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Quantisation commutes with reduction at discrete

series representations of semisimple groups

Peter Hochs

April 10, 2009

Abstract

Using the analytic assembly map that appears in the Baum-Connes
conjecture in noncommutative geometry, we generalise the Guillemin–
Sternberg conjecture that ‘quantisation commutes with reduction’ to (dis-
crete series representations of) semisimple groups G with maximal com-
pact subgroups K acting cocompactly on symplectic manifolds. We prove
this generalised statement in cases where the image of the momentum
map in question lies in the set of strongly elliptic elements g∗se, the set of
elements of g∗ with compact stabilisers. This assumption on the image of
the momentum map is equivalent to the assumption that M = G×K N ,
for a compact Hamiltonian K-manifold N . The proof comes down to a
reduction to the compact case. This reduction is based on a ‘quantisation
commutes with induction’-principle, and involves a notion of induction of
Hamiltonian group actions. This principle, in turn, is based on a version
of the naturality of the assembly map for the inclusion K ↪→ G.
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Introduction

In this paper we generalise Guillemin and Sternberg’s ‘quantisation commutes
with reduction’ conjecture to cocompact Hamiltonian actions by semisimple Lie
groups. The compact case of this conjecture was proved in [23, 32, 33, 35, 36,
40, 42, 43]. A version for Hamiltonian Lie groupoid actions was proved by Bos
in [9].

The version of the Guillemin–Sternberg conjecture that we will generalise
is the one proved by Paradan in [36]. In this version, one considers Spin-
quantisation, instead of the Dolbeault-quantisation used in [23, 32, 33, 35, 40,
42, 43]. Paradan’s result is the following. Suppose a compact Lie group K
acts in Hamiltonian fashion on a compact symplectic manifold (M, ω). Suppose
that the cohomology class [ω] + 1

2c1(TM, J) is integral for some K-equivariant
almost complex structure J on M . If the stabilisers of the action of K on M
are abelian, then one has

K-index /DM =
⊕

µ∈Λ+

index /DMµ+ρVµ. (1)

Here /DM is a Spinc-Dirac operator on M . Its K-index is interpreted as the
quantisation of the action of K on M . On the right-hand side of (1), Λ+ ⊂ it∗

denotes the set of dominant integral weights relative to a choice of maximal torus
and positive roots, and ρ is half the sum of the positive roots. By Vµ we mean
the irreducible representation of K with highest weight µ, and (Mµ+ρ, ωµ+ρ) is
the symplectic reduction of (M,ω) at −i(µ + ρ). If this symplectic reduction
is not an orbifold (which can occur if −i(µ + ρ) is not a regular value of the
momentum map), then the index of /DMµ+ρ should be replaced by a more subtle
definition of the quantisation of (Mµ+ρ, ωµ+ρ).
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In this paper, we generalise (1) to discrete series representations of semi-
simple Lie groups (Theorem 1.9). Because we only look at discrete series rep-
resentations, it is a natural assumption that the image of the momentum map
lies inside the set of strongly elliptic elements g∗se ⊂ g∗, defined in (14). Indeed,
(some) coadjoint orbits in g∗se correspond to discrete series representations, and
the quantisation of a Hamiltonian action should decompose into irreducible rep-
resentations corresponding to coadjoint orbits in the image of the momentum
map.

Outline of this paper

The strategy of our proof of (1) for a cocompact Hamiltonian action of a semi-
simple Lie group G on a symplectic manifold (M, ω) is to reduce this statement
to the (known) case of the action of a maximal compact subgroup K < G on
the compact submanifold N :=

(
ΦM

)−1(k∗) of M , with ΦM : M → g∗ the
momentum map. We will see in Section 2 that there are inverse constructions

H-CrossG
K : G © M Ã K © N :=

(
ΦM

)−1(k∗);

H-IndG
K : K © N Ã G © M := G×K N.

These are called Hamiltonian cross-section and Hamiltonian induction, respec-
tively. In Section 3, we define induction procedures for prequantisations and
Spinc-structures, compatible with this Hamiltonian induction procedure.

The central result in this paper is Theorem 4.5, which states that ‘quanti-
sation commutes with induction’. Roughly speaking, this is expressed by the
diagram

(M = G×K N, ω) Â QG // QG(M, ω) ∈ K0(C∗r G)

(N, ν)
_

H-IndG
K

OO

Â QK // QK(N, ν) ∈ R(K).

D-IndG
K

OO

Here R(K) is the representation ring of K, K0(C∗r G) is the K-theory of the
reduced C∗-algebra of G, and D-IndG

K is the Dirac induction map used in the
Connes-Kasparov conjecture (see [44]). In Section 4, we tie the other sections in
this paper together, by showing how Theorem 4.5 implies our quantisation com-
mutes with reduction result, Theorem 1.9, and by sketching a proof of Theorem
4.5. The details of this proof are filled in in Sections 5 and 6.

In Section 5, we prove a result (Theorem 4.6) that can be interpreted as
‘naturality of the assembly map for the inclusion K ↪→ G’ (cf. [34]). In Section
6, we show that this naturality result is well-behaved with respect to the K-
homology classes of the Dirac operators we use, thus proving Theorem 4.5.

Acknowledgements

The author is very grateful to Paul-Émile Paradan, for explaining his ideas
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1 Quantisation commutes with reduction for semi-
simple groups

In this section, we introduce the terminology we need to state our main result,
Theorem 1.9.

1.1 Spin-quantisation

Let (M,ω) be a compact symplectic manifold, equipped with an action by a
compact Lie group K, which leaves ω invariant. Let J be a K-equivariant almost
complex structure on M (which need not be compatible with ω). Consider the
K-equivariant line bundle

∧0,dM

C (TM, J) → M,

where dM is the dimension of M . Let L2ω → M be a K-equivariant line bundle
whose first Chern class is [2ω]. Suppose that the line bundle

L2ω ⊗∧0,dM

C (TM, J) → M

has a square root LJ . Let P → M be the Spinc-structure1 on M associated
to J and LJ , as described for example in [15], Proposition D.50. Then the
determinant line bundle of P is isomorphic to L2ω.

Let ∆dM be the standard 2dM /2-dimensional representation of Spinc(dM )
(see e.g. [13, 14, 30] ). Let

S := P ×Spinc(dM ) ∆dM
→ M

be the spinor bundle associated to P . The Clifford action cTM of TM on S is
defined by

cTM ([p, x])[p, δ] := [p, x · δ],
where [p, x] ∈ P ×Spinc(dM )RdM ∼= TM and [p, δ] ∈ P ×Spinc(dM ) ∆dM

= S. Here
the dot in x · δ denotes the standard Clifford action of RdM on ∆dM .

Let ∇ be a K-equivariant connection on S The Spinc-Dirac operator /DL2ω

M

on S, associated to ∇, is defined by the property that for all orthonormal local
1We sloppily use the term ‘Spinc-structure’ for a principal Spinc-bundle that induces such

a structure.
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frames {e1, . . . , edM } of TM , one locally has

/D
L2ω

M =
dM∑

j=1

cTM (ej)∇ej
.

The principal symbol σ
/DL2ω

M
of /DL2ω

M is given by

σ
/DL2ω

M
(ξ)s = cTM (iξ∗)s,

where ξ ∈ T ∗M , s ∈ S, and ξ∗ ∈ TM is the tangent vector associated to ξ by
the Riemannian metric on M induced by the Euclidean metric on RdM via the
isomorphism TM ∼= P ×Spinc(dM ) RdM . Since

σ
/DL2ω

M
(ξ)2s = −‖ξ‖2s

for all ξ and s, the Spinc-Dirac operator /DL2ω

M is elliptic.
The representation ∆dM of Spinc(dM ) has a natural Z2-grading ∆dM =

∆+
dM

⊕∆−
dM

, which induces a grading

S = S+ ⊕ S−.

Since the Clifford action of RdM on ∆dM
interchanges the subspaces ∆±

dM
, we

have two operators

/D+
M := /DL2ω

M |Γ∞(S+) :Γ∞(S+) → Γ∞(S−);

/D−
M := /DL2ω

M |Γ∞(S−) :Γ∞(S−) → Γ∞(S+).

Because /DM is elliptic and M is compact, the kernels of the operators /D±
M are

finite-dimensional representations of K. Since /DL2ω

M is symmetric with respect
to the L2-inner product on compactly supported sections of S (see e.g. [14],
Proposition 9.13), the operators /D±

M are each other’s formal adjoints. We slightly
abuse terminology by setting

K-index /DL2ω

M := [ker /D+
M ]− [ker /D−

M ] ∈ R(K),

the representation ring of K. This index is by definition the Spin-quantisation
of the action of K on (M, ω):

Definition 1.1.

QK
Spin(M, ω) := K-index /DL2ω

M ∈ R(K).

Remark 1.2 (relation with Spin-structures). If M is a Spin-manifold, and
PSpin → M is a principal Spin(dM ) bundle that defines a Spin-structure on M ,
then the existence of a prequantum line bundle Lω → M for (M, ω) implies
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the existence of a Spinc-structure P on M with determinant line bundle L2ω.
Indeed, one defines

P := PSpin ×Z2 UF(Lω) → M,

with UF(Lω) the unitary frame bundle of Lω (with respect to some invariant
metric on Lω).

Furthermore, recall that a Spinc-structure with trivial determinant line bun-
dle reduces to a Spin-structure.

1.2 Quantisation commutes with reduction, the compact
case

We will continue to use the notation and assumptions of Subsection 1.1. Now
suppose in addition that the action of K on (M, ω) is Hamiltonian, and let
Φ : M → k∗ be a momentum map.

Quantisation of symplectic reductions

Suppose that ξ ∈ Λ+ +ρc is a regular value of Φ, and that the stabiliser Kξ acts
freely on Φ−1(ξ). Then the symplectic reduction Mξ := Φ−1(ξ)/Kξ is a smooth
manifold.

In [36], Paradan shows that P induces a Spinc-structure Pξ on Mξ whose
determinant line bundle is L2ωξ . The Spin-quantisation of (Mξ, ωξ) is then
defined, as in Subsection 1.1, as the index of the Spinc-Dirac operator /DL2ωξ

Mξ
on

the spinor bundle Sξ of Pξ, with respect to any connection on Sξ:

QSpin(Mξ, ωξ) = index /DL2ωξ

Mξ
.

Even if the action of Kξ on Φ−1(ξ) is not assumed to be free, it is still locally
free by Smale’s lemma. Then the reduced space Mξ is an orbifold. It is then still
possible to define a Spinc-Dirac operator on Mξ, and its index is still denoted
by QSpin(Mξ, ωξ). This index can be computed via Kawasaki’s orbifold index
theorem (see [24], or [32], Theorem 3.3). And if ξ is not a regular value of Φ,
the quantisation QSpin(Mξ, ωξ) can still be defined as the quantisation of the
reduced space at a regular value close enough to ξ (see [36]).

Quantisation commutes with reduction

Let T < K be a maximal torus, with Lie algebra t ⊂ k. Let t∗+ ⊂ t∗ be a choice
of positive Weyl chamber. Let R+ be the set of positive roots of (k, t) with
respect to t∗+, and write ρ := 1

2

∑
α∈R+ α.

Let Λ+ ⊂ it∗+ be the set of dominant weights of (k, t). For µ ∈ Λ+, we will
denote the irreducible representation of K with highest weight µ by Vµ. Let
Rµ

K : R(K) → Z be the multiplicity function of Vµ. We wil write (Mµ, ωµ) :=
(M−iµ, ω−iµ).

The Spinc-version of the Guillemin–Sternberg conjecture is the following
statement. This is Theorem 1.7 from [36].
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Theorem 1.3. If the stabilisers of the action of K on M are abelian, the for
all µ ∈ Λ+ ∩ iΦ(M),

Rµ
K

(
QSpin(M, ω)

)
= QSpin(Mµ+ρ, ωµ+ρ).

If µ ∈ Λ+ \ iΦ(M), then the integer on the left hand side equals zero.

The condition that the action of K on M has abelian stabilisers is related to
the fact that there may be several different coadjoint orbits in k∗ whose Spin-
quantisation equals a given irreducible representation of K. This ambiguity,
which is not present in the case of Dolbeault-quantisation, can be removed by
imposing the condition that the action has abelian stabilisers.

1.3 Noncompact groups and manifolds

Now suppose that G is any Lie group, acting on a possibly noncompact symplec-
tic manifold (M, ω), leaving ω invariant. The Spin-quantisation of this action
cannot be defined as in Subsection 1.1, since the kernel of an elliptic operator
on a noncompact manifold need not be finite-dimensional. Furthermore, the
representation ring of a noncompact group is not well-defined.

Therefore, in [28] and [22], it is proposed to define the quantisation of this
action using the K-theory group K0(C∗G) of the C∗-algebra of G instead of the
representation ring, and the analytic assembly map

µG
M : KG

0 (M) → K0(C∗G)

instead of the equivariant index of elliptic operators (see [5, 41]). Here KG
0 (M)

is the equivariant K-homology group of M (see [20]). The Dirac operator /DL2ω

M

defines an element
[
/DL2ω

M

]
of this group, if the orbit space M/G is compact.

We will assume compactness of M/G throughout this paper. If both M and G

are compact, then K0(C∗G) ∼= R(G), and this isomorphism maps µG
M

[
/DL2ω

M

]
to

G-index /DL2ω

M .
In this paper, we will use the reduced C∗-algebra C∗r G of G instead of the

full one used in [22, 28]. In those papers, one considers reduction at the trivial
representation, which is not tempered. Therefore, the reduction map used in [22,
28] is not well-defined on K0(C∗r G). In this paper, we will consider discrete series
representations of semisimple Lie groups. It follows from the fact that these
representations are tempered, that the reduction map defined in Subsection 1.4
is well-defined on K0(C∗r G).

With these replacements, we get

Definition 1.4.

QG
Spin(M,ω) := µG

M

[
/DL2ω

M

] ∈ K0(C∗r G).

In the papers [22, 28], a reduction map

R0
G : K0(C∗G) → Z

7



is defined, which is used to state a ‘quantisation commutes with reduction’-
conjecture. In these papers, as in most of the literature on the Guillemin–
Sternberg conjecture, one does not use the Spinc-Dirac operator defined above,
but the Dolbeault–Dirac operator. Or equivalently, a Spinc-Dirac operator that
acts on sections of the same vector bundle as the Dolbeault–Dirac opertor,
and has the same principal symbol. For Lie groups G with a normal discrete
subgroup ΓCG such that G/Γ is compact, we prove this generalised Guillemin–
Sternberg conjecture in [22].

In this paper, we will define reduction maps at discrete series representations
of semisimple Lie groups, and deduce a ‘quantisation commutes with reduction’-
result (Theorem 1.9) from the compact case, Theorem 1.3. These reduction
maps were first defined in V. Lafforgue’s version of Atiyah & Schmid’s [2] and
Parthasarathy’s [37] work, as explained in Subsection 1.4.

1.4 Discrete series representations and K-theory

In [27], V. Lafforgue reproves some classical results about discrete series repre-
sentations by Harish-Chandra [18, 19], Atiyah & Schmid [2] and Parthasarathy
[37], using K-homology, K-theory and assembly maps. We will give a quick
summary of the results in [27] that we will use in this thesis.

For the remainder of this subsection, let G be a connected2 semisimple Lie
group with finite centre. Let K < G be a maximal compact subgroup, and let
T < K be a maximal torus. Suppose that T is also a Cartan subgroup of G,
so that G has discrete series representations by Harish-Chandra’s criterion [19].
Discrete series representations are representations whose matrix elements are
square-integrable over G. They form a discrete subset of the unitary dual of G.

In [37], Parthasarathy realises the irreducible discrete series representations
of G as the L2-indices of Dirac operators /D

V , where V runs over the irreducible
representations of K. Atiyah and Schmid do the same in [2], replacing Harish-
Chandra’s work by results from index theory. In [39], Slebarsky considers the
decomposition into irreducible representations of G of L2-indices of Dirac op-
erators on any homogeneous space G/L, with L < G a compact, connected
subgroup.

Dirac induction

For a given irreducible representation V of K, the Dirac operator /D
V used

by Parthasarathy and Atiyah–Schmid is defined as follows. Let p ⊂ g be the
orthogonal complement to k with respect to the Killing form. Then p is an
Ad(K)-invariant linear subspace of g, and g = k⊕p. Consider the inner product
on p given by the restriction of the Killing form. The adjoint representation

Ad : K → GL(p)

2Theorem 1.9 and the other results in this paper (possibly in modified forms) are also valid
for groups with finitely many connected components, but the assumption that G is connected
allows us to circumvent some technical difficulties.
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of K on p takes values in SO(p), because the Killing form is Ad(K)-invariant,
and K is connected. We suppose that it has a lift Ãd to the double cover Spin(p)
of SO(p). It may be necessary to replace G and K by double covers for this lift
to exist. Then the homogeneous space G/K has a G-equivariant Spin-structure

PG/K := G×K Spin(p) → G/K.

