
ACCEPTED VERSION 
 

Michael T. Rose, Antonio F. Patti, Karen R. Little, Alicia L. Brown, W. Roy Jackson, Timothy R. 
Cavagnaro 
A meta-analysis and review of plant-growth response to humic substances: practical 
implications for agriculture 
Advances in Agronomy, 2014 / Sparks, D. (ed./s), Ch.2, pp.37-89 
 

 © 2014 Elsevier Inc. All rights reserved. 

This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 

Final publication at http://dx.doi.org/10.1016/B978-0-12-800138-7.00002-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/87684 

 

PERMISSIONS 

https://www.elsevier.com/about/policies/sharing 

 

Accepted Manuscript 

Authors can share their accepted manuscript: 

After the embargo period  

 via non-commercial hosting platforms such as their institutional repository 
 via commercial sites with which Elsevier has an agreement 

In all cases accepted manuscripts should: 

 link to the formal publication via its DOI 
 bear a CC-BY-NC-ND license – this is easy to do 
 if aggregated with other manuscripts, for example in a repository or other site, be shared in 

alignment with our hosting policy 
 not be added to or enhanced in any way to appear more like, or to substitute for, the published 

journal article 

 

23 August 2021 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/B978-0-12-800138-7.00002-4
http://hdl.handle.net/2440/87684
https://www.elsevier.com/about/policies/sharing
https://www.elsevier.com/about/policies/sharing#definitions
https://www.elsevier.com/about/policies/sharing#definitions
https://www.elsevier.com/about/policies/hosting


1 
 

A meta-analysis and review of plant-growth response to humic substances: practical 1 

implications for agriculture. 2 

 3 

Michael T. Rose1,2,, Antonio F. Patti1,, Karen Little1,2,3,4, Alicia L. Brown2, W. Roy Jackson1,, 4 

Timothy R. Cavagnaro2,3 5 

1 School of Chemistry, Monash University, Clayton VIC 3800 Australia 6 

2 School of Biological Sciences, Monash University, Clayton VIC 3800 Australia 7 

3 Australian Centre for Biodiversity, Monash University, Clayton VIC 3800 Australia 8 

4 School of Applied Sciences and Engineering, Monash University, Churchill VIC 3842 9 

Australia   10 



2 
 

Table of Contents 1 

1. Introduction 2 

2. Meta-analysis of literature 3 

2.1 Methods 4 

2.2 Results 5 

3. Plant growth response to Humic Substances: moderating factors  6 

3.1 General plant growth response 7 

3.2 Application rate 8 

3.3 Humic substance properties 9 

3.4 Environmental conditions 10 

3.5 Plant type 11 

4. Practical use of Humic Substances in agriculture 12 

4.1 Direct application 13 

4.2 Application as synergists 14 

5. Knowledge gaps and research needs 15 

6.  Conclusions  16 



3 
 

Abstract 1 

The breakdown products of plant and animal remains, extracted in an alkaline solution, are 2 

commonly referred to as humic substances (HS). They can be extracted from a wide variety 3 

of sources, including sub-bituminous coals, lignites (brown coals), peat, soil, composts and 4 

raw organic wastes. The application of HS to plants has the potential to improve plant 5 

growth, but the extent of plant-growth promotion is inconsistent and relatively unpredictable 6 

when compared to inorganic fertilisers. The goal of this review was to determine the 7 

magnitude and likelihood of plant growth response to HS and to rank the factors contributing 8 

to positive growth promotion. These factors included the source of the HS, the environmental 9 

growing conditions, the type of plant being treated and the manner of HS application. 10 

Literature reports of exogenously applied HS-plant interactions were collated and 11 

quantitatively analysed using meta-analytic and regression tree techniques. Overall, random 12 

effects meta-analysis estimated shoot dry weight increases of 22±4% and root dry weight 13 

increases of 21±6% in response to HS application. Nevertheless, actual responses varied 14 

considerably and were mainly influenced by the source of the HS applied, the rate of HS 15 

application and to a lesser extent, plant type and growing conditions. HS from compost 16 

sources significantly outperformed lignite and peat-derived HS in terms of growth promotion, 17 

whilst HS application rate non-linearly moderated the growth response under different 18 

circumstances. Our results demonstrate the difficulty in generalising recommendations for the 19 

use of HS in agriculture; however some specific suggestions for maximising the efficacy of 20 

HS under certain conditions are offered. We also outline some recent developments in the use 21 

of HS as synergists for improving fertiliser use efficiency and the activity of microbial 22 

inoculants. Finally, we identify a number of research gaps, which, when addressed, should 23 

clarify how, when and where HS can be best applied for the greatest benefit.  24 
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1. Introduction 1 

Humic substances (HS) are a category of naturally occurring organic compounds that arise 2 

from the decomposition and transformation of plant, animal and microbial residues 3 

(MacCarthy, 2001). They are a natural component of practically all soils, but levels vary and 4 

there is considerable evidence that modern agriculture involving practices such as soil tillage 5 

has resulted in their decline (Novotny et al., 1999; Shepherd et al., 2001). The loss of humic 6 

material, together with overall reductions in soil organic matter, is of concern because they 7 

play important roles in maintaining key soil functions and plant productivity (Lal, 2004; 8 

Sparling et al., 2006). Consequently, there is interest in the application of HS-based 9 

amendments to agricultural systems in order to reverse this trend (Piccolo and Mbagwu, 10 

1997; Quilty and Cattle, 2011).  11 

Humic substances are chemically complex with no clearly defined chemical structure, 12 

although generalized models have been proposed (Bruccoleri et al., 2001). While traditionally 13 

viewed as complex macromolecules, they have more recently been described as mixtures of 14 

smaller molecules, containing aromatic rings, aliphatic chains and ionisable functional groups 15 

that interact with each other to form aggregated colloids (Piccolo, 2001; Pinton et al., 2009; 16 

