is my partner in crime in annoying Pratiti. To all my friends outside the lab, thank you all for your unwavering moral support. To my boss (and old friend) at AGRF, thank you for keeping me employed for so many years and for your many funny stories and words of encouragement when I needed them.

I would also like to thank my family who is very supportive in spite of not knowing what I actually do. To my sister in Adelaide, her husband and lovely children, thank you for always lending a hand and for silly times. A special thank you goes to my partner who is always there when I needed him. I look forward to a fun and exciting journey ahead with you!

Lastly I would like to dedicate this thesis to my late German teacher. I miss your passion for life and for learning. Thank you for always reminding me not to give up and that I can do better.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>~</td>
<td>approximately</td>
</tr>
<tr>
<td>aa</td>
<td>amino acids</td>
</tr>
<tr>
<td>ABM</td>
<td>actin-based motility</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AJ(s)</td>
<td>adherens junction(s)</td>
</tr>
<tr>
<td>APC(s)</td>
<td>apical junctional complex(es)</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>adenosine triphosphatase</td>
</tr>
<tr>
<td>BDM</td>
<td>2,3-butanedione monoxime</td>
</tr>
<tr>
<td>BSE</td>
<td>bundle signalling element</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>D0 / D1 / D2 / D3</td>
<td>day 0 / day 1 / day 2 / day 3</td>
</tr>
<tr>
<td>DCCR</td>
<td>DharmaFECT Cell Culture Reagent</td>
</tr>
<tr>
<td>DLP(s)</td>
<td>dynamin-like protein(s)</td>
</tr>
<tr>
<td>DLP1</td>
<td>dynamin-like protein 1 (alternate name for DNM1L/Drp1)</td>
</tr>
<tr>
<td>DNM1L</td>
<td>dynamin-1-like protein (alternate name for DLP1/Drp1)</td>
</tr>
<tr>
<td>DNM2</td>
<td>dynamin II gene</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>Drp1</td>
<td>dynamin-related protein 1 (alternate name for DLP1/DNM1L)</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GED</td>
<td>GTPase effector domain</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>GTPase(s)</td>
<td>guanosine triphosphatase(s)</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>IF</td>
<td>immunofluorescence</td>
</tr>
<tr>
<td>IP</td>
<td>intraperitoneal</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodaltons</td>
</tr>
<tr>
<td>LDH</td>
<td>lactate dehydrogenase</td>
</tr>
<tr>
<td>Lo</td>
<td>low myosin IIA protein levels</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
</tbody>
</table>
MEFs
mouse embryonic fibroblasts

Mdivi-1
mitochondrial division inhibitor-1

MYH9
myosin, heavy chain 9, non-muscle gene
(myosin IIA heavy chain gene)

min
minute(s)

MLCK
myosin light chain kinase

moi
Multiplicity of infection

MOMP
mitochondrial outer membrane permeabilisation

myosin IIA / B / C
non-muscle myosin IIA / B / C

N-WASP
Neural Wiskott-Aldrich syndrome protein

NF-κB
nuclear factor-κB

NMP
N-methyl-2-pyrrolidone

NPF(s)
nucleation promoting factor(s)

OM
outer membrane

PEG / PEG300
polyethylene glycol 300

PGN
peptidoglycan

PH
pleckstrin homology

PMN(s)
polymorphonuclear cell(s)

PRD(s)
proline-rich domain(s)

PtK2
Potorous tridactylis kidney epithelial (cells)

R-LPS
rough LPS

ROS
reactive oxygen species

S-LPS
smooth LPS

siRNA
small interfering RNA

STS
staurosporine

t
time

TJ(s)
tight junction(s)

TTSS
type three secretion system

VP
virulence plasmid

VP− / VP-
virulence plasmid-cured

WT
wild type

xviii