Here G×K Spin(p) is the quotient of G× Spin(p) by the action of K defined by

k(g, a) = (gk−1, Ãd(k)a),

for k ∈ K, g ∈ G and a ∈ Spin(p).
Fix an orthonormal basis {X1, . . . , Xdp} of p. Using this basis, we identify

Spin(p) ∼= Spin(dp). Let ∆dp be the canonical 2
dp
2 -dimensional representation

of Spin(dp) (see Subsection 1.1). Because p is even-dimensional, ∆dp splits into
two irreducible subrepresentations ∆+

dp
and ∆−

dp
. Consider the G-vector bundles

E±
V := G×K (∆±

dp
⊗ V ) → G/K.

Note that
Γ∞(G/K, E±

V ) ∼=
(
C∞(G)⊗∆±

dp
⊗ V

)K
, (2)

where K acts on C∞(G)⊗∆±
dp
⊗ V by

k · (f ⊗ δ ⊗ v) = (f ◦ lk−1 ⊗ Ãd(k)δ ⊗ k · v) (3)

for all k ∈ K, f ∈ C∞(G), δ ∈ ∆dp and v ∈ V . Here lk−1 denotes left
multiplication by k−1.

Using the basis {X1, . . . , Xdp} of p and the isomorphism (2), define the
differential operator

/D
V : Γ∞(E+

V ) → Γ∞(E−
V ) (4)

by the formula

/D
V :=

dp∑

j=1

Xj ⊗ c(Xj)⊗ 1V . (5)

Here in the first factor, Xj is viewed as a left invariant vector field on G, and in
the second factor, c : p → End(∆dp) is the Clifford action (see Subsection 1.1).
This action is odd with respect to the grading on ∆dp . The operator (4) is the
Spin-Dirac operator on G/K (see [37], Proposition 1.1 and [13], Chapter 3.5).

Lafforgue (see also Wassermann [44]) uses the same operator to define a
‘Dirac induction map’

D-IndG
K : R(K) → K0(C∗r (G)) (6)

by
D-IndG

K [V ] :=
[(

C∗r (G)⊗∆dp ⊗ V
)K

, b
(
/D

V )]
, (7)
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where b : R → R is a normalising function, e.g. b(x) = x√
1+x2 . The expression

on the right hand side defines a class in Kasparov’s KK-group KK0(C, C∗r (G)),
which is isomorphic to the K-theory group K0(C∗r (G)). In [44], Wassermann
proves the Connes–Kasparov conjecture, which states that this Dirac induction
map is a bijection for linear reductive groups.

Reduction

The relation between the Dirac induction map and the work of Atiyah & Schmid
and of Parthasarathy can be seen by embedding the discrete series of G into
K0(C∗r (G)) via the map

H 7→ [H] := [dHcH],

where H is a Hilbert space with inner product (−,−)H, equipped with a discrete
series representation of G, cH ∈ C(G) is the function

cH(g) = (ξ, g · ξ)H
(for a fixed ξ ∈ H of norm 1), and dH is the inverse of the L2-norm of cH (so
that the function dHcH has L2-norm 1). Because dHcH is a projection in C∗r (G),
it indeed defines a class in K0(C∗r (G)).

Next, Lafforgue defines a map3

RHG : K0(C∗r (G)) → Z (8)

that amounts to taking the multiplicity of the irreducible discrete series repre-
sentation H, as follows. Consider the map

C∗r (G) → K(H)

(the C∗-algebra of compact operators on H), given on Cc(G) ⊂ C∗r (G) by

f 7→
∫

G

f(g)π(g) dg. (9)

Here π is the representation of G in H. Since K0(K(H)) ∼= Z, this map induces
a map K0(C∗r (G)) → Z on K-theory, which by definition is (8).

The map RHG has the property that for all irreducible discrete series repre-
sentations H and H′ of G, one has

RHG ([H′]) =
{

1 if H ∼= H′
0 if H 6∼= H′.

Hence it can indeed be interpreted as a multiplicity function. For compact
groups, it follows from Schur orthogonality that this is indeed the usual multi-
plicity.

3In Lafforgues’s notation, RHG (x) = 〈H, x〉.
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Dirac induction links the reduction map RHG to the usual reduction map defined
by taking multiplicietis of a given representation in the following way.

Let R = R(g, t) be the root system of (g, t), let Rc := R(k, t) ⊂ R be the
subset of compact roots, and let Rn := R \Rc be the set of noncompact roots.
Let R+

c ⊂ Rc be a choice of positive compact roots, and let Λk
+ be the set of

dominant integral weights of (k, t) with respect to R+
c .

Let H be an irreducible discrete series representation of G. Let λ be the
Harish-Chandra parameter of H (see [18, 19]) such that (α, λ) > 0 for all α ∈
R+

c . Here (−,−) is a Weyl group invariant inner product on t∗C. Let R+ ⊂ R
be the positive root system defined by

α ∈ R+ ⇔ (α, λ) > 0,

for α ∈ R. Then R+
c ⊂ R+, and we denote by R+

n := R+ \ R+
c the set of non-

compact positive roots. We will write ρ := 1
2

∑
α∈R+ α and ρc := 1

2

∑
α∈R+

c
α.

We will use the fact that λ − ρc lies on the dominant weight lattice Λk
+, since

λ ∈ Λk
+ + ρ.

Note that the dimension of the quotient G/K equals the number of noncom-
pact roots, which is twice the number of positive noncompact roots, and hence
even.

Lemma 1.5. Let µ ∈ Λk
+ be given. Let Vµ be the irreducible representation of

K with highest weight µ. We have

RHG
(
D-IndG

K [Vµ]
)

=
{

(−1)
dim G/K

2 if µ = λ− ρc

0 otherwise.
(10)

The relation (10) can be summarised as

RHG ◦D-IndG
K = (−1)

dim G/K
2 Rλ−ρc

K ,

with Rλ−ρc

K : R(K) → Z given by taking multiplicities of the irreducible K-
representation with highest weight λ− ρc.

Proof. According to Lafforgue [27], Lemma 2.1.1, we have

RHG
(
D-IndG

K [Vµ]
)

= dim
(
V ∗

µ ⊗∆∗
dp
⊗H)K

=
[
∆∗

dp
⊗H|K : Vµ

]
, (11)

the multiplicity of Vµ in ∆∗
dp
⊗H|K . Let us compute this multiplicity.

By Harish-Chandra’s formula (Harish-Chandra [19], Schmid [38], Theorem
on page 95/96), the character Θλ of H is given by

Θλ|T reg = (−1)
dim G/K

2

∑
w∈W (k,t) ε(w)ewλ

∏
α∈R+

(
eα/2 − e−α/2

)
.

11



Here ε(w) = det(w), and W (k, t) is the Weyl group of (k, t). The character χ∆dp

of the representation

K
Ãd−−→ Spin(p) → GL(∆dp), (12)

on the other hand, is given by (Parthasarathy [37], Remark 2.2)

χ∆dp
|T reg :=

(
χ∆+

dp

− χ∆−dp

)|T reg =
∏

α∈R+
n

(
eα/2 − e−α/2

)
.

It follows from this formula that for all t ∈ T reg,

χ∆∗dp
(t) = χ∆dp

(t−1) = χ∆dp
(t),

and hence

(
Θλχ∆∗dp

)|T reg = (−1)
dim G/K

2

∑
w∈W (k,t) ε(w)ewλ

∏
α∈R+

c

(
eα/2 − e−α/2

)

= (−1)
dim G/K

2 χλ−ρc ,

by Weyl’s character formula. Here χλ−ρc is the character of the irreducible
representation of K with highest weight λ− ρc.

Therefore, by (11),

RHG
(
D-IndG

K [Vµ]
)

=
[
∆∗

dp
⊗H|K : Vµ

]

= (−1)
dim G/K

2 [Vλ−ρc : Vµ]

=
{

(−1)
dim G/K

2 if µ = λ− ρc

0 otherwise.

Remark 1.6. Strictly speaking, Lemma 1.5 is not an orbit method, because
the coadjoint orbit through µ is only equal to G/K if K = T , and µ does not
lie on any root hyperplanes.

1.5 Quantisation commutes with reduction at discrete se-
ries representations of semisimple groups

Consider the situation of Definition 1.4, with the additional assumptions and
notation of Subsection 1.4. Suppose that the action of G on M is Hamiltonian,
with momentum map Φ. We will state a generalisation of Theorem 1.3 in
this setting, under the assumption that the image of Φ lies inside the strongly
elliptic set g∗se ⊂ g∗. We first clarify this assumption, and then state our result
for semisimple groups.

12



The set g∗se

Let us define the subset g∗se ⊂ g∗ of strongly elliptic elements. We always view
k∗ as a subspace of g∗ via the linear isomorphism k∗ ∼= p0 (via restriction from g
to k), with p0 the annihilator of p in g∗. As before, the dual space t∗ is identified
with the subspace

(
k∗

)Ad∗(T ) of k∗.
Let t∗+ ⊂ t∗ be a choice of positive Weyl chamber. We denote by ‘ncw’ the

set of noncompact walls:

ncw := {ξ ∈ t∗; (α, ξ) = 0 for some α ∈ Rn}, (13)

where as before, (−,−) is a Weyl group invariant inner product on t∗C. We then
define

g∗se := Ad∗(G)(t∗+ \ ncw). (14)

Equivalently, g∗se is the set of all elements of g∗ with compact stabilisers under
the coadjoint action, and also the interior of the elliptic set g∗ell := Ad(G)k∗. We
will also use the notation

k∗se := Ad∗(K)(t∗+ \ ncw). (15)

Note that k∗se ⊂ k∗ is an open dense subset, and that g∗se = Ad∗(G)k∗se. The set
g∗se is generally not dense in g∗.

The reason for our assumption that the momentum map takes values in g∗se
is that we are looking at multiplicities of discrete series representations. These
can be seen as ‘quantisations’ of certain coadjoint orbits that lie inside g∗se (see
Schmid [38], Parthasarathy [37] and also Paradan [36]). In general, the ‘quan-
tisation commutes with reduction’ principle implies that the quantisation of a
Hamiltonian action decomposes into irreducible representations associated to
coadjoint orbits that lie in the image of the momentum map. Hence if we sup-
pose that this image lies inside g∗se, we expect the quantisation of the action
to decompose into discrete series representations. In [46], Proposition 2.6, We-
instein proves that g∗se is nonempty if and only if rank G = rank K, which is
Harish-Chandra’s criterion for the existence of discrete series representations of
G.

The most direct application of the assumption that the image of the mo-
mentum map lies in g∗se is the following lemma, which we will use several times.

Lemma 1.7. Let ξ ∈ g∗se. Then gξ ∩ p = {0}.
Proof. Let X ∈ gξ ∩ p be given. We consider the one-parameter subgroup
exp(RX) of G. Because ξ ∈ g∗se, the stabiliser Gξ is compact. Because exp(RX)
is contained in Gξ, it is therefore either the image of a closed curve, or dense in
a subtorus of Gξ. In both cases, its closure is compact.

On the other hand, the map exp : p → G is an embedding (see e.g. [25],
Theorem 6.31c). Hence, if X 6= 0, then exp(RX) is a closed subset of G,
diffeomorphic to R. Because the closure of exp(RX) is compact by the preceding
argument, we conclude that X = 0.

13



Now suppose that Φ(M) ⊂ g∗se. Then the assumption that the action of G
on M is proper is actually unnecessary:

Lemma 1.8. If Φ(M) ⊂ g∗se, then the action of G on M is automatically proper.

Proof. In [46], Corollary 2.13, it is shown that the coadjoint action of G on g∗se
is proper. This is a slightly stronger property than the fact that elements of g∗se
have compact stabilisers, and it implies properness of the action of G on M .

Indeed, let a compact subset C ⊂ M be given. It then follows from continuity
and equivariance of Φ, and from properness of the action of G on g∗se that the
closed set

GC := {g ∈ G; gC ∩ C 6= ∅}
⊂ {g ∈ G; gΦ(C) ∩ Φ(C) 6= ∅}

is compact, i.e. the action of G on M is proper.

The result

Compactness of M/G is enough to guarantee compactness of the reduced spaces
Mξ = Φ−1(ξ)/Gξ

∼= Φ−1(G ·ξ)/G, but it can even be shown that in this setting,
Φ is a proper map. This gives another reason why the reduced spaces are
compact.

We can finally state our result. Let H be an irreducible discrete series
representation. Let λ ∈ it∗ be its Harish-Chandra parameter such that (α, λ) >
0 for all α ∈ R+

c . As before, we will write (Mλ, ωλ) := (M−iλ, ω−iλ) for the
symplectic reduction of (M,ω) at −iλ ∈ t∗+\ncw ⊂ g∗se. Then our generalisation
of Theorem 1.3 is:

Theorem 1.9 (Quantisation commutes with reduction at discrete series repre-
sentations). Consider the situation of Definition 1.4. Suppose that the action
of G on M is proper and Hamiltonian, and that the additional assumptions of
this subsection hold. Supose furthermore that the action of G on M has abelian
stabilisers. If −iλ ∈ t∗+ \ ncw is in the image of Φ, then

RHG
(
QSpin(M, ω)

)
:= RHG

(
µG

M

[
/D

L2ω

M

])
= (−1)

dim G/K
2 QSpin(Mλ, ωλ).

If −iλ does not lie in the image of Φ, then the integer on the left hand side
equals zero.

We use the compact version of quantisation to define the quantisation QSpin(Mλ, ωλ)
of the symplectic reduction, since this version is well-defined in the singular case.

If G = K, then the irreducible discrete series representation H is the irre-
ducible representation Vλ−ρc of K with highest weight λ−ρc (see [38], corollary
on page 105). Hence RHG amounts to taking the multiplicity of Vλ−ρc , as re-
marked after the definition of RHG . The assumption that M/G is compact is now
equivalent to compactness of M itself. Therefore Theorem 1.9 indeed reduces
to Theorem 1.3 in this case. As mentioned before, our proof of Theorem 1.9 is
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based on this statement for the compact case, so that we cannot view Theorem
1.3 as a corollary to Theorem 1.9.

To obtain results about discrete series representations, we would like to apply
Theorem 1.9 to cases where M is a coadjoint orbit of some semisimple group,
such that the quantisation of this orbit in the sense of Definition 1.4 is the K-
theory class of a discrete series representation of this group. The condition that
M/G is compact rules out any interesting applications in this direction, however.
If we could generalise Theorem 1.9 to a similar statement where the assumption
that M/G is compact is replaced by the assumption that the momentum map is
proper, then we might be able to deduce interesting corollaries in representation
theory.

One such application could be analogous to unpublished work of Duflo and
Vargas about restricting discrete series representations to semisimple subgroups.
In this case, the assumption that the momentum map is proper corresponds to
their assumption that the restriction map from some coadjoint orbit to the dual
of the Lie algebra of such a subgroup is proper.

An interesting refinement of a special case of Duflo and Vargas’s work was
given by Paradan [36], who gives a multiplicity formula for the decomposition
of the restriction of a discrete series representation of G to K, in terms of
symplectic reductions of the coadjoint orbit corresponding to this discrete series
representation.

2 Induction and cross-sections of Hamiltonian
group actions

In this section, we explain the Hamiltonian induction and Hamiltonian cross-
section constructions mentioned in the Introduction. We will see in Subsection
2.4 that they are each other’s inverses. Our term ‘Hamiltonian induction’ is quite
different from Guillemin and Sternberg’s term ‘symplectic induction’ introduced
in [17], Section 40.

Many results in this section are known for the case where the pair (G,K) is
replaced by (K,T ). See for example [29, 35].

2.1 The tangent bundle to a fibred product

In our study of the manifold G×K N , we will use an explicit description of its
tangent bundle, which we will now explain.

