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Abstract— In this paper, noise-to-state stability is investigated
for a class of random systems with state-dependent switching.
Under some mild and easily verified conditions, the existence of
global solution to random switched systems can be proved by the
aid of Lyapunov approach. Based on a reasonable requirement
to the random disturbance, the criteria on noise-to-state stability
in probability of random switched systems are presented by
applying single Lyapunov function technique.

Index Terms— Random affine systems, random switched sys-
tems, noise-to-state stability

I. INTRODUCTION

In practice, control systems are very often affected by
noise. As it is known, the definition of deterministic input-to-
state stability (ISS) for nonlinear systems was proposed by
E.D.Sontag in [1]. Some equivalent manners: dissipation, ro-
bustness margins, “β + γ” estimates and classical Lyapunov-
like definitions were presented for the deterministic nonlinear
systems, see for instance [2], [3]. Recently, ISS has become
a central concept and plays an important role in the nonlinear
systems analysis. The notion of noise-to-state stability (NSS)
was proposed for stochastic nonlinear systems by regarding
the unknown covariance of Brown motion as the deterministic
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input in [4] and [5]. The concept of input-to-state practical
stability (ISpS) in probability was given in [6] with respect
to a deterministic input. To describe the stochastic stability
under stochastic inputs, a more practical notion of stochastic
input-to-state stability (SISS) with respect to a stochastic
input was introduced in [7]. NSS in the m-th moment and in
probability to random nonlinear systems were investigated in
[8], where the random signals are stochastic processes whose
second-order moments are finite (or bounded).

On the other hand, stability analysis of switched systems
has been a major issue in recent years. It is well-known
that the switched system is uniformly stable for an arbitrary
switching law if there exists a common Lyapunov function for
all subsystems in [9], [10]. In particular, ISS as an important
property was extend to the switched systems in [11], in
which some sufficient conditions were derived to ensure that
the whole switched system is ISS when each subsystem
is ISS. Based on piecewise Lyapunov-Krasovskii functional
method, an explicit condition was provided to guarantee the
ISS of the system under asynchronous switching in [12].
The references mentioned above focused on deterministic
switched systems. Stochastic switched systems have recently
been the focus of attention in control engineering such as
[13], [14]. The stability of stochastic nonlinear systems with
state-dependent switching was investigated in [15], where
the switching laws can be viewed as a closed-loop control.
Exponential stability and almost sure exponential stability
of stochastic systems with state-dependent switching was



studied in [16]. Sufficient conditions for stochastic versions
of ISS for randomly switched systems without control inputs
were provided in [17]. To the best of our knowledge, noise-
to-state stability for random affine systems (studied in [8])
with switching has not been considered.

Inspired by [8], this paper is devoted to investigate the
noise-to-state stability in probability for a class of ran-
dom nonlinear systems with state-dependent switching. By
adopting the similar method as in [15], a strong solution
to the random switched system is constructed based on
the corresponding state-dependent switching signal. Because
of switching behavior between individual subsystems, the
smoothness (about time) of Lyapunov function is destroyed,
which means that the stability results to random systems
without switching are not suitable for random switched
systems. Based on a reasonable requirement for the random
disturbance and some mild and easily verified conditions for
every subsystem, the existence of global solution and the
criteria on noise-to-state stability in probability to random
switched systems are presented by applying Lyapunov func-
tion method.

The paper is organized as follows: Section II gives some
preliminaries; In section III, the existence of global solution
and the criteria on noise-to-state stability to random switched
systems are developed by applying Lynapunov function tech-
nique; The paper is concluded in section IV.

Notions: The following notions are used throughout the
paper. For a vector x, |x| denotes the usual Euclidean norm;
‖X‖ is the 2-norm of a matrix X ; Rn denotes the real n-
dimensional space; R+ denotes the set of all nonnegative real
numbers; UR denote the ball |x| < R in Rn. Ci denotes the
set of all functions with continuous i-th partial derivative;
K denotes the set of all functions: R+ → R+, which are
continuous, strictly increasing and vanishing at zero; K∞
denotes the set of all functions which are of class K and
unbounded; K L denotes the set of all functions β (s, t) :
R+×R+ → R+ which is of class K for each fixed t, and
decreases to zero as t → ∞ for each fixed s. For a,b ∈ R,
denote a∨ b = max{a,b} and a∧ b = min{a,b}. Function
α : D→ R is convex on D, if it satisfies

α(s1)+α(s2)
2

≥ α
(

s1 + s2

2

)
,∀s1,s2 ∈ D.