Sutton and Sposito, 2005). There is significant evidence that the exogenous application of HS 17 

can help to improve soil fertility, primarily through their complex chemistry which facilitates 18 

interactions with a variety of mineral and non-mineral organic soil components. Some of the 19 

documented benefits of soil amendment with HS include improved soil aggregation and 20 

structure, increased pH buffering and cation exchange capacity, increased water retention 21 

capacity, increased bioavailability of immobile nutrients (such as P, Fe and Zn), and 22 

decreased toxicity of aluminium and heavy metals (Chen et al., 2004a; Imbufe et al., 2005; 23 

Peiris et al., 2002; Piccolo et al., 1996; Piccolo and Mbagwu, 1989; Piccolo et al., 1997; Tan 24 

and Binger, 1986).  25 
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As well as indirectly influencing plant productivity through modification of soil 1 

characteristics, HS can also directly impact on physical and metabolic plant processes. A 2 

recent review by Muscolo et al. (2013) reviews evidence for the hormone-like effects of HS 3 

and how these relate to the chemical structural features of these materials. The authors 4 

highlight a predominance of auxin-like effects and that non-lignin structures are the principal 5 

contributors. These effects can be elicited through an interaction with either roots or shoots. 6 

For example, hormonal-like responses on plant roots were demonstrated by Trevisan et al. 7 

(2010) and HS may also stimulate H+-ATPase and ion transporter activity in the root plasma 8 

membrane (Mora et al., 2010; Pinton et al., 1997; Pinton et al., 2009). Both these effects can 9 

enhance nutrient acquisition, the former through increased soil exploration, and the latter by 10 

accelerating nutrient uptake. These effects appear to be especially prominent for cases 11 

involving HS derived from compost and vermicomposts, which may contain auxin-related 12 

compounds (Muscolo et al., 1999; Quaggiotti et al., 2004), including indole-acetic acid 13 

derivatives and other low-molecular weight organic acids (Russell et al., 2006). In contrast, 14 

effects on leaf function have been less well documented and appear somewhat contradictory 15 

(Nardi et al., 2002). Foliar application of HS may increase leaf chlorophyll concentration 16 

(Sladký, 1959), but it is also recognized that HS contain a range of functional groups which 17 

are able to interfere with photosynthesis (Pflugmacher et al., 2006). Foliar applications have 18 

also been shown to influence transpiration, though the mechanism is unclear and both 19 

increases and decreases in water loss and leaf gas exchange have been observed. 20 

Despite numerous publications on the potential positive effects of HS on plant growth and 21 

productivity over more than five decades (Billingham, 2012; Chen et al., 2004b; Quilty and 22 

Cattle, 2011) and substantial interest in their potential for improving nutrient-use efficiency 23 

and contributing to C sequestration in the soil, the use of commercial products containing HS 24 

in agriculture varies and there is scepticism about their effectiveness (Billingham, 2012). Part 25 
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of the reason for this is no doubt related to the wide range in physico-chemical properties of 1 

HS, which vary according to the method of extraction and the environmental matrix from 2 

which they are sourced. HS are formed under a variety of environmental conditions and are, 3 

therefore, highly heterogeneous and structurally difficult to define (Senesi, 1994). 4 

Commercial products often contain mixtures of humic materials and added plant nutrients; 5 

hence the cause of any observed beneficial effect cannot be easily attributed to the HS 6 

themselves. In addition, the recommended rates of application of commercial products are 7 

generally very small in relation to the natural levels of HS present in the soil. As a 8 

consequence, the effect of a HS product is substantially less predictable than other plant or 9 

soil amendments of a known chemical structure, such as inorganic fertilisers or synthetic 10 

organics including pesticides and growth regulators. Moreover, because of the multiple 11 

chemical functional groups of HS, a particular HS product may behave completely differently 12 

under different environmental conditions, or when applied to different plant species. Finally, 13 

as with many chemical fertilizers, the timing, location and rate of application will play a 14 

crucial role in determining whether beneficial or harmful effects will evolve and whether or 15 

not any beneficial effects are economically worthwhile. This is particularly important because 16 

recent publications have pointed out potential negative effects and have questioned the 17 

economic viability of applying HS for improved crop production (Asli and Neumann, 2010; 18 

de Santiago et al., 2010; Hartz and Bottoms, 2010).  19 

In light of the potential benefits of HS, together with their inconsistent performance under 20 

field conditions, we sought to improve the understanding of the effects of HS on plant growth 21 

by conducting a meta-analysis of published literature. More specifically, our objectives were 22 

(i) to quantify the magnitude and likelihood of plant growth promotion, in terms of shoot and 23 

root biomass, resulting from HS application, (ii) to determine the influence of environmental 24 

conditions, plant type, HS properties, and the manner of application on plant growth response 25 
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to HS, (iii) to identify gaps in our understanding of the interaction of HS with plants, and (iv) 1 

to provide some general recommendations for the practical use of HS in agronomic systems 2 

and suggestions for future work.  3 
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2. Meta-analysis 1 

 2 

2.1 Methods 3 

 4 

2.1.1 Literature search and refinement 5 

We conducted a search of the databases Scopus and ISI Web of Science using a combination 6 

of search terms including ‘humic’ AND ‘plant’ AND ‘effect’ AND ‘growth OR yield’. This 7 

search was designed to provide an un-biased selection of potential studies, rather than act as 8 

an exhaustive search for all studies in this area. The search yielded 390 papers, the abstracts 9 

of which were screened in the first instance to determine if the experiments conducted 10 

involved the application of HS to plants. Unsuitable abstracts (no plants grown or no HS 11 

applied: 185 papers), non-research articles (6 papers) and publications in languages other 12 

than English (19 papers), were not reviewed further. The full text of all remaining papers 13 

were sought and scrutinized to determine if a measure of plant shoot (SDW) or root (RDW) 14 

dry weight was reported for both a HS treatment and a suitable untreated control. Papers not 15 

fulfilling this minimum requirement were also excluded from our analysis (99 papers). The 16 

full reference list including rejected papers is available on request or on our website 17 