For this subsection, let G be any Lie group, H < G any closed subgroup,
and N a left H-manifold. We consider the action of H on the product G ×N
defined by

h · (g, n) = (gh−1, hn),

for all h ∈ H, g ∈ G and n ∈ N . We denote the quotient of this action by
G×H N , or by M . Because the action of H on G×N is proper and free, M is a
smooth manifold. We would like to describe the tangent bundle to M explicitly.
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To this end, we endow the tangent bundle TH ∼= H × h with the group
structure

(h, X)(h′, X ′) := (hh′, Ad(h)X ′ + X),

for h, h′ ∈ H and X, X ′ ∈ h. This is a special case of the semidirect product
group structure on a product V oH, where V is a representation space of H.
We consider the action of the group TH on TG× TN defined by

(h, X) · (g, Y, v) := (gh−1,Ad(h)Y −X, Tnh(v) + Xhn),

for h ∈ H, X ∈ h, (g, Y ) ∈ G× g ∼= TG, n ∈ N and v ∈ TnN . Let TG×TH TN
be the quotient of this action. It is a vector bundle over M , with projection
map [g, X, v] 7→ [g, n] (notation as above). We let G act on TG×TH TN by left
multiplication on the first factor.

Proposition 2.1. There is a G-equivariant isomorphism of vector bundles

Ψ : TG×TH TN → TM,

given by
Ψ[g, Y, v] = Tp(g, Y, v),

with p : G×N → M the quotient map.

Now suppose that there is an Ad(H)-invariant linear subspace p ⊂ g such
that g = h⊕p (such as in the case H = K we consider in the rest of this paper).
Then there is a possibly simpler description of TM , that we will also use later.
Consider the action of H on the product G× TN × p given by

h · (g, v, Y ) = (gh−1, Tnh(v), Ad(h)Y ),

and denote the quotient by G×H (TN × p).

Lemma 2.2. The map

Ξ : TG×TH TN → G×H (TN × p),

given by
Ξ[g, Y, v] = [g, v + (Yh)n, Yp]

for all g ∈ G, Y ∈ g, n ∈ N and v ∈ TnN , is a well-defined, G-equivariant
isomorphism of vector bundles. Here Yh and Yp are the components of Y in h
and p respectively, according to the decomposition g = h⊕ p.

Because of Proposition 2.1 and Lemma 2.2, we have TM ∼= G×H (TN × p)
as G-vector bundles.4

In Section 3, we will use the following version of Proposition 2.1 and Lemma
2.2.

4A version of this fact is used without a proof in [3] on page 503.
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Corollary 2.3. In the situation of Lemma 2.2, there is an isomorphism of
G-vector bundles

TM ∼=
(
p∗G/HT (G/H)

)⊕ (G×H TN),

where pG/H : M → G/H is the natural projection.

Proof. The claim follows from Proposition 2.1, Lemma 2.2, and the fact that

T (G/H) ∼= G×H p,

where H acts on p via Ad.

2.2 Hamiltonian induction

We return to the standard situation in this paper, where G is a semisimple
group, and K < G is a maximal compact subgroup.

The symplectic manifold

Let (N, ν) be a symplectic manifold on which K acts in Hamiltonian fashion,
with momentum map ΦN : N → k∗. Suppose that the image of ΦN lies in the
set k∗se, defined in (15). As in Subsection 2.1, we consider the fibred product
M = G×K N , equipped with the action of G induced by left multiplication on
the first factor. As a consequence of Proposition 2.1 and Lemma 2.2, we have
for all n ∈ N ,

T[e,n]M ∼= TnN ⊕ p.

We define a two-form ω on M by requiring that it is G-invariant, and that for
all X, Y ∈ p, n ∈ N and v, w ∈ TnN ,

ω[e,n](v + X, w + Y ) := νn(v, w)− 〈ΦN (n), [X, Y ]〉. (16)

Note that [X, Y ] ∈ k for all X,Y ∈ p, so the pairing in the second term is well-
defined. We claim that ω is a symplectic form. This is analogous to formula
(7.4) from [35].

Proposition 2.4. The form ω is symplectic.

The momentum map

Next, consider the map ΦM : M → g∗ given by

ΦM [g, n] = Ad∗(g)ΦN (n). (17)

This map is well-defined by K-equivariance of ΦN . Furthermore, it is obviously
G-equivariant, and its image lies in g∗se.

Proposition 2.5. The map ΦM is a momentum map for the action of G on
M .
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Definition 2.6. The Hamiltonian induction of the Hamiltonian action of K on
(N, ν) is the Hamiltonian action of G on (M, ω):

H-IndG
K(N, ν, ΦN ) := (M,ω, ΦM ).

Example 2.7. Let ξ ∈ t∗ \ ncw be given, and consider the coadjoint orbit
N := K · ξ ⊂ k∗. The Hamiltonian induction of the coadjoint action of K on
N is the coadjoint action of G on the coadjoint orbit M := G · ξ, including the
natural symplectic forms and momentum maps. Indeed, the map

G · ξ → G×K N

given by g · ξ 7→ [g, ξ] is a symplectomorphism.

2.3 Hamiltonian cross-sections

We now turn to the inverse construction to Hamiltonian induction, namely
the Hamiltonian cross-section. In this case, we start with a Hamiltonian G-
manifold (M,ω), with momentum map ΦM . Such a cross-section will indeed
be symplectic and carry a Hamiltonian K-action, under the assumption that
the image of ΦM is contained in g∗se. A Hamiltonian cross-section is a kind of
double restriction: it is both a restriction to a subgroup of G and a restriction
to a submanifold of M .

Most of this subsection is based on the proof of the symplectic cross-section
theorem in Lerman et al. [29]. We will therefore omit most proofs.

As before, we identify k∗ with the subspace p0 of g∗. The main result of this
subsection is:

Proposition 2.8. If ΦM (M) ⊂ g∗se, then N :=
(
ΦM

)−1(k∗) is a K-invariant
symplectic submanifold of M , and ΦN := ΦM |N is a momentum map for the
action of K on N .

We denote the restricted symplectic form ω|N by ν.

Definition 2.9. The Hamiltonian cross-section of the Hamiltonian action of G
on (M,ω) is the Hamiltonian action of K on (N, ν):

H-CrossG
K(M, ω, ΦM ) := (N, ν, ΦN ).

In Proposition 2.14, we will see that M ∼= G×K N , so that M/G is compact
if and only if N is.

To prove Proposition 2.8, we have to show that N is a smooth submanifold
of M , and that the restricted form ω|N is symplectic. Then the submanifold N
is K-invariant by K-equivariance of ΦM , and the fact that ΦN is a momentum
map is easily verified. We begin with some preparatory lemmas, based on the
proof of the symplectic cross-section theorem mentioned above.

For the remainder of this subsection, let m ∈ M be given, and write ξ :=
ΦM (m).
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Lemma 2.10. The linear map

ψ : Tm(G ·m) → Tξ(G · ξ)
given by

ψ(Xm) = Xξ

for X ∈ g, is symplectic, in the sense that for all X,Y ∈ g,

ωm(Xm, Ym) = −〈ξ, [X,Y ]〉.
Lemma 2.11. We have the following inclusions of subspaces of g∗:

g0
ξ ⊂ TmΦM (TmM) ⊂ g0

m.

Lemma 2.12. If m ∈ N ⊂ M , then the subspace

p ·m := {Xm;X ∈ p} ⊂ TmM

is symplectic.

Proof. Step 1: we have

Tξ(G · ξ) ∼= g · ξ = (k + p) · ξ = Tξ(K · ξ) + p · ξ.
Step 2: the subspace p · ξ ⊂ Tξ(G · ξ) is symplectic.

Indeed, by Step 1 and Lemma 2.13 below, it is enough to prove that p · ξ and
Tξ(K ·ξ) are symplectically orthogonal. Let X ∈ k and Y ∈ p be given. Because
m ∈ N , we have ξ ∈ k∗, and also ad∗(X)ξ ∈ k∗ ∼= p0. Hence

〈ξ, [X, Y ]〉 = −〈ad∗(X)ξ, Y 〉 = 0.

Step 3: the subspace p ·m ⊂ TmM is symplectic.
Indeed, let a nonzero X ∈ p be given. We are looking for a Y ∈ p such that
ωm(Xm, Ym) 6= 0. Note that by Lemma 1.7, we have ad∗(X)ξ = Xξ 6= 0. So by
Step 2, there is a Y ∈ p for which 〈ξ, [X, Y ]〉 6= 0. Hence by Lemma 2.10,

ωm(Xm, Ym) = −〈ξ, [X,Y ]〉 6= 0.

In Step 2 of the proof of Lemma 2.12, we used

Lemma 2.13. Let (W,σ) be a symplectic vector space, and let U, V ⊂ W be
linear subspaces. Suppose that W = U +V , and that U and V are symplectically
orthogonal. Then U and V are symplectic subspaces.

After these preparations, we are ready to prove Proposition 2.8.

Proof of Proposition 2.8. We first show that N is smooth. This is true if ΦM

satisfies the transversality condition that for all n ∈ N , with η := ΦM (n), we
have

Tηg∗ = Tηk∗ + TnΦM (TnM).

19



(See e.g. [21], Chapter 1, Theorem 3.3.) By Lemma 2.11, we have g0
η ⊂

TnΦM (TnM), and by Lemma 1.7, we have gη ∩ p = {0}. Now, using the fact
that V 0 + W 0 = (V ∩W )0 for two linear subspaces V and W of a vector space,
we see that

Tηk∗ + TnΦM (TnM) ⊃ p0 + g0
η = (p ∩ gη)0 = {0}0 = g∗.

This shows that N is indeed smooth.
Next, we prove that ω|N is a symplectic form. It is closed because ω is, so

it remains to show that it is nondegenerate. Let n ∈ N be given. By Lemma
2.13, it is enough to show that TnM = TnN + p · n, and that TnN and p · n are
symplectically orthogonal.

We prove that TnM = TnN ⊕ p · n, by first noting that

dim N = dim M − dim g∗ + dim k∗ = dim M − dim p.

Because gn ⊂ gΦM (n), and gΦM (n) ∩ p = {0} by Lemma 1.7, we have dim p =
dim(p · n), and

dim TnM = dim TnN + dim(p · n).

It is therefore enough to prove that TnN ∩p ·n = {0}. To this end, let X ∈ p be
given, and suppose Xn ∈ TnN . That is, TnΦM (Xn) ∈ k∗, which is to say that
for all Y ∈ p,

ωn(Xn, Yn) = −〈TnΦM (Xn), Y 〉 = 0.

By Lemma 2.12, it follows that Xn = 0, so that indeed TnN ∩ p · n = {0}.
Finally, we show that for all v ∈ TnN and X ∈ p, we have ωn(v,Xn) = 0.

Indeed, for such v and X, we have TnΦM (v) ∈ k∗ ∼= p0, so

ωn(v, Xn) = 〈TnΦM (v), X〉 = 0.

¤

2.4 Hamiltonian induction and taking Hamiltonian cross-
sections are mutually inverse

Let us prove the statement in the title of this subsection. One side of it (Propo-
sition 2.14) will be used in the proof of Theorem 1.9 in Subsection 4.3. We will
not use the other side (Proposition 2.15).

Induction of a cross-section

First, we have

Proposition 2.14. Let (M,ω, ΦM ) and (N, ν, ΦN ) := H-CrossG
K(M,ω, ΦM ) be

as in Subsection 2.3. Consider the manifold M̃ := G ×K N , with symplectic
form ω̃ equal to the form ω in (16). Define the map Φ̃M as the map ΦM in
(17). Then the map

ϕ : M̃ → M
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given by
ϕ[g, n] = g · n

is a well-defined, G-equivariant symplectomorphism, and ϕ∗ΦM = Φ̃M .
Put differently, H-IndG

K ◦H-CrossG
K is the identity, modulo equivariant sym-

plectomorphisms that intertwine the momentum maps.

It follows from this proposition that M/G = N/K, so that M/G is compact
if and only if N is compact.

Proof. The statement about the momentum maps follows from G-equivariance
of ΦM .

The map ϕ is well-defined by definition of the action of K on G × N . It
is obviously G-equivariant. Furthermore, ϕ is smooth because the action of G
on M is smooth (this was a tacit assumption), and by definition of the smooth
structure on the quotient G×K N .

To prove injectivity of ϕ, let g, g′ ∈ G and n, n′ ∈ N be given, and suppose
that g ·n = g′ ·n′. Because ΦM (N) ⊂ k∗se, there are k, k′ ∈ K and ξ, ξ′ ∈ t∗+\ncw
such that

ΦM (n) = k · ξ;
ΦM (n′) = k′ · ξ′.

Then by equivariance of ΦM , we have gk · ξ = g′k′ · ξ′. Because t∗+ \ ncw is a
fundamental domain for the coadjoint action of G on g∗se, we must have ξ = ξ′,
and

k′−1g′−1gk ∈ Gξ ⊂ K.

So k′′ := g′−1g ∈ K. Hence

g′k′′n = g · n = g′ · n′,
and k′′ · n = n′. We conclude that

[g′, n′] = [gk′′−1, k′′ · n] = [g, n],

and ϕ is injective.
To prove surjectivity of ϕ, let m ∈ M be given. Since ΦM (m) ∈ g∗se, there

are g ∈ G and ξ ∈ t∗+ \ ncw such that ΦM (m) = g · ξ. Set n := g−1m. Then
ΦM (n) = ξ ∈ k∗, so n ∈ N , and ϕ[g, n] = m.

Next, we show that the inverse of ϕ is smooth. We prove this using the
inverse function theorem: smoothness of ϕ−1 follows from the fact that the
tangent map Tϕ is invertible. Or, equivalently, from the fact that the map T̃ϕ,
defined by the following diagram, is invertible.

T (G×K N)
Tϕ // TM

TG×TK TN.

Ψ ∼=
OO

T̃ϕ

88qqqqqqqqqqq
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Here Ψ is the isomorphism from Proposition 2.1. Explicitly, the map T̃ϕ is
given by

T̃ϕ[g, X, v] = Tϕ ◦ Tp(g, X, v)
= Tα(g, X, v),

for all g ∈ G, X ∈ g and v ∈ TnN , with α : G×N → M the action map. Let γ
be a curve in N with γ(0) = n and γ′(0) = v. Then we find that

Tα(g, X, v) =
d

dt

∣∣∣∣
t=0

exp(tX)g · γ(t)

= Xgn + Tng(v).
(18)

Because the vector bundles TG×TK TN and TM have the same rank, it is
enough to show that T̃ϕ is surjective. To this end, let m ∈ M and w ∈ TmM
be given. Since ϕ is surjective, there are g ∈ G and n ∈ N such that m = g · n.
Furthermore, we have

TnM = TnN + g · n.

Indeed, in our situation we even have TnM = TnN ⊕ p · n (see the proof of
Proposition 2.8). Hence

TmM = Tng(TnM) = Tng(TnN + g · n).

Therefore, there are v ∈ TnN and X ∈ g such that

w = Tng(v + Xn)

= Tng(v) +
(
Ad(g)X

)
g·n

= T̃ϕ[g, Ad(g)X, v],

by (18). This shows that T̃ϕ is indeed surjective.
Finally, we prove that ϕ is a symplectomorphism. Let n ∈ N , v, w ∈ TnN

and X, Y ∈ p be given. We will show that

ωn

(
T[e,n]ϕ(v + X), T[e,n]ϕ(w + Y )

)
= ωn(v, w)− 〈ΦM (n), [X, Y ]〉.

By G-invariance of the symplectic forms ω and ω̃, this implies that ϕ is a
symplectomorphism on all of M̃ .

Similarly to (18), we find that T[e,n]ϕ(v + X) = v + Xn. Therefore,

ωn

(
T[e,n]ϕ(v + X), T[e,n]ϕ(w + Y )

)
= ωn(v + Xn, w + Yn)
= ωn(v, w) + ωn(Xn, Yn), (19)

since TnN and p · n are symplectically orthogonal (see the end of the proof of
Proposition 2.8). Now applying Lemma 2.10 to the first term in (19) gives the
desired result.
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Cross-section of an induction

Conversely to Proposition 2.14, we have:

Proposition 2.15. Let (N, ν, ΦN ) and (M,ω, ΦM ) := H-Ind(N, ν, ΦN ) be as
in Subsection 2.2. Suppose ΦN (N) ⊂ k∗se. Then

(N, ν) ∼=
((

ΦM
)−1(k∗), ω|(ΦM )−1(k∗)

)
,

and this isomorphism intertwines the momentum maps ΦN and ΦM .
In other words, H-CrossG

K ◦H-IndG
K is the identity, modulo equivariant sym-

plectomorphisms that intertwine the momentum maps.

Proof. We claim that

(
ΦM

)−1(k∗) = {[e, n];n ∈ N} =: Ñ . (20)

The map n 7→ [e, n] is a diffeomorphism from N to Ñ . It is clear that this
diffeomorphism is K-equivariant, and intertwines the momentum maps ΦN and
ΦM .