II. PRELIMINARY RESULTS

In this section, we will review some important results
on the existence of solution and stability for random affine
systems without switching.

Consider the following random affine system

ẋ = f (x(t), t)+g(x(t), t)ξ (t), x(t0) = x0, (1)

where x(t) ∈ Rn is the state, stochastic process ξ (t) ∈ Rl

defined on the complete probability space (Ω,F ,Ft ,P) with
a filtration Ft satisfying the usual conditions (i.e., it is

increasing and right continuous while F0 contains all P-null
sets).

To guarantee the existence and uniqueness of solution for
system (1), some assumptions are imposed on the stochastic
process ξ (t) and coefficients f (x, t), g(x, t) as in [8].

A1: Process ξ (t) is Ft -adapted and piecewise continuous,
and satisfies

sup
t0≤s≤t

E|ξ (s)|2 < ∞, ∀t ≥ t0. (2)

H1: Both functions f (x, t) : Rn ×R+ → Rn and g(x, t) :
Rn×R+ → Rn×m are piecewise continuous in t, and locally
Lipshitz in x, i.e., for any R > 0, there exists a constant LR ≥ 0
possibly dependent on R such that ∀x1,x2 ∈UR,x1 6= x2,

| f (x2, t)− f (x1, t)|+‖g(x2, t)−g(x1, t)‖ ≤ LR|x2− x1|.
H2: There exists a constant b0 ≥ 0 such that

| f (0, t)|+‖g(0, t)‖< b0.

For system (1), given any k > 0, define the first exit time
from a region Uk = {x : |x|< k} and its limit:

ηk = inf{t ≥ t0 : |x(t)| ≥ k} , η∞ = lim
k→∞

ηk, (3)

with the special case inf /0 = ∞.
The existence and uniqueness of the maximal solution are

given by the following lemma.
Lemma 1 ([8]): Under assumptions A1, H1 and H2, sys-

tem (1) has a unique solution in the maximal existence
interval [t0,η∞).

Based on some additional conditions, the following result
can demonstrate that the maximal local solution is in fact a
unique global one.

Lemma 2 ([8]): For system (1), under assumptions A1,
H1 and H2, if there exist a positive function V (x(t), t) ∈C
and constants c,d such that for all t ≥ t0,

lim
k→∞

inf
|x|>k

V (x, t) = ∞, (4)

and
E [V (x(t ∧ηk), t ∧ηk)]≤ dect , ∀k > 0, (5)

then system (1) has a unique solution x(t) on [t0,∞).
Definition 1: The stochastic process φ(t) : R+×Ω → Rn

is called strongly bounded in probability, if for any ε > 0,
there exists an r > 0 such that

P

{
sup
t≥t0

|x(t)|> r

}
≤ ε.

A stricter condition was given to present the notions of
noise-to-state stability for system (1) in [8].

A2: Process ξ (t) is Ft -adapted and piecewise continuous,
and there exists parameters c0,d0 > 0 such that

E|ξ (t)|2 < d0ec0t , ∀t ≥ t0. (6)



Remark 1: It should be noted that A2 ⇒ A1 can be easily
verified.

Regarding ξ (t) as random disturbance, the following no-
tion of noise-to-state stability was given in [8].

Definition 2: System (1) is said to be noise-to-state stable
in probability (NSS-P) if for any ε > 0, there exist a class-
K L function β (·, ·) and a class-K∞ function γ(·) such that
for all t ∈ [t0,∞) and x0 ∈ Rn,

P

{
|x(t)| ≤ β (|x0|, t− t0)+ γ

(
sup

t0≤s≤t
E|ξ (s)|2

)}
≥ 1− ε.

(7)
Lemma 3: ([18, Stochastic Barbalat lemma]) For the sys-

tem (1), suppose that there exists a unique solution x(t) in the
interval [t0,∞), which is strongly bounded in probability. If
there exists a continuous nonnegative function W (·) :Rn →R
such that

E
[∫ ∞

t0
W (x(t))dt

]
< ∞,

then
P

{
lim
t→∞

W (x(t)) = 0
}

= 1, ∀x0 ∈ Rn.