(soilecology.org), and a list of accepted papers is given in Appendix 1 and Appendix 2. From 18 

a total of 390 papers originally found, 81 were retained for the meta-analysis; with 57 studies 19 

presenting data on SDW and 39 studies reporting RDW. This provided over 700 data points 20 

on which to base our analysis, which can be updated and expanded in future as research 21 

progresses. It is important to note that few of the retrieved studies report results from 22 

statistically rigorous field trials testing plant growth responses to HS through to crop 23 

maturity. We would like to emphasize that our meta-analysis therefore reflects this limitation, 24 
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but nevertheless provides important information about trends in plant growth response and 1 

how they might be manipulated for maximum agronomic benefit.    2 

 3 

2.1.2 Response and moderator (explanatory) variables 4 

The focus of many investigations is on either shoot or root responses to HS, but not both; 5 

consequently we assessed SDW and root dry weight RDW as separate response variables. We 6 

were also interested to examine if HS affect both root and shoot biomass in a similar manner, 7 

or whether growth effects are biased toward either plant organ under different circumstances.  8 

In order to test our hypotheses we used the data available in the papers included in our 9 

analysis to identify a set of continuous and categorical groups that we predicted would 10 

influence the responsiveness of plants to HS applications. These groups fell under four broad 11 

areas: environmental conditions; plant type; HS properties; and the method of HS application.  12 

 13 

2.1.2.1 Environmental conditions 14 

Originally we attempted to populate a data matrix containing quantitative data of 15 

experimental growth conditions, including pH, EC, nutrient availability and temperature; 16 

however, full data sets were rare, and we did not further pursue this avenue of investigation. 17 

Instead, we created two proxy categories based on data that were routinely reported: growth 18 

media and stress conditions. Growth media contained three levels: hydroponic culture, soil 19 

culture or hybrid culture. Hybrid culture entailed the growth of plants on a solid, but 20 

relatively inert media (for example sand, vermiculite, perlite or peat) and regular fertilisation 21 

with nutrient solution. The stress conditions category was also designated into one of three 22 

levels: no stress, moderate stress or high stress.  No stress included studies that did not 23 
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explicitly state stress as an investigation factor, or did not include treatments (other than HS 1 

application) that reduced growth to less than 90% of non-treated controls. Moderate and high 2 

stress involved treatments (additional to HS application) that reduced growth by 10-50% or 3 

>50% as compared with non-stress controls, respectively. 4 

 5 

2.1.2.2 Plant type 6 

The plant species used in each study was recorded and subsequently categorised into three 7 

levels: monocotyledonous plants, dicotyledonous herbs and woody perennials.  8 

 9 

2.1.2.3 Humic substance properties 10 

To characterise the HS used, we initially tried to obtain quantitative chemical data on the 11 

composition of HS used in each study, such as percentage C, H, N and O; molecular weight 12 

range distribution; and carbon functional group composition as analysed by nuclear magnetic 13 

resonance spectroscopy (NMR). Unfortunately, such data were sparse. As an alternative, we 14 

created a sub-category based on the source of the humic acids, which included brown coal, 15 

peat, soil, compost (green waste), compost (manure) and unreported. The level ‘brown coal’ 16 

included HS extracted from lignite, leonardite and sub-bitumous coals. Although many 17 

papers used commercial HS, these were usually identified by trade name or manufacturer and 18 

could therefore be traced to the original source. Composts included both vermicomposts and 19 

traditional composts.  20 

 21 

2.1.2.4 Method of application 22 
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Two sub-categories were created to characterise the method of HS application. The first 1 

included the ‘site’ of application as foliar-applied, root-applied, combined foliar-root 2 

application or soil-application. Root-application generally involved addition of the HS into 3 

the growing medium. HS applied to seed were designated as ‘combined’ application, our 4 

rationale being that both the roots and shoots come into contact with the HS on germination. 5 

The second moderator within this category was a continuous variable that specified the rate 6 

of HS application. All rates were converted into mg of HS per kg of growing medium. In the 7 

case where rates were reported as mass of HS per volume of growing medium and bulk 8 

density was not given, a bulk density of 1.0 g cm-3 was assumed. In the case where rates were 9 

reported as mass of HS per unit area, we assumed passive incorporation to a depth of 10 mm, 10 

and again, a bulk density of 1.0 if not otherwise reported.  11 

 12 

2.1.3 Statistical analyses 13 

Response ratios to HS treatment were calculated for SDW and RDW, such that, 14 

L = Ln(DWHS/DWC) 15 

Where DWHS is the dry weight of shoot or root biomass of plants treated with HS, and DWC 16 

is the dry weight of the non-treated control grown under the same conditions. The variance of 17 

the response ratio was calculated according to Hedges et al. (1999) using the standard error 18 

and number of replicates reported for each individual study. Where standard errors were not 19 

presented or could not be calculated, we assumed a standard error of 10% of the mean 20 

(Gattinger et al., 2012; Luo et al., 2006). Response ratios were analysed using the ‘metafor’ 21 

package (Viechtbauer, 2010) within the statistical program R (R Development Core Team, 22 

2005). The ‘metafor’ package provides functions for fitting both fixed- and random-effects 23 
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models to observed outcome measures, with or without the inclusion of moderator variables 1 

(study-level covariates). For our purpose, the SDW or RDW response was taken as the 2 

observed outcome measure, and the variables growth media, stress condition, plant type, HS 3 

source, application site and application rate were designated as moderators. The overall 4 

heterogeneity was initially assessed by excluding all moderator variables, and each moderator 5 

was subsequently tested one-by-one as a sole covariate, in order to ascertain its individual 6 

power to explain the observed heterogeneity. All models were run using the restricted 7 

maximum-likelihood estimator function. Publication bias was assessed by creating funnel 8 

plots (Egger et al., 1997) and assessing asymmetry in the data by conducting a meta-analytic 9 

regression test using variance as a predictor in the ‘metafor’ function regtest.rma 10 