To prove that
(
ΦM

)−1(k∗) = Ñ , let [g, n] ∈ M be given, and suppose
ΦM [g, n] = g · ΦN (n) ∈ k∗. Because ΦN (N) ⊂ k∗se, we have

g · ΦN (n) ∈ (
G · k∗se

) ∩ k∗ = k∗se.

So there are k, k′ ∈ K and ξ, ξ′ ∈ t∗+ \ ncw such that

ΦN (n) = k · ξ;
g · ΦN (n) = k′ · ξ′.

Hence gk ·ξ = k′ ·ξ′, and since t∗+\ncw is a fundamental domain for the coadjoint
action of G on g∗se, we have ξ′ = ξ. So

k′−1gk ∈ Gξ ⊂ K,

and hence g ∈ K. We conclude that [g, n] = [e, g−1n], which proves (20) (the
inclusion Ñ ⊂ (

ΦM
)−1(k∗) follows from the definition of ΦM ).

For each n ∈ N , the natural isomorphism v 7→ [e, 0, v] from TnN to T[e,n]Ñ
intertwines the respective symplectic forms, by definition of those forms.

3 Induction of prequantisations and Spinc-structures

We extend the induction procedure of Section 2 to prequantisations and to
Spinc-structures, used to define quantisation. For prequantisations, it is possible
to define restriction to a Hamiltonian cross-section in a suitable way. For our
purposes, it is not necessary to restrict Spinc-structures.
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3.1 Prequantisations

Since we are interested in quantising Hamiltonian actions, let us look at in-
duction of prequantum line bundles, and at restriction to Hamiltonian cross-
sections.

Restriction to Hamiltonian cross-sections

The easy part is restriction. Indeed, let (M, ω) be a Hamiltonian G-manifold,
let ΦM be a momentum map with ΦM (M) ⊂ g∗se, and let (N, ν, ΦN ) be the
Hamiltonian cross-section of this action. Now let Lω → M be a prequantum
line bundle, let (−,−)Lω be a G-invariant Hermitian metric on Lω, and let ∇M

be a G-equivariant Hermitian connection on Lω with curvature 2πi ω. Let ∇N

be the connection on Lν := Lω|N defined as the pullback of ∇M along the
inclusion map N ↪→ M . It is given by

∇N
(
s|N

)
=

(∇Ms
) |N ,

for all sections s ∈ Γ∞(Lω). This is indeed a connection, with curvature

R∇N = R∇M |N = 2πi ω|N = 2πi ν.

Furthermore, it is Hermitian with respect to the restriction (−,−)Lν of (−,−)Lω .
That is, (Lν , (−,−)Lν ,∇N ) is a prequantisation of the action of K on N .

In the same way, we see that a Spinc-prequantum line bundle on (M, ω),
that is, a prequantum line bundle on (M, 2ω), restricts to a Spinc-prequantum
line bundle on (N, 2ν).

Induction: an auxiliary connection ∇
Now let us consider induction of prequantisations. As in Subsection 2.2, let
(N, ν) be a Hamiltonian K-manifold, with momentum map ΦN . Let (M, ω, ΦM )
be the Hamiltonian induction of these data. Let

(
Lν , (−,−)Lν ,∇N

)
be an

equivariant prequantisation of the action of K on N . As in the case of restriction,
the following argument extends directly to Spinc-prequantisations.

Consider the line bundle

Lω := G×K Lν → M,

with the natural projection map [g, l] 7→ [g, n] for g ∈ G, n ∈ N and l ∈ Lν
n.

Let (−,−)Lω be the G-invariant Hermitian metric on Lω induced by (−,−)Lν :
for all g, g′ ∈ G, n ∈ N and l, l′ ∈ Lν

n, set
(
[g, l], [g′, l′]

)
Lω := (l, l′)Lν .

In the remainder of this subsection, we will construct a connection ∇M on
Lω, such that

(
Lω, (−,−)Lω ,∇M

)
is a G-equivariant prequantisation of (M, ω).

This is by definition the prequantisation induced by
(
Lν , (−,−)Lν ,∇N

)
.
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To construct the connection ∇M , we consider the line bundle

L := G× Lν → G×N,

with the obvious projection map (g, l) 7→ (g, n), for all g ∈ G, l ∈ Lν
n. Then

Lω = L/K, where K acts on L by

k · (g, l) = (gk−1, k · l),
for k ∈ K, g ∈ G and l ∈ Lν . We therefore have a linear isomorphism

ψL : Γ∞(L)K → Γ∞(Lω),

given by
ψL(σ)[g, n] = [σ(g, n)]. (21)

We will construct ∇M as the connection induced by a K-equivariant connection
∇ on L. The space Γ∞(L) of sections of L is isomorphic to the space

Γ̃∞(L) := {s : G×N
C∞−−→ Lν ; s(g, n) ∈ Lν

n for all g ∈ G and n ∈ N.}
Indeed, the isomorphism is given by s 7→ σ, where σ(g, n) = (g, s(g, n)). For
s ∈ Γ̃∞(L), g ∈ G and n ∈ N , we write

sg(n) := s(g, n) =: sn(g).

(We will use the same notation when s is replaced by a function on G × N .)
Then for fixed g, sg is a section of Lν , and for fixed n, sn is a function

sn : G → Lν
n.

Let s ∈ Γ̃∞(L), X ∈ g, v ∈ X(N), g ∈ G and n ∈ N be given. We define
(∇v+Xs

)
(g, n) :=

(∇N
v sg

)
(n) + X(sn)(g) + 2πi ΦN

Xk
(n)s(g, n). (22)

Here we have written X = Xk + Xp ∈ k ⊕ p. (The subscript k in Xk in (22) is
actually superfluous, because we identify k∗ with p0 ⊂ g∗.) In the expression
X(sn), we view X as a left invariant vector field on G, acting on the function
sn. Note that all tangent vectors in T(g,n)(G × N) are of the form Xg + vn =
(g,X, vn) ∈ TgG×TnN , and therefore the above formula determines∇ uniquely.
We claim that ∇ is a K-equivariant connection on L with the right curvature,
so that it induces a connection ∇M on Lω with curvature ω.

Lemma 3.1. The formula (22) defines a connection ∇ on L.

Proof. The Leibniz rule for ∇ follows from the fact that for f ∈ C∞(G × N),
X ∈ g, v ∈ X(N), g ∈ G and n ∈ N , one has

(v + X)(f)(g, n) = v(fg)(n) + X(fn)(g).

Linearity over C∞(G × N) in the vector fields follows from the fact that,
with notation as above,

(
f(v + X)

)
(g,n)

=
(
fnX

)
g

+
(
fgv

)
(n).

Locality is obvious.
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Properties of the connection ∇
Let (−,−)L be the Hermitian metric on L given by

(
(g, l), (g′, l′)

)
L

:= (l, l′)Lν

for all g, g′ ∈ G and l, l′ ∈ Lν
n.

Lemma 3.2. The connection ∇ is Hermitian with respect to this metric.

Next, we compute the curvature of∇. This computation is long but straight-
forward.

Lemma 3.3. The curvature R∇ of ∇ is given by

R∇(v + X,w + Y )(g, n) = 2πi
(
νn(v, w)− 〈ΦN (n), [X, Y ]k〉

)
,

for all X,Y ∈ g, v, w ∈ X(N), g ∈ G and n ∈ N .

It remains to show that the connection ∇ induces the desired connection
∇M on Lω. This will follow from K-equivariance of ∇.

Lemma 3.4. The connection ∇ is K-equivariant in the sense that for all X ∈ g,
v ∈ X(N), k ∈ K, s ∈ Γ∞(L), g ∈ G and n ∈ n, we have

k · (∇v+Xs
)

= ∇k·(v+X)k · s.
We now define∇M via the isomorphism ψL in (21). Note that by Proposition

2.1 and Lemma 2.2, we have

X(M) ∼= Γ∞(G×K N, G×K (TN × p))
∼= Γ∞(G×N, G× TN × p)K

⊂ Γ∞(G×N, (G× g)× TN)K

= X(G×N)K

We will write j : X(M) ↪→ X(G×N)K for this embedding map. For w ∈ X(M)
and s ∈ Γ∞(L)K , we define the connection ∇M by

∇M
w ψL(s) := ψL

(∇j(w)s
)
.

Because s and j(w) are K-invariant, and ∇ is K-equivariant, we indeed have
∇j(w)s ∈ Γ∞(L)K , the domain of ψL.

It now follows directly from the definitions and from Lemmas 3.1, 3.2 and
3.3 that ∇M is a Hermitian connection on Lω with curvature ω.

Induction and restriction

The induction and restriction procedures for line bundles described above are
each other’s inverses (modulo equivariant line bundle isomorphisms), although
this does not include the connections on the bundles in question:
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Lemma 3.5. (i) Let N be a K-manifold, and qN : EN → N a K-vector bundle.
Then (

G×K EN
)|Ñ ∼= EN ,

with Ñ as in (20).
(ii) Let M be a G-manifold, EM → M a G-vector bundle. Let N ⊂ M be

a K-invariant submanifold, and denote the restriction of EM to N by EN . Let
ϕ : G×K N → M be the map ϕ[g, n] = gn. Then

ϕ∗EM ∼= G×K EN .

Proof. (i) Note that
(
G×K EN

)|Ñ =
{
[g, v] ∈ G×K EN ; [g, qN (v)] = [e, n] for an n ∈ N

}

=
{
[e, v] ∈ G×K EN ; v ∈ EN

}

∼= EN .

(ii) Note that

ϕ∗EM =
{(

[g, n], v
)
; g ∈ G,n ∈ N and v ∈ EM

gn

}
.

The map
(
[g, n], v

) 7→ [g, v] is the desired vector bundle isomorphism onto G×K

EN .

For our purposes, it does not matter that this lemma says nothing about
connections that may be defined on the vector bundles in question, because the
K-homology classes defined by Dirac operators associated to such connections
are homotopy invariant. In our setting, the vector bundle isomorphisms in the
proof of Lemma 3.5 do intertwine the metrics (−,−)Lω and (−,−)Lν on the
respective line bundles.

3.2 Spinc-structures

Because we want to compare the Dirac operators on M and N , we now look
at induction of Spinc-structures. As before, we consider a semisimple group
G with maximal compact subgroup K, and a K-manifold N . We form the
fibred product M := G ×K N , and we will show how a K-equivariant Spinc-
structure on N induces a G-equivariant Spinc-structure on M . It will turn out
that the operation of taking determinant line bundles intertwines the induction
process for Spinc-structures in this subsection, and the induction process for
prequantum line bundles in the previous one.

General constructions

The construction of induced Spinc-structures we will use, is based on the fol-
lowing two facts, of which we were informed by Paul-Émile Paradan.
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Lemma 3.6. For j = 1, 2, let Ej → M be a real vector bundle over a manifold
M . Suppose E1 and E2 are equipped with metrics and orientations. Let Pj → M
be a Spinc-structure on Ej, with determinant line bundle Lj → M . Then there
is a Spinc-structure P → M on the direct sum E1⊕E2 → M , with determinant
line bundle L1 ⊗ L2.

Proof. Let rj be the rank of Ej , and write r := r1 + r2. Consider the double
covering map

π : Spinc(r) → SO(r)×U(1),

given by [a, z] 7→ (λ(a), z2), where a ∈ Spin(r), z ∈ U(1), and λ : Spin(r) →
SO(r) is the standard double covering. Consider the subgroups

H ′ := SO(r1)× SO(r2)×U(1)

of SO(r)×U(1), and H := π−1(H ′) of Spinc(r). Noting that

H ′ ∼= (SO(r1)×U(1))×U(1) (SO(r2)×U(1)),

we see that
H ∼= Spinc(r1)×U(1) Spinc(r2).

Let P1 ×U(1) P2 be the quotient of P1 × P2 by the U(1)-action given by

z(p1, p2) = (p1z, p2z
−1),

for z ∈ U(1) and pj ∈ Pj . Define

P :=
(
P1 ×U(1) P2

)×H Spinc(r).

Then we have naturally defined isomorphisms

P ×Spinc(r) Rr ∼=
(
P1 ×U(1) P2

)×H (Rr1 ⊕ Rr2)
∼=

(
P1 ×Spinc(r1) R

r1
)⊕ (

P2 ×Spinc(r2) R
r2

)
∼= E1 ⊕ E2.

The determinant line bundle of P is

det(P ) =
(
P1 ×U(1) P2

)×H C,

where H acts on C via the determinant homomorphism. Note that, for all
h = [h1, h2] ∈ Spinc(r1)×U(1) Spinc(r2) ∼= H, we have det(h) = det(h1) det(h2).
Using this equality, one can check that the map

(
P1 ×U(1) P2

)×H C→
(
P1 ×Spinc(r1) C

)⊗ (
P2 ×Spinc(r2) C

)
,

given by
[p1, p2, z] 7→ [p1, z]⊗ [p2, 1],

defines an isomorphism det(P ) ∼= det(P1)⊗ det(P2).
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Lemma 3.7. Let G be a Lie group, acting on a smooth manifold N . Let
H < G be a closed subgroup, and consider the fibred product M := G ×H N .
Let EN → N be an oriented H-vector bundle of rank r, equipped with an H-
invariant metric. Then, as in Subsection 3.1, we can form the G-vector bundle

EM := G×H EN → M.

If PN → N is an H-equivariant Spinc-structure on E, then PM := G×H PN

is a G-invariant Spinc-structure on EM . If LN → N is the determinant line
bundle of PN , then the determinant line bundle of PM is G×H LN .

Proof. The first claim is a direct consequence of the fact that the actions of H
and Spinc(r) on PN commute. For the same reason, we have

det(PM ) =
(
G×H PN

)×Spinc(r) C
= G×H

(
PN ×Spinc(r) C

)

= G×H LN .

An induced Spinc-structure

Let a K-equivariant Spinc-structure PN on N be given. To construct a G-
equivariant Spinc-structure on M = G×K N , we recall that, by Corollary 2.3,

TM ∼= (p∗G/KT (G/K))⊕ (G×K TN), (23)

with pG/K : M → G/K the natural projection. As in Subsection 1.4, we
assume that the homomorphism Ad : K → SO(p) lifts to a homomorphism
Ãd : K → Spin(p). Then G/K carries the natural Spin-structure

PG/K := G×K Spin(p),

where K acts on Spin(p) via Ãd.

Lemma 3.8. The principal Spinc(p)-bundle

P
G/K
M := G×K (N × Spinc(p)) → M

defines a Spinc-structure on p∗G/KT (G/K). Its determinant line bundle is triv-
ial, so that it reduces to a Spin-structure.

Proof. We have

G×K (N × Spinc(p))×Spinc(p) p ∼= G×K (N × p)
∼= p∗G/K(G×K p)
∼= p∗G/KT (G/K).
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Note that the determinant homomorphism is trivial on the subgroup Spin(p) <

Spinc(p), and that Ãd(K) < Spin(p). Therefore, the action of K on C, given
by the composition

K
Ãd−−→ Spin(p) ↪→ Spinc(p) det−−→ U(1),

is trivial. We conclude that

det
(
P

G/K
M

) ∼= G×K (N × C) ∼= M × C,

as claimed.

Using the decomposition (23) of TM , and the constructions from Lemmas
3.6 and 3.7, we now obtain a Spinc-structure PM → M on M , from the Spinc-
structures P

G/K
M → M and PN → N . Explicitly,

PM :=
(
G×K (N × Spinc(p))

)×U(1)

(
G×K PN

)×H Spinc(dM ).

By Lemmas 3.6 and 3.7, and by triviality of det
(
P

G/K
M

)
, we see that the

determinant line bundle of PM equals

det
(
PM

)
= G×K det

(
PN

)
.

In particular, if the determinant line bundle of PN is a Spinc-prequantum line
bundle L2ν → N , then

det
(
PM

)
= G×K L2ν = Lω (24)

is the Spinc-prequantum line bundle on M constructed in Subsection 3.1.

4 Quantisation commutes with induction

Our proof that quantisation commutes with reduction for semisimple groups is
a reduction to the case of compact groups. This reduction is possible because
of the ‘quantisation commutes with induction’ result in this section (Theorem
4.5). It is analogous to Theorem 7.5 from [35]. After stating this result, we show
how, together with the quantisation commutes with reduction result for the
compact case, it implies Theorem 1.9. Our proof that quantisation commutes
with induction is based on naturality of the assembly map for the inclusion
K ↪→ G (Theorem 4.6). This proof is outlined in Subsection 4.4, with details
given in Sections 5 and 6.