Furthermore, if W is continuous and positive definite, there
holds

P
{

lim
t→∞

|x(t)|= 0
}

= 1, ∀x0 ∈ Rn.

III. NOISE-TO-STATE STABILITY ANALYSIS TO RANDOM
SWITCHED SYSTEMS

In this section, we deal with random affine systems with
state-dependent switching, where the switching event is trig-
gered by the state crossing some switching surfaces.

Consider a family of random affine systems described by

Σp : ẋ = fp(x(t), t)+gp(x(t), t)ξ (t), x(t0) = x0, p ∈P, (8)

where P = {1,2, · · · ,N}, stochastic process ξ (t) satisfies
the assumption A2, and functions fp, gp (p ∈ P) satisfy
assumptions H1 and H2.

Suppose that the p-th subsystem is active on region
Ψp(p = 1,2, · · · ,N), where

⋃N
p=1 Ψp = Rn and Ψi ∩Ψ j =

/0(i 6= j). Define a state-dependent switching signal as

σ(t) = p j, x(t) ∈Ψp j , j = 0,1,2, · · · , j∗, (9)

where p j ∈P with p j 6= p j+1, j∗ is the number of switches
and j∗ ≤ ∞. Without loss of generality, let x0 ∈ Ψp0 . Then,
the random switched system generated by system family (8)
and switching signal (9) can be presented nominally as

ẋ = fσ (x, t)+gσ (x, t)ξ (t), x(t) ∈Ψσ . (10)

To develop our main results, we assume that there is no
jump in the state at switching instants and there is no Zeno
behavior, i.e., there is finite a number of switches on every
bounded interval of time.

Although every subsystem satisfies globally Lipschitz con-
dition, the switched systems may not still satisfy the locally

Lipschitz condition, which is the reason why the strong
solution does not exist. A well-known example is given below
to illustrate this case.

Example: Consider the famous Tanaka equation

dx(t) = sign(x)dB(t), x(0) = 0.1, (11)

where B(t) is 1-dimensional Brownian motion and

sign(x) =
{

+1 if x≥ 0,
−1 if x < 0.

Note that the active regions Ψ1 = {x : x ≥ 0} and Ψ2 = {x :
x < 0} satisfy Ψ1∪Ψ2 =R and Ψ1∩Ψ2 = /0. As demonstrated
in [19, P.73], function sign(x) dose not satisfy the local
Lipschitz condition, so (11) has no strong solution in time
interval [0,∞).

As a consequence, before studying the stability of random
switched systems, we first consider the existence of solution
to random switched system (10). By a recursive procedure
as similar to [15], we can construct a strong solution to
the random switched system (10) in the maximal existence
interval.

For any l > 0, define the stopping times recursively as
follows

τ0 =t0,

η0,l = inf
{

t : t ≥ t0,
∣∣Φp0(t, t0)∗ x0

∣∣≥ l
}

,

η0,∞ = lim
l→∞

η0,l ,

τ1 = inf
{

τ0 ≤ t < η0,∞,Φp0(t, t0)∗ x0 /∈Ψp0

}
,

· · ·
η j,l = inf

{
t : t ≥ τ j,

∣∣Φp j(t,τ j)∗ · · · ∗Φp0(τ1,τ0)∗ x0
∣∣≥ l

}
,

η j,∞ = lim
l→∞

η j,l ,

τ j+1 = inf
{

τ j ≤ t < η j,∞,Φp j(t,τ j)∗ · · · ∗Φp0(τ1,τ0)

∗x0 /∈Ψp j

}
,

(12)

with the special case inf /0 = ∞ in the definition of η j,l and
inf /0 = η j,∞ in the definition of τ j+1, where Φp(t2, t1) denotes
the flow of the p-th individual system from t1 to t2, j =
0,1,2, · · · , j∗. And j∗ is defined as

j∗ =





j0, if there exists a finite integer j0
such that τ j0+1 ≥ η j0,∞,

∞, otherwise,
(13)

which implies that τ j∗+1 = η j∗,∞ by compared with defini-
tions of τ j+1.

The state-dependent switching signal (9) can also be trans-
formed into a time-dependent switching signal

σ(t) = p j, t ∈ [τ j,τ j+1), j = 0,1,2, · · · , j∗, (14)

where τ j are switching times, τ0 = t0, p j ∈P with p j 6= p j+1,
and j∗ is the number of switches.