(Viechtbauer, 2010). 11 

Although mixed-effect modelling in this framework is useful for combining multiple studies 12 

and estimating aggregate effects of covariates, it lacks the capability to model non-linear 13 

functions and is not very efficient for modelling interactions between variables, both of which 14 

are common occurrences in environmental systems. In order to further explore the complex 15 

nature of HS effects on plant growth, we therefore also conducted classification and 16 

regression tree (CART) modelling (De'ath and Fabricius, 2000). This non-parametric 17 

approach repeatedly splits heterogeneous data into increasingly homogeneous subsets. It is 18 

commonly used to establish prediction criteria based on a number of explanatory variables, 19 

but can also be used to rank the importance of these explanatory variables in describing the 20 

overall heterogeneity of a data set (De'ath and Fabricius, 2000). Depending on splitting 21 

criteria, a number of different CARTs can be produced from the same data set, with differing 22 

bias and predictive power. To overcome the issues inherent in constructing a singular CART, 23 

we performed a boosted regression tree (BRT) using the R package ‘gbm’ (Ridgeway, 2013) 24 

combined with the ‘rt’ vignette (Elith and Leathwick, 2013; Elith et al., 2008). Boosting 25 



13 
 

grows the suite of trees by sequentially modelling the residuals throughout all parts of the 1 

data space, including those for atypical observations that depart from the dominant patterns 2 

explained by the initial trees (Elith et al., 2008). Weakly predictive trees are aggregated to 3 

create an improved model, thereby reducing both bias (through forward stagewise fitting) and 4 

variance (through model averaging).  5 

Using the output from the regression tree analysis, we partitioned the data sets according to 6 

the two most influential explanatory factors, and plotted the growth response against the rate 7 

of HS application. Inferences were made by fitting linear models to log-transformed data. 8 

 9 

2.2 Results 10 

 11 

2.2.1 Data quality and aggregate effect of HS on plant growth 12 

Case diagnostics performed using the ‘influence’ function of the metafor package identified 13 

12 outlier data points in the SDW data set and four outliers in the RDW data set that exerted 14 

considerable influence on the random effects model fit; these data points were therefore 15 

excluded from the model. The revised random effects model predicted that HS application 16 

significantly (Table 1) increases both SDW and RDW by 19±3 % and 20±4%, respectively. 17 

Publication bias was not detected by regression tests of funnel plot asymmetry for either the 18 

SDW (p=0.96) or the RDW (p= 0.51) data set.  19 

Subsequent inclusion of moderator variables into the model showed that the shoot growth 20 

response was not significantly influenced by the growth media or the application site, but was 21 

significantly affected by the source of HS used, stressful growing conditions, the type of plant 22 

being treated and the rate of HS applied (Table 1). Of the HS source categories, only peat-23 
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derived HS did not significantly affect shoot biomass accumulation (4±12%) (Figure 1). 1 

Brown coal derived HS increased SDW response (12±4%), but was less effective than HS 2 

extracted from green waste compost (29±8%), manure compost (28±8%) and soil (25±8%).  3 

Plants were significantly more likely to increase shoot growth in response to HS application 4 

under highly stressful conditions (28 ±6%) than non-stressful conditions (18±3%). Also, 5 

woody perennials did not show any significant shoot growth promotion in response to HS 6 

application.  7 

In contrast to shoot growth, the effect of HS on root growth was not significantly influenced 8 

by stress or application rate, but the source of the HS still moderated the growth response in a 9 

similar fashion to that of shoots (Table 1). Under these circumstances, both peat- and brown 10 

coal-derived HS did not affect root growth, but all other HS promoted plant root growth by 11 

12-40% (Figure 2). The root growth of woody perennials was similarly not significantly 12 

affected by HS application, and although the growth media moderated the root growth 13 

response (Table 1), there were no significant differences between the different growth media 14 

(Figure 2).  15 

 16 

2.2.2 Factors influencing HS efficacy 17 

To further investigate the source for variability in plant growth response to HS, a boosted 18 

regression tree model (BRT) was constructed and analysed. The optimised BRT was superior 19 

to the mixed-model meta-analysis in terms of model fit to both SDW and RDW. The BRT 20 

revealed that application rate, HS source and plant type were the most important factors 21 

regulating on HS impact on shoot and root growth; this was in agreement with the results of 22 

the mixed effect model (Figure 3). In comparison, application rate, HS source and stress 23 



15 
 

conditions were most important for root growth. The growth media used and the location of 1 

application played less of a role in influencing HS efficacy than the other variables.  2 

The distributions of the modelled data emphasized the variability in response of plant growth 3 

to HS application (Figure 4 and Figure 5). As in the mixed model, brown coal- and peat-4 

derived HS did not promote plant growth as strongly as other HS, and woody perennials 5 

generally responded negatively to HS application. Trends in other explanatory variables were 6 

not readily apparent, suggesting more complex interactions between variables were 7 

responsible for explaining the observed heterogeneity of shoot and root growth response. 8 

 9 

2.2.3 Factor interactions 10 

Interactions between HS source and application rate were found to be important in explaining 11 

the variation in both shoot and root growth response to HS. An interaction between plant type 12 

and application rate was also apparent for shoot growth, whilst an interaction between HS 13 

source and stress conditions was the most important pairwise interaction involved in root 14 

growth response (Table 2).   15 

To further investigate the interactive effects revealed in our analysis, we re-plotted both sets 16 

of response data according to the interactions between the three most important explanatory 17 

variables; in the case of shoots this was application rate, HS source, and plant type and for 18 

roots this was application rate, HS source and stress conditions. Whereas increasing rates of 19 

green waste compost HS application to both monocots and dicots was positively related to 20 

shoot growth over untreated control plants, the application of soil-derived HS appeared to 21 

stimulate plant shoot growth more effectively at lower application rates (Figure 6). 22 

Furthermore, higher rates of brown coal and peat derived HS appeared to inhibit shoot 23 
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growth in woody perennials relative to untreated controls, but the application rate of these HS 1 

did not affect the shoot growth of monocots and dicots in any consistent fashion.   2 

With regard to root biomass response (Figure 7), increasing rates of brown-coal derived HS 3 

were negatively related to root growth under conditions of stress, but did not consistently 4 

affect growth under non-stress conditions. The opposite occurred with soil-derived HS, with a 5 

positive root growth response to increased application rates under high stress conditions. 6 