4.1 The sets CSEHamPS(G) and CSEHamPS(K)

We first restate the results of Sections 2 and 3 in a way that will allow us to
draw a ‘quantisation commutes with induction’ diagram.
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Definition 4.1. The set SEHamP(G) of Hamiltonian G-actions with momen-
tum map values in the strongly elliptic set, with Spinc-prequantisations, consists
of classes of sextuples (M, ω, ΦM , L2ω, (−,−)L2ω ,∇M ), where

• (M, ω) is a symplectic manifold, equipped with a symplectic G-action;

• ΦM : M → g∗ is a momentum map for this action, and ΦM (M) ⊂ g∗se;

• (
L2ω, (−,−)L2ω .∇M

)
is a G-equivariant Spin-quantisation of (M,ω).

Two classes [M, ω, ΦM , L2ω, (−,−)L2ω ,∇M ] and [M ′, ω′, ΦM ′
, L2ω′ , (−,−)L2ω′ ,∇M ′

]
of such sextuples are identified if there is an equivariant symplectomorphism
ϕ : M → M ′ such that ϕ∗ΦM ′

= ΦM , ϕ∗L2ω′ = L2ω and ϕ∗(−,−)L2ω′ = (−,−
)L2ω . We do not require ϕ to relate the connections ∇M and ∇M ′

to each other.
For the purpose of quantisation, it is enough that it relates their curvatures by
ϕ∗R∇M′ = R∇M , which follows from the facts that ϕ is a symplectomorphism,
and that ∇M and ∇M ′

are prequantum connections.
Analogously, SEHamP(K) is the set of classes [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N ],

where (N, ν) is a Hamiltonian K-manifold, with momentum map ΦN , with
image in k∗se, and (L2ν , (−,−)L2ν ,∇N ) is a K-equivariant Spinc-prequantisation
of (N, ν). The equivalence relation between these classes is the same as before.

Using this definition, we can summarise the results of Subsections 2.2, 2.3,
2.4 and 3.1 as follows:

Theorem 4.2. There are well-defined maps

H-IndG
K : SEHamP(K) → SEHamP(G)

and
H-CrossG

K : SEHamP(G) → SEHamP(K),

given by

H-IndG
K [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N ] = [M, ω, ΦM , L2ω, (−,−)L2ω ,∇M ]

as in Subsections 2.2 and 3.1, and

H-CrossG
K [M,ω, ΦM , L2ω, (−,−)L2ω ,∇M ] = [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N ]

as in Subsections 2.3 and 3.1. They are each other’s inverses.

To state our ‘quantisation commutes with reduction’ result, we need slightly
different sets from SEHamP(G) and SEHamP(K). For these sets we only have
an induction map, and we do not know if it is possible to define a suitable
cross-section map.

Definition 4.3. The set CSEHamPS(G) of cocompact Hamiltonian G-actions
on complete manifolds, with momentum map values in the strongly elliptic set,
with Spinc-prequantisations and Spinc-structures, consists of classes of septuples
(M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ), with (M, ω, ΦM , L2ω, (−,−)L2ω ,∇M ) as
in Definition 4.1, M/G compact, and PM a G-equivariant Spinc-structure on
M , such that
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• M is complete in the Riemannian metric induced by PM ;

• the determinant line bundle of PM is isomorphic to L2ω.

The equivalence relation is the same as in Definition 4.1. There is no need
to incorporate the Spinc-structures into this equivalence relation, besides the
condition on the determinant line bundles of these structures that is already
present.

The set CSEHamPS(K) is defined analogously. In this case, the condition
that N/K is compact is equivalent to compactness of N .

For these sets, we have the induction map

H-IndG
K : CSEHamPS(K) → CSEHamPS(G), (25)

with

H-IndG
K [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] = [M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ],

as defined in Subsections 2.2, 3.1 and 3.2.

4.2 Quantisation commutes with induction

Consider an element [M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ] ∈ CSEHamPS(G).
Using a connection on the spinor bundle associated to PM , we can define the
Spinc-Dirac operator /DL2ω

M on M , as in Subsection 1.1. In Definition 1.4, we
defined the quantisation of the action of G on (M,ω) as the image of the K-
homology class of /DL2ω

M under the analytic assembly map:

QG
Spin(M, ω) = µG

M

[
/DL2ω

M

]
.

as we noted before, this definition does not depend on the choice of connection
on the spinor bundle.

Definition 4.4. The quantisation map

QG
Spin : CSEHamPS(G) → K0(C∗r (G))

is defined by

QG
Spin[M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ] = µG

M

[
/D

L2ω

M

]
.

Analogously, we have the quantisation map

QK
Spin : CSEHamPS(K) → K0(C∗r K)

given by

QK
Spin[N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] = µK

N

[
/D

L2ν

N

]
,

which corresponds to K-index /D
L2ν

N ∈ R(K).
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Using the Dirac induction map (6) and the Hamiltonian induction map (25),
we can now state the following result:

Theorem 4.5 (Quantisation commutes with induction). The following diagram
commutes:

CSEHamPS(G)
QG

Spin // K0(C∗r (G))

CSEHamPS(K)
QK

Spin //

H-IndG
K

OO

R(K).

D-IndG
K

OO
(26)

This is the central result of this paper. We will outline its proof in Subsection
4.4, and fill in the details in Sections 5 and 6.

4.3 Corollary: [Q,R] = 0 for semisimple groups

As announced, we derive Theorem 1.9 from Theorem 4.5 and the fact that
Spin-quantisation commutes with reduction in the compact case (Theorem 1.3).

Proof of Theorem 1.9. Let G, K, (M, ω), ΦM = Φ, L2ω = L, (−,−)L2ω = (−
,−)L and ∇M = ∇ be as in Theorem 1.9. Set

(N, ν, ΦN , L2ν , (−,−)L2ν ,∇N ) := H-CrossG
K(M, ω, ΦM , L2ω, (−,−)L2ω ,∇M ).

Let PN → N be a K-equivariant Spinc-structure on N , with determinant line
bundle L2ν . Let PM → M be the induced Spinc-structure on M , as described
in Subsection 3.2. Since the determinant line bundle of PM is L2ω, by (24) and
part (ii) of Lemma 3.5, we have the elements

[N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(K);

[M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ] ∈ CSEHamPS(G).

By Proposition 2.14, we have

H-IndG
K [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] = [M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ].

Now let H and λ be as in Theorem 1.9. Then by Theorem 4.5 and Lemma
1.5, and the fact that the assembly map is the regular index in the compact
case, we have

RHG ◦ µG
M

[
/D

L2ω

M

]
= RHG ◦D-IndG

K(K-index /D
L2ν

N )

= (−1)dim G/K [K-index /D
L2ν

N : Vλ−ρc ].

Because Spin-quantisation commutes with reduction for the action of K on N
(Theorem 1.3), we have

[K-index /D
L2ν

N : Vλ−ρc ] = QSpin

(
Nλ, ωλ

)

if −iλ ∈ ΦN (N), and zero otherwise. Recall that N =
(
ΦM

)−1(k∗), so that
−iλ ∈ ΦN (N) if and only if −iλ ∈ ΦM (M). Furthermore, note that Gµ ⊂ K
for all µ ∈ t∗+ \ ncw, so that Gµ = Kµ for such µ. Therefore Nλ = Mλ, which
completes the proof. ¤
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4.4 Outline of the proof

The most important ingredient of the proof of Theorem 4.5 is Theorem 4.6,
‘naturality of the assembly map for the inclusion of K into G’.

As before, let K < G be a maximal compact subgroup. Let N be a smooth
manifold, equipped with a K-action. Let M := G ×K N be the quotient of
G×N by the K-action given by

k · (g, n) = (gk−1, kn),

for k ∈ K, g ∈ G and n ∈ N . Because this action is proper and free, M is a
smooth manifold. Left multiplication on the factor G induces an action of G on
M .

Theorem 4.6 (Naturality of the assembly map for K ↪→ G). The map K-IndG
K ,

defined by commutativity of the left hand side of diagram (28), makes the fol-
lowing diagram commutative:

KG
0 (M)

µG
M // K0(C∗r (G))

KK
0 (N)

µK
N //

K-IndG
K

OO

R(K).

D-IndG
K

OO
(27)

This result is analogous to Theorem 4.1 from [1], which is used by Paradan in
[35] to reduce the Guillemin–Sternberg conjecture for compact groups to certain
subgroups. Our proof of Theorem 1.9 is analogous to this part of Paradan’s
work.

The reason why Theorem 4.6 helps us to prove Theorem 4.5 is the fact that
the map K-IndG

K that appears in Theorem 4.6 relates the Dirac operators /D
L2ν

N

and /D
L2ω

M to each other:

Proposition 4.7. The map K-IndG
K maps the K-homology class of the operator

/D
L2ν

N to the class of /D
L2ω

M .

Combining Theorem 4.6 and Proposition 4.7, we obtain a proof of Theorem
4.5:

Proof of Theorem 4.5. Let

x = [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(K)

be given, and write

[M, ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ] := H-IndG
K(x).
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Then by Proposition 4.7 and Theorem 4.6,

QG
Spin

(
H-IndG

K(x)
)

= µG
M

[
/D

L2ω

M

]

= µG
M ◦K-IndG

K

[
/D

L2ν

N

]

= D-IndG
K ◦µK

N

[
/D

L2ν

N

]

= D-IndG
K

(
QK

Spin(x)
)
.

¤
It remains to prove Theorem 4.6 and Proposition 4.7. These proofs will be given
in Sections 5 and 6.

5 Naturality of the assembly map

We will prove Theorem 4.6 by decomposing diagram (27) as follows:

KG
0 (M)

µG
M // K0(C∗r (G))

K
G×∆(K)
0 (G×N)

µ
G×∆(K)
G×N //

V∆(K)

OO

K0(C∗r (G×K))

R0
K

OO

KG×K×K
0 (G×N)

µG×K×K
G×N //

ResG×K×K
G×∆(K)

OO

K0(C∗r (G×K ×K))

ResG×K×K
G×∆(K)

OO

KK
0 (N)

µK
N

//

K-IndG
K

99

[/DG,K ]×−
OO

R(K).

D-IndG
K

ee

µG×K
G [/DG,K ]×−

OO

(28)

In this diagram, all the horizontal maps involving the letter µ are analytic
assembly maps. The symbol ‘×’ denotes the Kasparov product, and ∆(K) is
the diagonal subgroup of K × K. The map D-IndG

K was defined in (7). The
other maps will be defined in the remainder of this chapter.

The K-homology class [/DG,K ] ∈ KG×K
0 (G) is defined as follows. Note that

the Spin-Dirac operator on G/K is the operator /DG/K = /DC, with C the trivial
K-representation, and /DC as in (5). Let pG : G → G/K be the quotient map,
let SG/K := G ×K ∆p be the spinor bundle on G/K, and consider the trivial
vector bundle p∗GSG/K = G × ∆dp → G. Let /DG,K be the operator on this
bundle given by the same formula (5) as the operator /D

V , with V = C the
trivial representation. This operator satisfies

/DG,K(p∗Gs) = p∗G
(
/DCs

)
,
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for all sections s of SG/K → G/K. We will use the fact that it is equivariant
with respect to the action of G×K on G×∆dp defined by

(g, k) · (g′, δ) = (gg′k−1, Ãd(k) · δ),
for g, g′ ∈ G, k ∈ K and δ ∈ ∆dp . It is elliptic (see Lemma 6.6), and therefore
defines a class [/DG,K ] ∈ KG×K

0 (G).
We will distinguish between the different subdiagrams of (28) by calling

them the ‘left-hand’, ‘top’, ‘middle’, ‘bottom’ and ‘right-hand’ diagrams. Com-
mutativity of the left-hand diagram is the definition of the map K-IndG

K . In this
chapter we will prove that the other diagrams commute as well, thus giving a
proof of Theorem 4.6.

5.1 The top diagram: naturality of the assembly map for
epimorphisms

In this subsection, we suppose that G is a locally compact Hausdorff group,
and that K C G is a compact normal subgroup of G. Furthermore, let X
be a locally compact, Hausdorff, proper G-space such that X/G is compact.
Commutativity of the the top diagram is a special case of commutativity of the
following diagram:

K
G/K
0 (X/K)

µ
G/K

X/K

//

µ
G/K

X/K

**
K0(C∗(G/K))

λG/K

// K0(C∗r (G/K))

KG
0 (X)

µG
X //

VK

OO

µG
X

44
K0(C∗(G))

λG //

R0
K

OO

K0(C∗r (G)).

R0
K

OO
(29)

We have used the same notation for the assembly map with respect to the full
group C∗-algebra as for the assembly map with respect to the reduced one.

The maps λG/K and λG are by definition induced by the maps

C∗G → C∗r G;
C∗(G/K) → C∗r (G/K),

defined by continuously extending the identity maps on Cc(G) and Cc(G/K),
respectively. It is not hard to check that the right hand diagram in (29) com-
mutes.

Commutativity of the left hand diagram in (29) is a special case of naturality
of the assembly map for epimorphisms. This is proved in Valette’s part of [34] for
discrete groups. In [22], it is indicated how to generalise this result to possibly
nondiscrete groups. The notation ‘VK ’ for the map in the left hand diagram is
used in [22].
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It is a striking feature of our version of naturality of the assembly map for
the monomorphism K ↪→ G that it actually relies on the epimorphism case in
this way.

5.2 The middle diagram: restriction to subgroups

In the middle diagram of (28), the map

ResG×K×K
G×∆(K) : KG×K×K

0 (G×N) → K
G×∆(K)
0 (G×N)

is simply given by restricting representations and actions of G × K × K to
G×∆(K). The other restriction map,

ResG×K×K
G×∆(K) : K0(C∗r (G×K ×K)) → K0(C∗r (G×∆(K))), (30)

is harder to define. (The restriction map Cc(G × K × K) → Cc(G × ∆(K))
is not continuous in the norms of the reduced group C∗-algebras involved, for
example.)

We define the map (30) using the Künneth formula. Since G is a connected
Lie group (in particular, it is an almost connected locally compact topological
group), it satisfies the Baum–Connes conjecture with arbitrary G-trivial coef-
ficients (see [10], Corollary 0.5). By Corollary 0.2 of [10], the algebra C∗r (G)
therefore satisfies the Künneth formula. In particular,

K0(C∗r (G×K ×K)) ∼= K0(C∗r (G)⊗min C∗r (K ×K))
∼= K0(C∗r (G))⊗K0(C∗r (K ×K))
∼= K0(C∗r (G))⊗R(K ×K).

Here we have used the fact that the representation ring R(K ×K) is torsion-
free, and the fact that C∗r (G1) ⊗min C∗r (G2) ∼= C∗r (G1 ⊗ G2) for all locally
compact Hausdorff groups G1 and G2. Analogously, we have an isomorphism
K0(C∗r (G×K)) ∼= K0(C∗r (G))⊗R(K).

The isomorphism is given by the Kasparov product. This product is defined
as the composition

KK0(C, C∗r (G))⊗KK0(C, C∗r (K ×K))
1⊗τC∗r (G)−−−−−−→

KK0(C, C∗r (G))⊗KK0(C∗r (G), C∗r (G)⊗min C∗r (K ×K))
×C∗r (G)−−−−−→

KK0(C, C∗r (G)⊗min C∗r (K ×K)), (31)

where τC∗r (G) is defined by tensoring from the left by C∗r (G), and × denotes the
Kasparov product (see [8], Chapter 18.9). Let

ResK×K
∆(K) : R(K ×K) → R(∆(K)) = R(K)

be the usual restriction map to the diagonal subgroup. We define (30) as the
map

1K0(C∗r (G)) ⊗ ResK×K
∆(K) : K0(C∗r (G))⊗R(K ×K) → K0(C∗r (G))⊗R(K).
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Commutativity of the middle diagram now follows from

Lemma 5.1. Let X be a locally compact, Hausdorff, proper G×K-space with
compact quotient, and let Y be a compact, Hausdorff K-space. Then the follow-
ing diagram commutes:

K
G×∆(K)
0 (X × Y )

µ
G×∆(K)
X×Y // K0(C∗r (G×K))

KG×K×K
0 (X × Y )

ResG×K×K
G×∆(K)

OO

µG×K×K
X×Y // K0(C∗r (G×K ×K)).

ResG×K×K
G×∆(K)

OO

Proof. Let a = [H, F, π] ∈ KG×K×K
0 (X × Y ), b = [EG, FG] ∈ K0(C∗r (G)) and

[V ] ∈ R(K ×K) be given, such that

µG×K×K
X×Y (a) = b× [C∗r (G)⊗ V ] = [EG ⊗ V, FG ⊗ 1V ] ∈ K0(C∗r (G×K ×K)).