From the recessive procedure, the solution of the random
switched system (10) is described by

x(t) = Φp j(t,τ j)∗ · · · ∗Φp0(τ1,τ0)∗ x0,

∀τ j ≤ t < τ j+1, j = 0,1, · · · , j∗,

that is

x(t) =x(t0)+
j∗

∑
j=0

∫ t∧τ j+1

t∧τ j

fσ (x(s),s)ds

+
j∗

∑
j=0

∫ t∧τ j+1

t∧τ j

gσ (x(s),s)ξ (s)ds, ∀t ∈ [t0,∞).

(15)

According to Lemma 1, in every interval [τ j,τ j+1) (0≤ j≤
j∗) the active system has a unique solution. Thus, the solution
(15) of random switched system (10) is unique, continuous
and Ft -adapted in the maximal existence interval [t0,τ j∗+1).

The criteria on noise-to-state stability in probability (NSS-
P) are given by the following result.

Theorem 1: For random switched system (10), assume
that there exist a function V ∈ C1 and class-K∞ functions
α1,α2,α and constant d > 0 such that

α1(|x|)≤V (x)≤ α2(|x|), (16)

∂V
∂x

fp(x, t)+d
∣∣∣∣
∂V
∂x

gp(x, t)
∣∣∣∣
2

≤−α(|x|), x(t) ∈Ψp. (17)

Then for every x0 ∈Rn, there exists a unique solution x(t) =
x(t;x0, t0) to the switched system (10) on [t0,∞). If α ◦α−1

2 (·)
and α2 ◦α−1

1 (·) are convex functions, the random switched
system is NSS-P.

Proof: According to Lemma 1, based on the above
recursive procedure, a strong solution (15) can be constructed
for random switched system (10) in the maximal existence
interval [t0,τ j∗+1). And η j∗,∞ = τ j∗+1.

For any t ∈ [t0,∞), we have x(s)∈Ψp j , s∈ [t∧τ j, t∧τ j+1).
By (17), the derivative of V along system (10) satisfies that

V̇ (x(s)) =
∂V
∂x

fp j(x,s)+
∂V
∂x

gp j(x,s)ξ (s)

≤∂V
∂x

fp j(x,s)+d
∣∣∣∣
∂V
∂x

gp j(x,s)
∣∣∣∣
2

+
1

4d
|ξ (s)|2

≤−α(|x|)+
1

4d
|ξ (s)|2.

(18)

From (15) and (18), we conclude

E
[
V (x(t ∧ τ j∗+1))

]≤V (x0)−E

[
j∗

∑
j=0

∫ t∧τ j+1

t∧τ j

α(|x(s)|)ds

]

+
1

4d
E

[
j∗

∑
j=0

∫ t∧τ j+1

t∧τ j

|ξ (s)|2ds

]
.

(19)

Then, we can obtain

E
[
V (x(t ∧ τ j∗+1))

]≤V (x0)+
d0

4c0d
ec0t ≤ (V (x0)+

d0

4c0d
)ec0t .

From Lemma 2, τ j∗+1 = η j∗,∞ = ∞ a.s. can be obtained, and
then the first result holds. Let us complete the proof of the
second one.

According to (16) and (19), we have

V (x(t))−V (x0)≤−
j∗

∑
j=0

∫ t∧τ j+1

t∧τ j

α(|x(s)|)ds

+
1

4d

j∗

∑
j=0

∫ t∧τ j+1

t∧τ j

|ξ (s)|2ds

≤
∫ t

t0

[
−α(|x(s)|)+

1
4d
|ξ (s)|2

]
ds

≤
∫ t

t0

[
−α ◦α−1

2 (V (x(s)))+
1

4d
|ξ (s)|2

]
ds.

(20)

Note that α ◦α−1
2 (·) is a convex function. Taking expectations

first on both sides of (20), then according to Fubini’s theorem
and Jensen’s inequality, we can get

E [V (x(t))]−V (x0)

≤
∫ t

t0

[
−α ◦α−1

2 (E [V (x(s))])+
1

4d
E|ξ (s)|2

]
ds.