However, as with brown-coal derived HS, inconsistent effects were observed under low and 7 

non-stress conditions. 8 

 9 

3. Plant growth response to Humic Substances: moderating factors 10 

 11 

3.1 General plant growth response 12 

Humic substances are becoming increasingly available as commercial supplements for crop 13 

improvement, but growth effects can be positive or negative and difficult to predict (Quilty 14 

and Cattle, 2011). In considering a wide range of published studies, we found that HS 15 

generally increase shoot and root growth by 15-25%, but high variation increases risk to 16 

farmers. For example, approximately half of the studies on SDW response and one-third of 17 

RDW studies failed to increase growth by more than 5%, which we consider to be 18 

agronomically significant. Thus there is a strong need to improve consistency and 19 

predictability of the growth response. 20 

 21 

3.2 Application rate 22 
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Regression tree-modelling showed the rate of HS application and its interaction with other 1 

factors as important predictors of growth promotion by HS. This is in contrast to the linear 2 

mixed effect modelling, which suggested only a minor significance to shoot dry weight. The 3 

contradiction between the two models implies that although the application rate has a strong 4 

influence on the growth of plants receiving HS, the response is non-linear. Biological 5 

responses to increasing concentrations of HS are often best-described by quadratic functions, 6 

whereby an optimum concentration is identified after which the response declines or 7 

inhibition occurs (Chen and Aviad, 1990; Dobbss et al., 2010; Liu et al., 1998; Schluckebier 8 

and Martin, 1997). Although quadratic functions may hold over concentration ranges 9 

covering an order or two of magnitude, there is some evidence that other functions (e.g. 10 

cubic) can sometimes be more appropriate (Liu et al., 1998). In these situations, where 11 

positive-negative-positive responses are observed, we speculate HS operate through different 12 

mechanisms that only become pronounced at particular concentrations. Chen et al. (2004a) 13 

suggest that in hydroponic studies, this occurs because of increasing then decreasing 14 

bioavailability of micronutrients brought about by HS-micronutrient complex stability. In soil 15 

environments, similar chemical and biological processes may occur at lower rates, whilst 16 

physical effects might begin to dominate at higher rates. Importantly, interactions between 17 

the application rate and other factors means that a particular response curve generated under 18 

one condition is unlikely to be transferable to other conditions. This was illustrated by 19 

Dobbss et al. (2010), who used a quadratic function to describe plant root branching 20 

stimulated by different concentrations of HS derived from vermicompost, but found that the 21 

optimal dose varied between the HS used and also the plants to which they were applied.  22 

 23 

3.3 Humic substance properties 24 
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Plant growth responses are strongly affected by the type of HS applied. The importance of the 1 

source of HS was discussed by Chen et al. (2004a), who attributed the variability in plant 2 

growth response to the variability in HS used before the introduction of standardized 3 

extraction procedures by the International Humic Substances Society. Our study and analysis 4 

of the literature suggests that compost- and soil-derived HS have a greater positive effect than 5 

brown coal and peat-derived HS. Such an effect is likely to be related to the chemical 6 

structure of HS derived from each source, and possibly also related to co-extracted mineral 7 

nutrients remaining in HS formulations.  8 

With regard to the chemical structure of HS, we hypothesise that the N content of the 9 

compost and soil-derived HS, which is generally higher than that found in brown coal and 10 

peat-derived HS (e.g. (Simpson et al., 2003)), could be a strong driver of growth via a 11 

number of mechanisms.  First, mineralization of HS can liberate plant-available N (and 12 

possibly other nutrients, such as P) to stimulate plant growth (Alvarez and Steinbach, 2011; 13 

Valdrighi et al., 1996). Amide (N-containing) functional groups of HS become quickly 14 

depleted in soils (Tatzber et al., 2009a), with initial decomposition half-lives of HS derived 15 

from fresh animal manures being as rapid as 2-4 months (Tatzber et al., 2009b). Because 16 

compost and soil derived HS are generally at a lower stage of humification than brown coal 17 

and peat HS, their decomposition by biological activity is likely to be faster. The fact that 18 

green waste compost-HS application leads to increased plant productivity in a dose-19 

dependent manner (Figure 6) supports a direct N-fertilization hypothesis: for example, 50% 20 

mineralization of compost HS containing 5% N applied at 1000 mg kg-1 would provide 21 

approximately 25 kg mineral N per ha in a 0.01 m layer. Indeed, in the study conducted by 22 

(Valdrighi et al., 1996), compost-derived HS only significantly improved plant growth at 23 

rates ≥ 1000 mg kg-1. In comparison, more biologically stable BC-derived HS, containing 24 
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only 1-2% N and usually applied at lower rates, is unlikely to contribute to the nitrogen 1 

nutrition of plants to any appreciable extent.  2 

Although this explanation is appropriate for the case for high-N containing HS applied at 3 

high rates, it does not account for their performance when applied at lower rates. Examination 4 

of the rate-dependent effects of soil-derived HS (Figure 6) shows a positive growth response 5 

between approximately 25-750 mg kg-1 that declines at higher rates. Low rates of most HS 6 

should not contribute enough N to explain observed growth increases. An alternative, or 7 

complementary, mechanism may involve direct stimulation of plant growth through 8 

hormone-like activity at lower HS concentrations. Hormone-like activity of HS has been 9 

linked to N-containing compounds, including indoles such as auxins (Nardi et al., 2000), and 10 

polyamines (Young and Chen, 1997). More recently, Canellas et al. (2012) showed that the 11 

induction of lateral roots in plants by HS is positively related to the hydrophilicity of the HS, 12 

especially the O-alkyl and methoxyl/N-alkyl chemical functional groups identified by NMR. 13 

Less-humified HS that contain more polar N- and carboxyl-functional groups also exhibit a 14 

greater ability to chelate micronutrient elements, such as Zn, Cu and Fe (Chen et al., 2004a), 15 

which may contribute to improved plant growth under some conditions (Garcia-Mina et al., 16 