Because the assembly and restriction maps are Z-module homomorphisms, it is
sufficient to prove the claim in this case where the image of a is a simple tensor.

If we write

[E , FE ] := µG×K×K
X×Y (a) ∈ K0(C∗r (G×K ×K));

[E ′, FE′ ] := µ
G×∆(K)
X×Y ◦ ResG×K×K

G×∆(K)(a) ∈ K0(C∗r (G×K)),

then the operators FE and FE′ coincide on the dense mutual subspace Hc of E
and E ′. It is therefore enough to prove that

E ′ ∼= EG ⊗C
(
V |∆(K)

)

as Hilbert C∗r (G×K)-modules.
Using the usual choice of representatives of the classes b and [E , FE ] we have

an isomorphism of Hilbert C∗r (G×K ×K)-modules

ψ : E ∼=−→ EG ⊗ V.

Define the map
ϕ : E ′ ∼=−→ EG ⊗

(
V |∆(K)

)

by ϕ|Hc = ψ|Hc , and continuous extension. The map ϕ is well-defined, and
indeed an isomorphism, if it is a homomorphism of Hilbert C∗r (G×K)-modules.
To show that ϕ preserves the C∗r (G×K)-valued inner products, let ξ1, ξ2 ∈ Hc

be given, and suppose that ϕ(ξj) = ej⊗vj ∈ EG⊗V for j = 1, 2. (By linearity of
ϕ, it is indeed enough to consider the case where the ϕ(ξj) are simple tensors.)
Then for all g ∈ G and k ∈ K,

(
ϕ(ξ1), ϕ(ξ2)

)
EG⊗V |∆(K)

(g, k) = (e1, e2)EG(g)
(
v1, (k, k) · v2

)
V

=
(
ψ(ξ1), ψ(ξ2)

)
EG⊗V

(g, k, k)

= (ξ1, ξ2)E(g, k, k),
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because ψ is an isomorphism of Hilbert C∗(G × K × K)-modules. The latter
expression equals

(
ξ1, (g, k, k) · ξ2

)
H = (ξ1, ξ2)E′(g, k),

which shows that ϕ preserves the inner products.
Finally, because ψ is a homomorphism of C∗r (G×K×K)-modules, the map

ϕ is a homomorphism of C∗r (G×K)-modules on Hc, and hence on all of E ′.

5.3 The bottom diagram: multiplicativity of the assembly
map

Commutativity of the bottom diagram is a special case of the multiplicativ-
ity property of the assembly map that we will prove in this subsection. This
property generalises multiplicativity of the index with respect to Atiyah’s ‘sharp
product’ of elliptic operators, as described in [1], Theorem 3.5. In this subsec-
tion, we will denote the tensor product of Hilbert C∗-modules by ⊗̂, to emphasise
the difference with the algebraic tensor product ⊗.

For this subsection, let G1 and G2 be locally compact Hausdorff topological
groups, acting properly on two locally compact metrisable spaces X1 and X2,
respectively. Suppose X1/G1 and X2/G2 are compact. Consider the Kasparov
product maps

KG1
0 (X1)⊗KG2

0 (X2)
×−→ KG1×G2

0 (X1 ×X2);

K0(C∗(r)(G1))⊗K0(C∗(r)(G2))
×−→ K0(C∗(r)(G1 ×G2)). (32)

Here the symbol C∗(r) denotes either the full or the reduced group C∗-algebra,
and we have used the C∗-algebra isomorphisms

C0(X1)⊗ C0(X2) ∼= C0(X1 ×X2)

for all locally compact Hausdorff spaces X1 and X2, and

C∗(G1)⊗max C∗(G2) ∼= C∗(G1 ×G2);
C∗r (G1)⊗min C∗r (G2) ∼= C∗r (G1 ×G2).

for locally compact Hausdorff groups G1 and G2.
Analogously to (31), the Kasparov product (32) is actually the composition

KK0(C, C∗(r)(G1))⊗KK0(C, C∗(r)(G2))
1⊗τC∗(r)(G1)

−−−−−−−−→

KK0(C, C∗(r)(G1))⊗KK0(C∗(r)(G1), C∗(r)(G1)⊗ C∗(r)(G2))
×C∗(r)(G1)

−−−−−−→
KK0(C, C∗(r)(G1)⊗ C∗(r)(G2)) = KK0(C, C∗(r)(G1 ×G2)). (33)

The tensor product denotes the maximal tensor product in the case of full C∗-
algebras, and the minimal tensor product for reduced C∗-algebras.
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Theorem 5.2 (Multiplicativity of the assembly map). If X1 and X2 are metris-
able, then for all aj ∈ K

Gj

0 (Xj), we have

µG1
X1

(a1)× µG2
X2

(a2) = µG1×G2
X1×X2

(a1 × a2) ∈ K0(C∗(r)(G1 ×G2)).

Here the assembly maps are defined with respect to either the full of the
reduced group C∗-algebras. We suppose X1 and X2 to be metrisable, because
the C∗-algebras C0(X1) and C0(X2) are then separable, so that we can use
Baaj and Julg’s unbounded description of the Kasparov product. Theorem 5.2
may well be true for non-metrisable spaces, but we will only apply it to smooth
manifolds anyway.

The assembly map in the unbounded picture

In the proof of Theorem 5.2, we will use the unbounded picture of KK-theory
(see [4]), because of the easy form of the Kasparov product in this setting. The
construction of the unbounded assembly map given below works for full group
C∗-algebras, so the following proof applies only to this case. Theorem 5.2 for
reduced group C∗-algebras can then be deduced using the maps λG1 and λG2

defined in Subsection 5.1.
For full group C∗-algebras, the assembly map in the unbounded picture is

defined in Kucerovsky’s appendix to [34], in the following way. Let G be a
second countable, locally compact Hausdorff group, acting properly on a locally
compact Hausdorff space X, with compact quotient. The assembly map in the
unbounded picture is given by

µG
X(H, D, π) = (E , DE) ∈ Ψ0(C, C∗G), (34)

for all (H, D, π) ∈ ΨG
0 (C0(X),C). The Hilbert C∗(G)-module E is defined as

usual for the assembly map. The definition of the operator DE on E is more
involved.

First, let H̃ be the auxiliary Hilbert C∗(G)-module defined as the completion
of the Hilbert Cc(G)-module Cc(G,H) with respect to the Cc(G) ⊂ C∗(G)-
valued inner product

(ϕ,ψ)H̃(g) :=
∫

G

(
ϕ(g′), ψ(g′g)

)
H dg′, (35)

where ϕ,ψ ∈ Cc(G,H), g ∈ G, and dg′ is a Haar measure on G. Next, let
h ∈ Cc(X) be a function such that for all x ∈ X,

∫

G

h2(gx) dg = 1

Let p ∈ Cc(X ×G) be the projection given by

p(x, g) := h(x)h(g−1x). (36)
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This function is compactly supported by properness of the action of G on X.
Let π̃ : Cc(X ×G) → B(H̃) be the representation given by

(
π̃(f)ϕ

)
(g) =

∫

G

π(f(−, g′))g′ · ϕ(g′−1g) dg′,

for f ∈ Cc(X × G), ϕ ∈ Cc(G,H) and g ∈ G. (The representation π̃ can
actually be extended to the crossed product C0(X)oG, but we will not use this
extension.)

Then the map
α : π̃(p)Cc(G,H) → Hc,

given by

π̃(p)ϕ 7→
∫

G

g−1π(h)ϕ(g) dg,

preserves the C∗(G)-valued inner products and the C∗(G)-module structures on
H̃ and on E , and induces an isomorphism π̃(p)H̃ ∼= E of Hilbert C∗(G)-modules.
We will write Ẽ := π̃(p)H̃.

To define the operator DE on E we first consider an operator DẼ on Ẽ . This
operator is defined as the closure of the operator D̃ on Ẽ , given by

D̃
(
π̃(p)ϕ

)
:= π̃(p)

(
D ◦ ϕ

)
, (37)

on the domain dom D̃ := π̃(p)Cc(G, domD). We finally set

DE := αDẼα
−1,

on the domain domDE = α
(
dom DẼ

)
.

In the proof of Theorem 5.2, we will actually use the following definition of
the assembly map:

µ̃G
X(H, D, π) :=

(Ẽ , DẼ
) ∈ Ψ0(C, C∗G), (38)

which gives the same class in K0(C∗(G)) as (34), because α is an isomorphism.
Kucerovsky’s proof that the above constructions give a well-defined descrip-

tion of the assembly map in the unbounded picture is valid for discrete groups,
but it admits a straightforward generalisation to possibly nondiscrete (unimod-
ular) ones. One simply replaces sums by integrals, and uses the fact that the
integral over a compact, finite Borel space of a continuous family of adjointable
operators is again an adjointable operator. In addition, in the proof of Lemma
2.15 in [34], one takes β−1(π(f)η) = π̃(p)ψ, with ψ(g) = π(h)π(g ·f)g ·η (where
the β in [34] is our α). This reduces to Valette’s β−1(π(f)η) = π̃(p)π̃(〈h|f〉)η̄
in the discrete case.

Proof of Theorem 5.2

For j = 1, 2, let
aj = (Hj , Dj , πj) ∈ ΨGj

0 (C0(Xj),C)
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be given. Then
µ̃

Gj

Xj
(aj) =

(Ẽj , DẼj

)
,

as in (38). The product of µ̃G1
X1

(a1) and µ̃G2
X2

(a2) is

µ̃G1
X1

(a1)× µ̃G2
X2

(a2) = (Ẽ1⊗̂Ẽ2, DẼ1⊗̂Ẽ2) ∈ Ψ0(C, C∗(G1 ×G2)). (39)

Here DẼ1⊗̂Ẽ2 is the closure of the operator

DẼ1 ⊗ 1Ẽ2 + 1Ẽ2 ⊗DẼ2 ,

on the domain domDẼ1 ⊗ dom DẼ2 .
On the other hand, the product a1 × a2 is

(H1⊗̂H2, DH1⊗̂H2
, π) ∈ ΨG1×G2

0 (C0(X1 ×X2),C), (40)

with DH1⊗̂H2
the closure of the operator

D1 ⊗ 1H2 + 1H1 ⊗D2

on domD1 ⊗ domD2. Furthermore, we have abbreviated π := π1 ⊗ π2 for later
convenience. Applying the unbounded assembly map µ̃G1×G2

X1×X2
to the cycle (40),

we obtain (Ẽ , DẼ
) ∈ Ψ0(C, C∗(G1 ×G2)), (41)

where Ẽ := π̃(p)H̃1⊗̂H2. Here p := p1⊗p2, with pj the projection in Cc(Xj×Gj)
as defined in (36). Furthermore, the operator DẼ is the closure of the operator
D̃H1⊗̂H1

, as defined in (37), with D = DH1⊗̂H2
.

First, let us show that Ẽ = Ẽ1⊗̂Ẽ2. Note that H̃1⊗̂H2 is the completion of
the space Cc(G1 × G2,H1⊗̂H2) with respect to the C∗(G1 × G2)-valued inner
product (−,−)H̃1⊗̂H2

, defined analogously to (35). On the other hand,

Ẽ1⊗̂Ẽ2 = π̃1(p1)H̃1⊗̂π̃2(p2)H̃2 = π̃(p)H̃1⊗̂H̃2,

since it is not hard to check that π̃(f1 ⊗ f2) = π̃1(f1) ⊗ π̃2(f2) for all fj ∈
Cc(Xj×Gj). Here H̃1⊗̂H̃2 is the completion of Cc(G1,H1)⊗Cc(G2,H2) in the
C∗(G1)⊗ C∗(G2) ∼= C∗(G1 ×G2)-valued inner product given by

(
ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2

)
H̃1⊗̂H̃2

= (ϕ1, ψ1)H̃1
⊗ (ϕ2, ψ2)H̃2

,

for ϕj , ψj ∈ Cc(Gj ,Hj). It follows directly from the definition (35) of the inner
products (−,−)H̃1⊗̂H2

and (−,−)H̃1⊗̂H̃2
, that they coincide on the subspace

Cc(G1,H1)⊗ Cc(G2,H2) ⊂ Cc(G1 ×G2,H1⊗̂H2).
We claim that the completion of Cc(G1,H1) ⊗ Cc(G2,H2) with respect to

this inner product contains the space Cc(G1 × G2,H1⊗̂H2). Then we indeed

have H̃1⊗̂H2
∼= H̃1⊗̂H̃2, and hence

Ẽ = π̃(p)
(H̃1⊗̂H2

) ∼= π̃(p)
(H̃1⊗̂H̃2

)
= Ẽ1⊗̂Ẽ2,
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as Hilbert C∗(G1 × G2)-modules. The proof of this claim is based on the in-
equality

‖(ϕ,ϕ)H̃1⊗̂H̃2
‖C∗(G1×G2) ≤ ‖ϕ‖2

L1(G1×G2,H1⊗̂H2)

:=
(∫

G1×G2

‖ϕ(g1, g2)‖H1⊗̂H2
dg1 dg2

)2

,
(42)

for all ϕ ∈ Cc(G1,H1) ⊗ Cc(G2,H2). This inequality is proved in Lemma 5.3
below. Because of this estimate, the completion of Cc(G1,H1) ⊗ Cc(G2,H2)
with respect to the inner product (−,−)H̃1⊗̂H̃2

contains the completion of this
tensor product in the norm ‖·‖L1(G1×G2,H1⊗̂H2)

, which in turn contains Cc(G1×
G2,H1⊗̂H2).

Next, we prove that the two unbounded cycles (39) and (41) define the same
class in KK-theory. By Lemma 10 and Corollary 17 from [26], this follows if we
can show that

domDẼ1⊗̂Ẽ2 ⊂ domDẼ , and (43)

DẼ |dom DẼ1⊗̂Ẽ2
= DẼ1⊗̂Ẽ2 . (44)

We first prove (43). Note that the domain of DẼ1⊗̂Ẽ2 is the completion of
domDẼ1 ⊗ dom DẼ2 in the norm ‖ · ‖DẼ1⊗̂Ẽ2

, given by

‖ϕ1⊗ϕ2‖2DẼ1⊗̂Ẽ2 := ‖ϕ1⊗ϕ2‖2H̃1⊗̂H̃2
+‖DẼ1ϕ1⊗ϕ2 +ϕ1⊗DẼ2ϕ2‖2H̃1⊗̂H̃2

, (45)

for all ϕj ∈ domDẼj
. The domain of DẼj

in turn is the completion of π̃j(pj)Cc(Gj , domDj)
in the norm ‖ · ‖DẼj

, defined analogously to (45).
To prove (43), we consider the subspace

V := π̃1(p1)Cc(G1, domD1)⊗ π̃2(p2)Cc(G2, domD2)

of domDẼ1 ⊗ domDẼ2 . We begin by showing that the completion of V in the
norm ‖ · ‖DẼ1⊗̂Ẽ2

contains dom DẼ1 ⊗ domDẼ2 . This will imply that

V = dom DẼ1 ⊗ domDẼ2
= dom DẼ1⊗̂Ẽ2 ,

(46)

with completions taken in the norm ‖ · ‖DẼ1⊗̂Ẽ2
.

For j = 1, 2, let ϕj ∈ domDẼj
be given. Let

(
ϕk

j

)∞
k=1

be a sequence in
π̃j(pj)Cc(Gj ,dom Dj) such that

lim
k→∞

‖ϕk
j − ϕj‖DẼj

= 0.

We claim that
lim

k→∞

∥∥ϕk
1 ⊗ ϕk

2 − ϕ1 ⊗ ϕ2

∥∥
DẼ1⊗̂Ẽ2

= 0, (47)
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which implies that ϕ1 ⊗ ϕ2 lies in the completion of V in the norm ‖ · ‖DẼ1⊗̂Ẽ2
.

This claim is proved in Lemma 5.4 below. General elements of dom DẼ1 ⊗
domDẼ2 are (finite) sums of simple tensors like ϕ1 ⊗ ϕ2, and can be approxi-
mated by sums of sequences like

(
ϕk

1 ⊗ ϕk
2

)∞
k=1

. Hence the completion of V in
the norm ‖ · ‖DẼ1⊗̂Ẽ2

indeed contains dom DẼ1 ⊗ dom DẼ2 , so that (46) holds.
Finally, observe that dom DẼ is the completion of π(p)Cc(G1×G2,dom DH1⊗̂H2

)
in the norm ‖ · ‖DẼ , which is again defined analogously to (45). Since V is con-
tained in π(p)Cc(G1×G2, domDH1⊗̂H2

), the completion of V in the norm ‖·‖DẼ
is contained in dom DẼ . Furthermore, the operators DẼ and DẼ1⊗̂Ẽ2 coincide
on V , since their restrictions to V are both given by

π̃1(p1)ϕ1 ⊗ π̃2(p2)ϕ2 7→ π̃1(p1)D1 ◦ ϕ1 ⊗ π̃2(p2)ϕ2 + π̃1(p1)ϕ1 ⊗ π̃2(p2)D2 ◦ ϕ2.