By defining v(t) = E [V (x(t))], the above inequality leads to

v(t)≤ v0 +
∫ t

t0

[
−α ◦α−1

2 (v(s))+
1

4d
E|ξ (s)|2

]
ds, ∀t ∈ [t0,∞),

(21)
where v(t)≥ 0 is a deterministic and continuous function in
t. The following proof is similar to the Theorem 2.2 in [4].
Define the set

Rt0 =

{
v(t) ∈ R

∣∣∣v(t)≤ ᾱ−1

(
q

4d
sup
t≥t0

E|ξ (t)|2
)}

,

where ᾱ , α ◦α−1
2 and q≥ 1 is a constant. Then, define B =

[t0,T ) as the time interval before v(t) enters Rt0 for the first
time, where T = inf

{
t ≥ t0 : v(t) ∈Rt0

}
is a deterministic

time. In view of the definition of Rt0 , for t ∈ B = [t0,T ), it
holds that

v(t)≥ ᾱ−1

(
q

4d
sup
t≥t0

E|ξ (t)|2
)
≥ ᾱ−1

( q
4d

E|ξ (t)|2
)

,

which together with (21) implies

v(t)≤ v0− (1− 1
q
)
∫ t

t0
ᾱ(v(s))ds, ∀t ∈ [t0,T ). (22)

It is obvious that for any t ∈ [t0,∞)

E [V (x(t ∧T ))]≤V (x0)≤ α2(|x0|),
then, according to Chebyshev’s inequality, we have

P{V (x(t ∧T ))≥ δ (α2(|x0|))} ≤ α2(|x0|)
δ (α2(|x0|)) ≤ ε, (23)



where class-K∞ function δ (·) is chosen such that ε can be
arbitrarily small. Then, by (16) and (23), it yields that

P{|x(t ∧T )| ≤ α1
−1(δ (α2(|x0|)))} ≥ 1− ε, ∀t ∈ [t0,∞).

(24)
From the convexity of ᾱ = α ◦α−1

2 and Fubini’s theorem, by
(22) and (16), we have

E
[∫ t∧T

t0
ᾱ(α1(|x(s)|)ds

]
≤

∫ t∧T

t0
ᾱ(v(s))ds≤ q

q−1
V (x0)< ∞.

If T = ∞, it is obtained that

E
[∫ ∞

t0
ᾱ(α1(|x(s)|)ds

]
≤ q

q−1
V (x0) < ∞.

From Lemma 3, we have

P
{

lim
t→∞

x(t) = 0
}

= 1,

which, together with (24), means that, for any ε ′ > 0 there
exists a class-K L function β (·, ·) such that

P{|x(t)| ≤ β (|x0|, t− t0)} ≥ 1− ε ′, ∀t ∈ [t0,T ). (25)

Now let us pay attention to the interval [T,∞). Since function
α2 ◦α−1

1 is convex, by the definitions of Rt0 and T , and (16),
it follows that

E [V (x(t))]≤(
α2 ◦α−1

1
)
(E [α1(|x(t)|)])

≤(
α2 ◦α−1

1
)
(v(t))

≤(
α2 ◦α−1

1
)◦ ᾱ−1

(
q

4d
sup
t≥t0

E|ξ (t)|2
)

,

(26)

for all t ∈ [T,∞). According to Chebyshev’s inequality, the
above inequality implies

P

{
|x(t)| ≤ γ

(
sup
t≥t0

E|ξ (t)|2
)}

≥ 1− ε ′′, ∀t ∈ [T,∞), (27)

where class-K function γ(·) is chosen such that ε ′′ can be
made arbitrarily small. By causality, (27) together with (25),
gives

P

{
|x(t)| ≤ β (|x0|, t− t0)+ γ

(
sup

t0≤s≤t
E|ξ (s)|2

)}
≥ 1− ε,

∀t ∈ [t0,∞), where ε = ε ′∧ε ′′, which completes the proof.

IV. CONCLUSIONS
Noise-to-state stability for random affine systems with

state-dependent switching has been investigated in this paper.
Although the random switched system does not satisfy locally
Lipschitz condition, a local maximal solution can be con-
structed by a recursive procedure under some mild and easily
verified conditions. Based on a reasonable requirement to the
stochastic disturbance, the existence of global solution and
the criteria on noise-to-state stability in probability of random
switched systems were presented by applying Lynapunov
function method.
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