2004). As an example, Azcona et al. (2011) found superior growth promotion and more rapid 17 

maturation of peppers by a compost-derived HS compared with a leonardite-derived HS. 18 

Although the compost HS had a higher N-content (7.1%) than the peat-derived HS (1.3%), 19 

the authors ruled out nutrient-supply effects (including N) by ensuring adequate chemical 20 

fertilisation, and concluded the growth effects were probably a result of the structural organic 21 

characteristics of the HS.  22 

It is important to note that the true role of HS in plant signalling is still being strongly debated 23 

(Chen et al., 2004a; Trevisan et al., 2010) and the contribution of N-containing residues to 24 

plant growth stimulation has not been directly investigated. In addition, HS derived from 25 
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younger organic material, such as those derived from compost and soils, usually contain a 1 

lower molecular weight distribution of molecules/aggregates, which has also been implicated 2 

in initiating plant growth responses. Regardless, what is agreed is that there is a need for 3 

detailed chemical and spectroscopic characterization of HS to ensure that suitable 4 

comparisons can be made between different studies (Canellas et al., 2012; Trevisan et al., 5 

2010). In this respect, it is difficult to make a concrete conclusion on the cause for the rate-6 

response dynamics of plants to soil-derived HS observed here.  7 

 8 

3.4 Environmental conditions 9 

Environmentally stressful conditions, such as salinity, heavy metal toxicity or nutrient 10 

deficiency, rather than the plant type, played a more prominent role in shaping the root 11 

growth response to HS. This finding is especially relevant to the agronomic use of HS, 12 

because soil degradation, climate change and diminishing water and nutrient resources are 13 

becoming increasingly important constraints to agricultural production, and recommendations 14 

for using HS are often directed at alleviating these stresses (Billingham, 2012). Although 15 

application rates greater than 100-200 mg kg-1of brown coal-derived HS generally inhibited 16 

root growth under stressful conditions, the stress condition under which these types of HS 17 

were applied was limited to micronutrient deficiency. In comparison, higher application rates 18 

of soil-derived HS actually improved root growth; but the stress conditions under which these 19 

HS were applied did not include micronutrient deficiency, instead involving salinity or heavy 20 

metal toxicity. Both these effects can be accounted for by the high cation exchange capacity 21 

of HS. On the one hand, high rates of HS (regardless of source) could easily aggravate 22 

micronutrient deficiency by depleting the available pool for plant uptake, as highlighted by 23 

reduced Zn uptake in the hydroponic studies of (Vaughan and Macdonald, 1976). 24 

Conversely, high rates of HS would alleviate heavy metal or salinity stress by binding excess 25 
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cations. Taking this into consideration, the type of stress, rather than a stress-by-HS source 1 

interaction, would therefore be a more important factor in HS efficacy at high rates.   2 

Unfortunately, our capacity to draw further conclusions is limited by the paucity of studies 3 

available that characterise plant growth under stressful conditions when treated with low 4 

application rates of HS. There is evidence to suggest that under micronutrient deficient 5 

conditions low rates of HS can actually assist in mobilising micronutrients, whilst 6 

maintaining a capacity to reduce plant uptake of micronutrients at high or toxic levels (Chen 7 

et al., 2004a; Garcia-Mina et al., 2004; Stevenson, 1994). More recent studies also show that 8 

low rates (<100 mg kg-1) of compost HS can also reduce the severity of plant stress directly, 9 

by stimulating an anti-oxidant stress response in roots that effectively primes the plant to 10 

resist other stresses (Garcia et al., 2012). Overall, the actual consequence of the interaction 11 

between HS source, application rate and stress conditions is likely to arise from both indirect 12 

and direct mechanisms. More research is therefore needed in order to quantify and predict the 13 

conditions under which specific mechanisms will dominate.  14 

 15 

3.5 Plant type 16 

The effect of HS on shoot biomass was not only dependent on the source and rate of 17 

application, but also the plant type. Such an interaction is not altogether surprising and has 18 

been previously emphasised (Vaughan and Malcolm, 1985). In our synthesis, not only did HS 19 

treatment inhibit the shoot growth of woody perennial plants as compared with herbaceous 20 

plant species, it also resulted in significantly lower biomass than non-treated controls. 21 

Partitioning of the data set showed that only BC- and peat-derived HS were applied to woody 22 

perennials, rather than compost- or soil-derived HS, which may have inflated the difference 23 

between plant types. Furthermore, the fact that the number of studies examining woody 24 
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perennials was low (ns=3) and the rates of BC-derived HS used on this plant type were 1 

relatively high (>300 mg kg), means that these results are not fully representative of HS 2 

interaction with woody perennials. Nevertheless, in each of these studies a dose-response 3 

trend was observed (Kelting et al., 1998; Marino et al., 2008; Vallini et al., 1993), implying a 4 

causal relationship and again emphasising the importance of application rate in determining 5 

the growth response.  6 

With regards to broad-acre cropping, a more useful distinction would concern differences 7 

between monocotyledonous and dicotyledonous plant species. Although our results only 8 

suggest marginal differences between monocots and dicots, there is some evidence in the 9 

literature showing clear differences between plant types. It is possible that some differences 10 

between plant types are related to the inherent susceptibilities to particular soil conditions, 11 

especially micronutrient availability. For example, Garcia-Mina et al. (2004) found that the 12 

effects of a Zn–HS complex on the shoot and root dry weight of alfalfa under Zn-deficient 13 

conditions were significantly positive, but not so in wheat. They speculated that the results 14 

reflected the greater sensitivity of alfalfa to Zn deficiency. In contrast, Dobbss et al. (2010) 15 

found that the optimum concentration of HS required to stimulate root branching in maize 16 

was approximately half that required for maximum stimulation of the dicots tomato and 17 