This implies that the norms ‖ · ‖DẼ and ‖ · ‖DẼ1⊗̂Ẽ2
are the same on V , so that

the completion of V with respect to ‖ · ‖DẼ equals the completion of V with
respect to ‖ · ‖DẼ1⊗̂Ẽ2

, which equals dom DẼ1⊗̂Ẽ2 , by (46). We conclude that

domDẼ1⊗̂Ẽ2 = V ⊂ domDẼ ,

as claimed.
Claim (44) now follows, because by (46), the restriction of DẼ to dom DẼ1⊗̂Ẽ2

is the closure of DẼ |V , which equals DẼ1⊗̂Ẽ2 |V . The closure of the latter operator
is DẼ1⊗̂Ẽ2 , again by (46), and we are done. ¤

Lemma 5.3. The inequality (42) holds for all ϕ ∈ Cc(G1,H1)⊗ Cc(G2,H2).

Proof. For such ϕ, we have

‖(ϕ,ϕ)H̃1⊗̂H̃2
‖C∗(G1×G2) ≤ ‖(ϕ,ϕ)H̃1⊗̂H̃2

‖L1(G1×G2)

=
∫

G1×G2

∣∣∣∣
∫

G1×G2

(
ϕ(g′1, g

′
2), ϕ(g′1g1, g

′
2g2)

)
H1⊗̂H2

dg′1 dg′2

∣∣∣∣ dg1 dg2

≤
∫

G1×G2

∫

G1×G2

∣∣∣
(
ϕ(g′1, g

′
2), ϕ(g′1g1, g

′
2g2)

)
H1⊗̂H2

∣∣∣ dg′1 dg′2 dg1 dg2

≤
∫

G1×G2

∫

G1×G2

‖ϕ(g′1, g
′
2)‖H1⊗̂H2

‖ϕ(g′1g1, g
′
2g2)‖H1⊗̂H2

dg′1 dg′2 dg1 dg2,

by the Cauchy-Schwartz inequality. Because of left invariance of the Haar mea-
sures dg1 and dg2, the latter expression is the square of the L1-norm of ϕ.

Lemma 5.4. The limit (47) equals zero.

Proof. Since for j = 1, 2, we have

0 = lim
k→∞

‖ϕk
j − ϕj‖2DẼj

= lim
k→∞

(
‖ϕk

j − ϕj‖2H̃j
+ ‖DẼj

ϕk
j −DẼj

ϕj‖2H̃j

)
, (48)
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both terms in (48) tend to zero as k → ∞. Let us rewrite (47) in a way that
allows us to use this fact. By definition of the norm ‖ · ‖DẼ1⊗̂Ẽ2

, we have

∥∥ϕk
1 ⊗ ϕk

2 − ϕ1 ⊗ ϕ2

∥∥2

DẼ1⊗̂Ẽ2
=

∥∥ϕk
1 ⊗ ϕk

2 − ϕ1 ⊗ ϕ2

∥∥2

H̃1⊗̂H̃2
+

∥∥DẼ1ϕ
k
1 ⊗ ϕk

2 −DẼ1ϕ1 ⊗ ϕ2 + ϕ̃k
1 ⊗DẼ2ϕ

k
2 − ϕ1 ⊗DẼ2ϕ2

∥∥2

H̃1⊗̂H̃2
.

Using the triangle inequality and the fact that ‖ψ1⊗ψ2‖H̃1⊗̂H̃2
≤ ‖ψ1‖H̃1

‖ψ1‖H̃1

for all ψj ∈ H̃j (this follows from the fact that any C∗-norm on a tensor product
is subcross, see [45], Corollary T.6.2), we see that this number is less than or
equal to

(
‖ϕk

1 − ϕ1‖H̃1
‖ϕk

2‖H̃2
+ ‖ϕ1‖H̃1

‖ϕk
2 − ϕ2‖H̃2

)2

+
(
‖DẼ1ϕ

k
1 −DẼ1ϕ1‖H̃1

‖ϕk
2‖+ ‖DẼ1ϕ1‖H̃1

‖ϕk
2 − ϕ2‖H̃2

+

‖ϕk
1 − ϕ1‖H̃1

‖DẼ2ϕ
k
2‖H̃2

+ ‖ϕ1‖H̃1
‖DẼ2ϕ

k
2 −DẼ2ϕ2‖H̃2

)2

. (49)

By the observation at the beginning of this proof, all terms in (49) contain a
factor that goes to zero as k →∞. Since the other factors are bounded functions
of k, the claim follows.

5.4 The right-hand diagram: a decomposition of the in-
duction map D-IndG

K

In this subsection, we complete the proof of Theorem 4.6 by proving commuta-
tivity of the right-hand diagram in (28). In this proof, we will use commutativity
of the top, middle and bottom diagrams in the case where N is a point.

But first, we give the following description of the map D-IndG
K . Let V be a

finite-dimensional unitary representation of K, and let /D
V be the Dirac operator

defined in (5). The closure of this operator is an unbounded self-adjoint operator
on the space of L2-sections of EV , which is odd with respect to the Z2-grading.
This space of L2-sections is isomorphic to the space

(
L2(G) ⊗ ∆dp ⊗ V

)K ,
where the K-action is again defined by (3) (with smooth functions replaced by
L2-functions, of course). Let b be a normalising function, so that we have the
class [(

L2(G)⊗∆dp ⊗ V
)K

, b(/DV ), πG/K

] ∈ KG
0 (G/K).

Here πG/K denotes the representation of C0(G/K) on L2(G/K, EV ) as multi-
plication operators.

Lemma 5.5. In this situation, we have

D-IndG
K [V ] = µG

G/K

[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

] ∈ K0(C∗r (G)).
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Proof. Write

[E , FE ] := µG
G/K

[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

]
.

Since the restriction of FE to
(
Cc(G) ⊗∆dp ⊗ V

)K is the restriction of b(/DV )
to this space, we only need to prove that

E =
(
C∗r (G)⊗∆dp ⊗ V

)K (50)

as Hilbert C∗r (G)-modules.
To prove this equality, we note that for all f, f ′ ∈ (L2(G))c and all g ∈ G,

(f, f ′)E(g) = (f, g · f ′)L2(G) =
(
f ∗ (f ′)∗

)
(g),

as one easily computes. This implies that the C∗r G-valued inner product on E
is the same as the one on

(
C∗r (G)⊗∆dp ⊗ V

)K .
The C∗r (G)-module structure of E is given by

h · (f ⊗ δ ⊗ v) =
∫

G

h(g)g · (f ⊗ δ ⊗ v)dg

= (h ∗ f)⊗ δ ⊗ v,

for all h ∈ Cc(G), f ∈ L2(G), δ ∈ ∆dp and v ∈ V . Hence the equality (50)
includes the C∗r (G)-module structure.

Proof of commutativity of the right-hand diagram. Consider the vector bun-
dles V and {0} over a point. Let 0V : V → {0} be the only possible operator
between (the spaces of smooth sections of) these bundles. It defines a class
[0V ] = [V ⊕ {0}, 0V ] ∈ KK

0 (pt), and we have

µK
pt[0V ] = [V ] ∈ R(K).

Now we find that

D-IndG
K [V ] = µG×K×K

G/K

[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

]

by Lemma 5.5,

= µG
G/K ◦ V∆(K) ◦ ResG×K×K

G×∆(K) [/DG,K ⊗ 1V ] (51)

by Corollary 3.13 in [22] and the fact that /D
V is the restriction of /DG,K ⊗ 1V to

K-invariant elements of C∞(G)⊗∆dp⊗V . Corollary 3.13 in [22] was proved for
group actions with a compact orbit space, but the proof given there can easily
be generalised to the general case.

By commutativity of the top, middle and bottom diagrams when N is a
point, (51) equals

= µG
G/K ◦ V∆(K) ◦ ResG×K×K

G×∆(K)

(
[/DG,K ]× [0V ]

)

= R0
K ◦ ResG×K×K

G×∆(K) ◦µG×K
G

(
[/DG,K ]× [V ]

)
.

¤
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Remark 5.6. Supposing that V is irreducible, we could also have applied the
Borel–Weil(–Bott) theorem to realise the class [V ] ∈ R(K) as µK

K/T [/Diζ ], where
iζ is the highest weight of V , and /Diζ is the Dolbeault–Dirac operator on K/T
coupled to the usual line bundle that is used in the Borel–Weil theorem. We
would then have used commutativity of the top, middle and bottom diagrams
for N = K/T .

6 Dirac operators and the map K-IndG
K

This section is devoted to the proof of Proposition 4.7. We will define an oper-

ator /̃D
L2ω

M whose K-homology class is the image of the class of /D
L2ν

N under the
map K-IndG

K . Then we prove some general facts about principal symbols, and

finally we use these facts to show that /D
L2ω

M and /̃D
L2ω

M define the same class in
K-homology, proving Proposition 4.7.

Throughout this section, we will consider a class

[N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(K),

and we will write

[M,ω, ΦM , L2ω, (−,−)L2ω ,∇M , PM ] :=

H-IndG
K [N, ν, ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(G).

6.1 Another Dirac operator on M

Let us construct the differential operator /̃D
L2ω

M mentioned in the introduction
to this section. Just like the Spinc-Dirac operator /DL2ω

M , it acts on sections of
the spinor bundle

SM := PM ×Spinc(dM ) ∆dM
→ M, (52)

associated to the Spinc-structure PM defined in Subsection 3.2.

In the definition of the operator /̃D
L2ω

M , we will use the following decomposi-
tion of the spinor bundle SM :

Lemma 6.1. We have a G-equivariant isomorphism of vector bundles over M ,

SM ∼=
(
(G×∆dp) £ SN

)
/K,

where K acts on (G×∆dp) £ SN by

k · ((g, δp)⊗ sN
)

= (gk−1, Ãd(k)δp)⊗ k · sN ,

for k ∈ K, g ∈ G, δp ∈ ∆dp and sN ∈ SN .
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Proof. We have the following chain of isomorphisms:

SM ∼=
(
P

G/K
M ×U(1) (G×K PN )

)×H ∆dp ⊗∆dN

∼=
(
P

G/K
M ×Spinc(dp) ∆dp

)⊗ (
G×K PN ×Spinc(dN ) ∆dN

)

∼= (G×N ×∆dp)/K ⊗ (G× SN )/K

∼=
(
(G×∆dp) £ SN

)
/K.

(53)

The first isomorphism in (53) is induced by the H-equivariant isomorphism
∆dM

∼= ∆dp ⊗∆dN
.

The second isomorphism is given by
[
p

G/K
M , [g, pN ], δp ⊗ δN

] 7→ [pG/K
M , δp]⊗

[
[g, pN ], δN

]
,

for all p
G/K
M ∈ P

G/K
M , g ∈ G, pN ∈ PN , δp ∈ ∆dp and δN ∈ ∆dN

.
The third isomorphism is the obvious one, given the definitions of P

G/K
M and

SN .
Finally, the fourth isomorphism is a special case of the isomorphism

E/G⊗ F/G ∼= (E ⊗ F )/G,

if H is a group acting freely on a manifold M , and E → M and F → M are
G-vector bundles.

Explicitly, the isomorphism (53) is given by
[
[g, n, a], [g, pN ], δdp ⊗ δN

] 7→ [
(g, aδp)⊗ [pN , δN ]

]
,

for g ∈ G, n ∈ N , a ∈ Spinc(p), pN ∈ PN , δp ∈ ∆dp and δN ∈ ∆dN .

Next, let /DG,K be the operator defined on page 35, and consider the operator

/DG,K ⊗ 1 + 1⊗ /D
L2ν

N : Γ∞
(
G×N, (G×∆dp) £ SN

) →
Γ∞

(
G×N, (G×∆dp) £ SN

)
,

which is odd with respect to the grading on the tensor product (G×∆dp)£SN

induced by the gradings on ∆dp and SN . Because the operators /DG,K and /D
L2ν

N

are K-equivariant, we obtain an operator

/̃D
L2ω

M := (/DG,K ⊗ 1 + 1⊗ /D
L
N )K (54)

on

Γ∞
(
G×N, (G×∆dp) £ SN

)K ∼= Γ∞
(
M,

(
(G×∆dp) £ SN⊗)

/K
)

∼= Γ∞(M,SM ),

by Lemma 6.1.

The importance of the operator /̃D
L2ω

M lies in the following fact:
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Lemma 6.2. The image of the class [/DL2ν

N ] ∈ KK
0 (N) under the map K-IndG

K

is the class of /̃D
L2ω

M in KG
0 (M).

Proof. By Theorem 10.8.7 from [20],5 the Kasparov product [/DG,K ]× [/DL2ν

N ] ∈
KG×K×K

0 (G × N) is the class of the operator /DG,K ⊗ 1 + 1 ⊗ /D
L2ν

N on (G ×
∆dp) £ SN . It then follows from Corollary 3.13 in [22] that the latter class is

mapped to the class of /̃D
L2ω

M .

Therefore, Proposition 4.7 follows if we can prove that /̃D
L2ω

M and /D
L2ω

M define
the same K-homology class. We prove this fact by showing that their principal
symbols are equal.

6.2 Principal symbols

This subsection contains some general facts about the principal symbols of dif-
ferential operators that are constructed from other differential operators. Their
proofs are straightforward.

Tensor products

First, let X and Y be smooth manifolds, and let E → X and F → Y be
vector bundles. Let DE : Γ∞(E) → Γ∞(E) and DF : Γ∞(F ) → Γ∞(F ) be
differential operators of the same order d. Consider the exterior tensor product
E £ F → X ×Y , and let D := DE ⊗ 1 + 1⊗DF be the operator on Γ∞(E £ F )
given by

D(s £ t) = DEs £ t + s £ DF t,

for s ∈ Γ∞(E) and t ∈ Γ∞(F ).
As before, we denote the cotangent bundle projection of a manifold M by

πM . The principal symbols of the operators DE , DF and D are vector bundle
homomorphisms

σDE
: π∗XE → π∗XE;

σDF
: π∗Y F → π∗Y F ;

σD : π∗X×Y (E £ F ) → π∗X×Y (E £ F ).

Let
θ : π∗X×Y (E £ F ) → π∗XE £ π∗Y F

be the isomorphism of vector bundles over T ∗(X × Y ) ∼= T ∗X × T ∗Y given by

θ
(
(ξ, η), (e⊗ f)

)
= (ξ, e)⊗ (η, f),

for x ∈ X, y ∈ Y , ξ ∈ T ∗x X, η ∈ T ∗y Y , e ∈ Ex and f ∈ Fy. The first fact about
principal symbols that we will use is:

5This can also be seen in the unbounded picture of KK-theory.

49



Lemma 6.3. The following diagram commutes:

π∗X×Y (E £ F ) σD //

θ ∼=
²²

π∗X×Y (E £ F )

θ ∼=
²²

π∗XE £ π∗Y F
σDE

⊗1+1⊗σDF

// π∗XE £ π∗Y F.

Pullbacks

Next, let X and Y again be smooth manifolds, and let q : E → Y be a vector
bundle. Let f : X → Y be a smooth map. (We will later apply this to the
situation X = G × N , Y = M , E = SM ⊗ L2ω, and f the quotient map.)
Let DE be a differential operator on E, of order d. Let Df∗E be a differential
operator on the pullback bundle f∗E with the property that for all s ∈ Γ∞(E),

Df∗E(f∗s) = f∗(DEs).

Consider the vector bundle

f∗(T ∗Y ⊕ E) → X.

It consists of triples (x, ξ, e) ∈ X × T ∗Y × E, with f(x) = πY (ξ) = q(e). Using
this vector bundle, we write down the diagram

π∗Y E
σDE // π∗Y E

f∗(T ∗Y ⊕ E)

a

OO

b

²²

σ̃DE // f∗(T ∗Y ⊕ E)

a

OO

b

²²
π∗X(f∗E)

σDf∗E // π∗X(f∗E),

(55)

where for all (x, ξ, e) ∈ f∗(T ∗Y ⊕ E),

a(x, ξ, e) := (ξ, e)

b(x, ξ, e) :=
(
(Txf)∗ξ, x, e

)

σ̃DE
(x, ξ, e) :=

(
x, σDE

(ξ, e)
)
.