Arabidopsis, suggesting a greater efficacy toward monocots. 18 

 19 

4. Practical use of HS in agriculture 20 

 21 

4.1 Direct application 22 

A key decision for a farmer or land-holder in applying any soil or plant amendment is the rate 23 

at which it should be applied in for maximum efficacy at minimum cost. According to Quilty 24 
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and Cattle (2011), the cost of HS is in the range of $40-800 t-1. At application rates of 100 mg 1 

kg-1, approximately equivalent to 100 kg ha-1 in topsoil (10 cm incorporation), this translates 2 

to costs in the range of $4-80 ha-1. In comparison, the cost of N fertilizer is approximately 3 

$1000 t-1 (per unit of N) (USDA, 2012), such that 100 kg N ha-1 translates to a cost of 4 

approximately $100 ha-1. Considering that the yield response of crops to N-fertilizer is 5 

consistent and profitable (Liu et al., 2006), the use of HS at rates higher than 100 mg kg-1 for 6 

the sole purpose of short-term increases in biomass productivity in non-compromised soils is 7 

unlikely to be competitive with conventional fertilizer practices at current prices. Compost-8 

derived HS, which significantly increase plant growth response at high rates, may be cost-9 

effective if the waste is produced locally and is available at little or no cost. Even so, the 10 

additional step of isolating HS from the compost would likely be more of a hindrance than 11 

the alternative option of spreading solid compost directly. The results of our study also 12 

caution against using high rates of HS on woody perennials because of potential growth 13 

inhibition, although more research is needed for this recommendation to be conclusive.  14 

Despite the lack of incentive for applying high rates of HS under satisfactory growth 15 

conditions, it may be justified in certain instances where environmental conditions are a 16 

constraint to plant growth. Indeed, our synthesis indicates that HS may be most efficacious 17 

under stress conditions. Amelioration of saline soils or soils contaminated with heavy metals 18 

with HS appears to have positive growth effects on plants, and could assist in reclaiming 19 

marginal lands with these characteristics. The effectiveness of HS for assisting plants to 20 

tolerate or overcome stress could also extend to conditions of drought (Zhang and Schmidt, 21 

2000) or pathogen control (Loffredo et al., 2008), but these possibilities could not be 22 

addressed by the data available in our study. In any case, care should be taken to identify the 23 

environmental constraint and ensure that the stress is not exacerbated; for example HS 24 
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application greater than 100 mg kg-1 to micronutrient-deficient soils may actually further 1 

inhibit, rather than stimulate, plant growth.  2 

The question then remains; are low rates (<100 mg kg-1) of HS application efficacious and if 3 

so, economically and practically worthwhile? To answer this question we focussed on HS 4 

derived from brown coals, as these usually form the basis of commercial products. We found 5 

that the growth response to low rates of brown coal-derived HS is non-linear and is more 6 

appropriately described by the sum of two quadratic functions rather than a single quadratic 7 

or higher polynomial (Figure 8). An initial sharp peak in growth response is observed 8 

between 5-40 mg kg-1 with a maximum around 20 mg kg-1, followed by a more gradual 9 

growth increase from 40-200 mg kg-1. There appears to be a greater opportunity to maximise 10 

plant growth promotion by applying brown coal-derived HS in the lower range (5-40 mg kg-11 

1) of the initial peak, which would also be more economically rational. Based on the 12 

extrapolation of a number of studies, Chen et al. (2004b) calculated the amount of HS 13 

required for an effective soil application to be 22.5 mg kg-1, equivalent to 75 mg L-1 of HS 14 

dispersed in a soil at a moisture content of 30%. This value is very close to the peak of the 15 

low-range quadratic response calculated here.  16 

Unfortunately, the reasons for growth promotion at these low rates cannot be directly 17 

determined through meta-analysis of the data collated here. As outlined earlier, the 18 

interaction of HS with plant essential elements, including N, P and micronutrients, is known 19 

to improve nutrient availability and may be one reason for growth promotion at low rates. If 20 

this is correct, a substantial agronomic opportunity therefore exists to improve the efficiency 21 

of fertilizer nutrient use, rather than enhancing growth per se. There is also evidence that HS 22 

can positively interact with beneficial microorganisms, offering the possibility of additional 23 

productivity gains if harnessed appropriately.  24 
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 1 

4.2 Application as synergists 2 

The chemical properties of HS, including hydrophilic and hydrophobic domains and 3 

zwitterionic features, facilitate interactions with a wide variety of soil constituents. 4 

Theoretically, these properties act to buffer biological susceptibility to nutritional extremes, 5 

such that high activities of salts, metals and protons in the soil solution can be reduced, whilst 6 

low activities of nutrients are mobilised into plant-available forms. Recent research has 7 

demonstrated the potential for exploiting these properties of HS to design slow- or controlled-8 

release fertilizers that better match the availability of nutrients to the plant lifecycle 9 

(Davidson and Gu, 2012).  10 

Nitrogen fertilizers coated with humic acids are commercially available and are reported to 11 

increase fertilizer use efficiency (Chen et al., 2008), probably through a number of 12 

mechanisms. First, HS have been shown to significantly reduce urea hydrolysis from urea-13 

ammonium nitrate (UAN) and also retard the formation of NO3
-, implying urease- and 14 

nitrification-inhibition activity (Alkanani et al., 1990). Reduced urea hydrolysis in HS-treated 15 

soils has been linked to biological buffering of the HS on microbial populations and enzyme 16 

activities (Dong et al., 2009). However, GarciaSerna et al. (1996) also showed that humic 17 

acids (1% w/w) sprayed onto the surface of urea or nitrophoska granules slow nitrogen 18 

release through physico-chemical mechanisms, but probably not solely by acting as a 19 

physical coating since the release curve was observed to be convex, not concave. Aside from 20 

slowing the formation and release of ammonium (NH4
+) from urea, HS can also reduce the 21 

volatilization of ammonia without significantly altering pH, which is one of the main drivers 22 

of NH3 emission (Kasim et al., 2009). Erro et al. (2007) formulated a compound HS-NPK 23 

fertiliser and observed reduced ammonia volatilisation, reduced N-leaching, and increased 24 
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plant growth with respect to an NPK control fertiliser. However, Kiran et al. (2010) found 1 

that humic-coated urea did not improve N-use efficiency in rice paddy systems, whereas a 2 

number of other controlled-release fertilizer formulations were effective.  3 

There is also evidence that the association of soluble phosphate with HS reduces its binding 4 

and precipitation in soil, allowing for greater plant uptake (Alvarez et al., 2004; Hua et al., 5 