Lemma 6.4. Diagram (55) commutes.

Rather than diagram (55), we would prefer a diagram with a direct vector
bundle homomorphism from π∗Y E to π∗X(f∗E) in it. It is however impossible to
define such a map in general. The best we can do is to define it for each point
x ∈ X separately: let

(b ◦ a−1)x : π∗Y E|T∗
f(x)Y

→ πX(f∗E)|T∗x X
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be the map
(b ◦ a−1)x(ξ, e) =

(
(Txf)∗ξ, e

)
.

Using this map, we obtain the following statement, which is actually equivalent
to Lemma 6.4.

Corollary 6.5. For all x ∈ X, the following diagram commutes:

π∗Y E|T∗
f(x)Y

σDE
|T∗

f(x)Y

//

(b◦a−1)x

²²

π∗Y E|T∗
f(x)Y

(b◦a−1)x

²²
π∗X(f∗E)|T∗x X

σDf∗E
|T∗x X

// π∗X(f∗E)|T∗x X .

One last remark that we will use later, is that the maps (b◦a−1)x are injective
if Txf is surjective. So if f is a submersion, all (b ◦ a−1)x are injective.

6.3 The principal symbols of /DL2ω

M and /̃D
L2ω

M .

Let gN and gM be the Riemannian metrics on N and M , respectively, induced
by the Spinc-structures PN and PM . We use the same notation for the map
gM : TM → T ∗M given by v 7→ gM (v,−), and similarly for gN . The Dirac
operators /D

L2ω

M and /D
L2ν

N have principal symbols

σ
/DL2ω

M

:π∗MSM → π∗MSM ;

σ
/DL2ν

N

:π∗NSN → π∗NSN ,

given by the Clifford action:

σ
/DL2ω

M

(ξ, sM ) =
(
ξ, cTM

(
i(gM )−1(ξ)

)
sM

)
; (56)

σ
/DL2ν

N

(η, sN ) =
(
η, cTN

(
i(gN )−1(η)

)
sN

)
,

for m ∈ M , ξ ∈ T ∗mM , sM ∈ SM
m and n ∈ N , η ∈ T ∗nN , sN ∈ SN

n .

To determine the principal symbol of /̃D
L2ω

M , we need the following basic fact:

Lemma 6.6. The principal symbol of the operator /DG,K on the trivial bundle
G×∆dp → G is given by

σ/DG,K
(g, ξ, δp) = (g, ξ, cp(iξp∗)δp),

for g ∈ G, ξ ∈ g∗ and δp ∈ ∆dp . Here ξp∗ is the component of ξ in p∗ ∼= k0

according to g∗ = p0 ⊕ k0, and we identify p∗ with p, and p with Rdp , using a
B-orthonormal basis {X1, . . . , Xdp} of p.
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Proof. Let g ∈ G, f ∈ C∞(G) and τ ∈ C∞(G, ∆dp) be given. Then

σ/DG,K
(dgf, τ(g)) =

(
dgf, lim

λ→∞
1
λ

(
e−iλf/DG,K(eiλfτ)

)
(g)

)

=
(
dgf, lim

λ→∞
1
λ

(
e−iλf

∑

j

cp(Xj)Xj(eiλfτ)
)
(g)

)
.

This expression equals

(
dgf, lim

λ→∞
1
λ

(∑

j

cp(Xj)
(
iλXj(f)τ + Xj(τ)

))
(g)

)

=
(
dgf, i

∑

j

cp(Xj)〈dgf, Telg(Xj)〉τ(g)
)
.

Hence for all ξ ∈ g∗, δp ∈ ∆dp , we have

σ/DG,K
(g, ξ, δp) =

(
g, ξ, i

∑

j

cp(〈ξ, Xj〉Xj)δp

)

= (g, ξ, cp(iξp)δp) ,

since {Xj} is a basis of p, orthonormal with respect to the Killing form.

We are now ready to prove that /DL2ω

M and /̃D
L2ω

M have the same principal
symbol, and hence define the same class in K-homology. This will conclude the
proof of Proposition 4.7, which was the remaining step in the proof of Theorem
4.5. As we saw in Subsection 4.3, the latter theorem implies Theorem 1.9, which
is our second main result.
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Proposition 6.7. The following diagram commutes:

π∗MSM

σ
/DL2ω

M //

∼=
²²

π∗MSM

∼=
²²

π∗M
((

(G×∆dp) £ SN
)
/K

) σ
/̃D

L2ω
M // π∗M

((
(G×∆dp) £ SN

)
/K

)

p∗
(
T ∗M ⊕ ((G×∆dp) £ SN )/K

)
a

OO

b

²²

σ̃
/̃D

L2ω
M // p∗

(
T ∗M ⊕ ((G×∆dp) £ SN )/K

)
a

OO

b

²²
π∗G×N

(
p∗((G×∆dp) £ SN )/K

)

∼=h

²²

// π∗G×N

(
p∗((G×∆dp) £ SN )/K

)

∼=h

²²
π∗G×N

(
(G×∆dp) £ SN

)

∼=θ

²²

σ
/DG,K⊗1+1⊗/DL2ν

N // π∗G×N

(
(G×∆dp) £ SN

)

∼=θ

²²
π∗G(G×∆dp) £ π∗NSN

σ/DG,K
⊗1+1⊗σ

/DL2ν
N // π∗G(G×∆dp) £ π∗NSN .

(57)
Here the isomorphism h is induced by the general isomorphism p∗(E/H) ∼=
E. The fourth horizontal map from the top is just defined as the composition
h−1 ◦ (σ

/DG,K⊗1+1⊗/DL2ν

N

) ◦h, i.e. by commutativity of the second square from the
bottom.

Proof. It follows from Lemma 6.3 that the bottom square of (57) commutes.
Note that (

/DG,K ⊗ 1 + 1⊗ /D
L2ν

N

)
p∗s = p∗

(
/̃D

L2ω

M s
)

for all s ∈ Γ∞
((

(G ×∆dp) £ SN
)
/K

)
. We can therefore apply Lemma 6.4 to

see that the second and third squares in (57) from the top commute as well.
We will first show that the outside of diagram (57) commutes, and then deduce
commutativity of the top subdiagram.

Let g ∈ G, n ∈ N , η ∈ T ∗nN , ξ ∈ p∗, pN ∈ PN , δp ∈ ∆dp and δN ∈ ∆dN
be

given. Then we have the element
(
(g, n), [g, η, ξ],

[
(g, δp)⊗ [pN , δN ]

]) ∈ p∗
(
T ∗M ⊕ ((G×∆dp) £ SN )/K

)
. (58)

Here we have used Proposition 2.1 and Lemma 2.2. Applying the map a and
the (inverse of the) isomorphism in the upper left corner of (57) to this element,
we obtain

(
[g, η, ξ],

[
[g, n, eSpinc(p)], [g, pN ], δp ⊗ δN

])

∈ π∗M
(
P

G/K
M ×U(1) (G×K PN )×H ∆dp ⊗∆dN

)

∼= π∗MSM . (59)

53



Here eSpinc(p) is the identity element of Spinc(p).
Let ζ ∈ (

RdN
)∗ be the covector such that η ∈ T ∗N corresponds to [pN , ζ] ∈

PN ×Spinc(dN )

(
RdN

)∗. Then σ
/̃D

L2ω

M

applied to (59) gives

(
[g, η, ξ],

[
[g, n, eSpinc(p)], [g, pN ], cp⊕RdN (iξ, iζ)(δp ⊗ δN )

])
,

where we identify
(
RdN

)∗ ∼= RdN using the standard Euclidean metric, and
p∗ ∼= p using the Killing form. By definition of the Clifford modules ∆k (see e.g.
[13], page 13), this equals

(
[g, η, ξ],

[
[g, n, eSpinc(p)], [g, pN ], cp(iξ)δp ⊗ δN + δp ⊗ cRdN (iζ)δdN

])
.

(This is the central step in the proof of Proposition 4.7.)
The image of the latter element under the maps θ ◦ h ◦ (b ◦ a−1)(g,n) is

(
(g, ξ), (g, cp(iξ)δp)

)⊗ (
η, [pN , δN ]

)
+

(
(g, ξ), (g, δp)

)⊗ (
η, [pN , cRdN (iζ)δN ]

)
,

which by Lemma 6.6 equals the image under the map
(
σ/DG,K

⊗ 1 + 1⊗ σ
/DL2ν

N

) ◦ θ ◦ h ◦ b

of (58). Therefore, the outside of diagram (57) commutes.
Now note that for all (g, n) ∈ G×N , the composition θ ◦ h ◦ (b ◦ a−1)(g,n) is

injective, because p is a submersion (see the remark after Corollary 6.5). This
fact, together with commutativity of the outside of diagram (57), implies that
the top part of (57) commutes as well.

Assumptions and notation

In this paper, we have used the following assumptions and notation.

Assumptions

• All manifolds and all maps between them are supposed to be smooth. In
particular, all group actions are smooth.

• All momentum maps are supposed to be equivariant with respect to the
coadjoint action.

• Unless stated otherwise, all vector bundles except those constructed from
tangent bundles are supposed to be complex.

Notation

Groups

• H: a group;
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• G: connected semisimple Lie group with finite centre (except in Subsec-
tions 2.1, 5.1 and 5.3);

• K < G: maximal compact subgroup;

• T < K: maximal torus, also supposed to be a Cartan subgroup of G (i.e.
rankG = rank K);

• t ⊂ k ⊂ g: the respective Lie algebras; (we identify the dual space t∗ with
the subspace (k∗)Ad∗(T ) of Ad∗(T )-invariant elements);

• B: the Killing form on g;

• p ⊂ g: the (Ad(K)-invariant) orthogonal complement of k in g with respect
to B;

• V 0: for a subspace V of a vector space W , the annihilator of V in W ∗, i.e.
the space {ξ ∈ W ∗; ξ|V = 0} (we identify k∗ with the annihilator p0 ⊂ g∗,
and p∗ with k0);

• t∗+ ⊂ t∗: a choice of positive Weyl chamber;

• R = R(g, t): the set of roots of (g, t);

• Rc = R(k, t): the set of roots of (k, t), considered as a subset of R;

• Rn = R \Rc: the set of noncompact roots of (g, t);

• R+: the set of positive roots of (g, t) with respect to t∗+;

• R+
c , R+

n : Rc ∩R+ and Rn ∩R+, respectively;

• ρ, ρc, ρn: half the sum of the positive roots in R+, R+
c and R+

n , respec-
tively;

• W (g, t),W (k, t): the Weyl groups of (g, t) and (k, t), respectively.

• T reg: the dense subset of regular elements of T : T reg := {expX;X ∈
t, (α, X) 6∈ 2πiZ for all α ∈ R(g, t)};

• ncw ⊂ t∗: the union of the ‘noncompact walls’, i.e. the set of ξ ∈ t∗ such
that for some α ∈ Rn, we have (α, ξ) = 0;

• g∗ell; the set of elliptic elements of g∗, equal to Ad(G)k∗;

• g∗se; the set of strongly elliptic elements of g∗, equal to the interior of g∗se, to
the set of elements of g∗ with compact stabilisers, and to Ad(G)(t∗+ \ncw);

• Oξ: for ξ ∈ g∗ or ξ ∈ k∗, the coadjoint orbit Ad∗(G)ξ of G or the coadjoint
orbit Ad∗(K)ξ of K, where appropriate;

• Oλ: for λ ∈ ig∗ or λ ∈ ik∗, the coadjoint orbit O−iλ;

• Ik; for k ∈ N, the k × k identity matrix.
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Representations

• R(K): the representation ring of K;

• mV : for m ∈ Z and V a representation space of K, the m-fold direct sum
V ⊕ · · · ⊕ V if m > 0, minus the |m|-fold direct sum V ⊕ · · · ⊕ V if m < 0,
and the zero space if m = 0;

• Λ+ ⊂ it∗+ or Λk
+: the set of dominant weights of (k, t) with respect to t∗+;

• Vµ: for µ ∈ Λ+, the irreducible representation of K with highest weight
µ;

• χV : for V a representation, the character of V ;

• χµ: for µ ∈ Λ+, the character of Vµ;

• [V : W ]: for two representations V,W of a group H, the multiplicity of
W in V , equal to dim Hom(V, W )K ;

• ∆2k+1: for K ∈ N the canonical irreducible representation of the group
Spin(2k + 1) (see [13]);

• ∆2k = ∆+
2k⊕∆−

2k: for k ∈ N, the canonical representation of Spin(k), split
into two irreducible subrepresentations;

• c : V → End(∆V ), for V a vector space equipped with a bilinear form,
the Clifford action of V on ∆V (see [13]);

• Ãd: the homomorphism (if it exists) K → Spin(p) such that λ ◦ Ãd =
Ad : K → SO(p), with λ : Spin(p) → SO(p) the double covering map;

• H: a Hilbert space;

• RHG : for an irreducible discrete series representation H of G, the reduction
map for G defined in (8);

• K(H): for H a Hilbert space, the algebra of compact operators on H.

Topological spaces, manifolds and vector bundles

For any topological space X,

• C0(X): the space of (complex valued) continuous functions on X that
vanish at infinity;

• Cc(X): the space of (complex valued) compactly supported continuous
functions on X;

• h · s: for h an element of a group H acting on X, and s a section of an
H-vector bundle over X, the section given by (h · s)(x) = h · s(h−1x);
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• E £ F : for E → X a vector bundle and F → Y a vector bundle over
another space, the exterior tensor product p∗XE ⊗ p∗Y F → X × Y , with
pX , pY : X × Y → X,Y the canonical projections.

For any manifold M ,

• dM : the dimension of M ;

• C∞(M): the space of (complex valued) smooth functions on M ;

• πM : the cotangent bundle projection πM : T ∗M → M ;

• X(M): the space of vector fields on M ;

• XM : for X in the Lie algebra of a group acting on M , the induced vector
field on M (the subscript M will often be omitted);

• Γ∞(E): for a smooth vector bundle E over a given manifold, the space of
smooth sections of E, also denoted by Γ∞(M, E);

• R∇: for ∇ a connection on a vector bundle, the curvature of ∇;

• Hm, hm: for a given action of a Lie group H on M , and a point m ∈ M ,
the global and infinitesimal stabiliser of m, respectively;

• (PM , ψM ): a Spinc-structure on M , that is, a principal Spinc(dM )-bundle
PM → M and an isometric vector bundle isomorphism ψM : PM×Spinc(dM )

RdM → TM ;

• SM : if M has a Spinc-structure (PM , ψM ), the spinor bundle SM =
PM ×Spinc(dM ) ∆dM

;

• /DE
M : if M has a Spinc-structure and E → M is a vector bundle with a

connection, the Spinc-Dirac operator on M coupled to E (see [12], [13]);

• /DG,K : the differential operator on the trivial bundle G×∆dp → G given
by (5), with V = C the trivial representation.

Symplectic geometry

• (M, ω): a symplectic manifold carrying a Hamiltonian action of G (in
Subsection 2.2, this is to be proved);

• PM , a G-equivariant Spinc structure on M , whose determinant line bundle
has Chern class compatible 2ω;

• ΦM : the momentum map of this action;

• (N, ν): a symplectic manifold carrying a Hamiltonian action of K (in
Subsection 2.3, this is to be proved);
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• PN : a K-equivariant Spinc structure on N , whose determinant line bundle
has Chern class compatible 2ν;

• ΦN : the momentum map of this action;

• ΦM
X , JY : for X ∈ g and Y ∈ k, the pairings 〈ΦM , X〉 and 〈ΦN , X〉, respec-

tively;

• Mξ: for ξ ∈ g∗, the symplectic reduction
(
ΦM

)−1(ξ)/Gξ;

• Nξ: for ξ ∈ k∗, the symplectic reduction
(
ΦN

)−1(ξ)/Kξ;

• Mλ, Nλ: for λ ∈ ig∗ or ik∗ respectively, the symplectic reductions M−iλ

and N−iλ.

(Unbounded) KK-theory

• ΨH(A,B): for a group H, and A and B H-C∗-algebras, the semigroup of
equivariant unbounded Kasparov cycles over A and B (see [4]).
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Künneth formula, and the Baum-Connes conjecture’, Geom. funct. anal.
14 (2004) 491–528.

[11] A. Connes, Noncommutative geometry (Academic press, San Diego, 1994).

[12] J. J. Duistermaat, The heat kernel Lefschetz fixed point theorem for the
Spinc-Dirac operator, Progress in nonlinear differential equations and their
applications 18 (Birkhäuser, Boston, 1996).
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