2008; Schefe et al., 2008). Indeed Gerke (2010) suggests that the majority of bicarbonate-6 

extractable P (e.g. Olsen-P, Colwell-P) actually exists in soil as humic-metal-P, rather than 7 

free or sorbed orthophosphate, but becomes liberated by acidification steps during analysis. 8 

On the basis of these reports, Erro and co-workers (Erro et al., 2012; Erro et al., 2009) 9 

developed and characterised the performance of several ‘organic complexed superphosphate 10 

(CSP)’ fertilisers. The CSPs were produced by introducing HS during the chemical synthesis 11 

of single-super phosphate (SSP). Glasshouse experiments showed that CSPs consistently 12 

enhanced P-accumulation in wheat grown in both acid and alkaline P-fixing soils when 13 

compared against a SSP control treatment. The authors suggested that greater P-uptake 14 

efficiency afforded by the CSPs is related to the formation of stable monocalcium –15 

phosphate-humic complexes during CSP preparation.  16 

Together, these results suggest a role for the use of HS in improving N- and P-use efficiency 17 

in cropping systems, but more work is needed in developing effective formulations. The 18 

potential for using HS to improve micronutrient availability and absorption is also well 19 

recognized (Chen et al., 2004a; Garcia-Mina et al., 2004), but there is a noticeable lack of 20 

experimental studies reporting the efficacy of micronutrient-HS fertilizer formulations. In 21 

fact, one recent study showed that HS-Fe complexes were ineffective at supplying iron to Fe-22 

deficient soybean, either as a foliar spray or through root absorption, whereas synthetic 23 

chelates (e.g. EDTA) were effective at delivering Fe (Rodriguez-Lucena et al., 2010). 24 

Because there are an ever increasing number of humic-coated or humic-containing fertilizers 25 
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on the market, further research and validation of such products is urgently needed to provide 1 

farmers with reliable information for making agronomic decisions.  2 

Another strategy gaining popularity in sustainable agronomy is the use of microbial 3 

inoculants in agriculture as plant-growth promoters (PGPs). These PGPs can assist in nutrient 4 

acquisition, stress tolerance and pathogen suppression through diverse biological functions. 5 

Although substantial work has been done in this area, little is known about the interactions of 6 

PGPs with indigenous or exogenous HS. To our knowledge, only one study has directly 7 

examined the potential to use HS in conjunction with PGPR for stimulating plant growth 8 

(Canellas et al., In Press). These authors speculated that the auxin-like action of HS could 9 

improve the colonization ability of PGPR via root-branching nodes, as has been previously 10 

observed with the synthetic auxin 2,4-D (Katupitiya et al., 1995). They found that co-11 

inoculation of Herbaspirillum seropedicae with 20 mg HS C L-1 improved colonization of 12 

maize roots, but that this effect was dose dependent and that colonization was inhibited at a 13 

higher HS concentration. Validation of this effect in the field confirmed a synergistic effect, 14 

with maize yield increasing an additional 45-48% when HS and H. seropedicae were applied 15 

in combination, compared with sole treatments of H. seropedicae or HS, respectively. The 16 

authors caution against generalising this result until further studies can be performed, but 17 

their results clearly warrant more research in this area with other PGPR strains.  18 

It would also be interesting to extend this research to the effects of HS on plant-microbial 19 

symbioses, such as rhizobial and mycorrhizal associations. These co-operative plant 20 

microbial associations are critical components of nutrient cycling in agro-ecosystems and 21 

enhance plant nutrient acquisition (Peoples and Craswell, 1992; Smith and Read, 2008; Zhu 22 

et al., 2001). Although Vallini et al. (1993) reported a depression in the mycorrhizal 23 

colonization of laurel roots and hyphal length in the presence of high concentrations of HS 24 

(>800 mg kg-1), a more recent study by Gryndler et al. (2005) found that HS applied in 25 
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hydroponics at a rate of approximately 800 mg L-1 stimulated maize root colonization and 1 

production of extraradical mycelium by the mycorrhizal fungus Glomus claroideum BEG 23. 2 

In a similar fashion, Gaur and Bhardwaj observed a greater nodule formation in the legume 3 

Sesbania aculeata by native rhizobia when sodium humate was amended into soil at a rate of 4 

600 mg ka-1. Unfortunately, as Gryndler et al. (2005) acknowledged, experiments on the 5 

effects of HS on plant-microbial symbioses are rare and it is difficult to make any consistent 6 

conclusions. 7 

 8 

5. Knowledge gaps and research needs 9 

 10 

Through the process of meta-analysis, a number of knowledge gaps have also been identified. 11 

First, the majority of papers reporting experiments on HS lack information about the organic 12 

structure, molecular nature and size, and mineral concentrations of the HS amendments.  13 

Considering the importance of HS source shown by our analysis, provision of this kind of 14 

information in future studies will be necessary in order to increase our understanding of how 15 

particular HS improve plant growth. Such knowledge may subsequently open the door to 16 

tailoring HS products for specific purpose. In conjunction with HS characteristics, more 17 

complete meta-data about the environmental conditions under which the HS are applied are 18 

needed. Data about the soil, such as the nature of native organic matter, pH, EC, texture and 19 

mineral nutrient concentrations are required to increase our understanding of HS-soil-plant 20 

interactions. The focus of most studies conducted in soil is on the HS applied and few if any 21 

have attempted to reconcile the possible interactions between HS already in the soil (where 22 

HS levels would be much higher) and those applied. The complexity of scientifically 23 

addressing this research question is possibly why data is lacking. In addition, there is the 24 
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recognised fact that the extraction processes, generally involving alkaline treatments, are 1 

likely to have chemically modified the original organic materials (Swift et al., 1996). 2 

In terms of agronomic management, HS application rate is a critical decision that can not 3 

only affect plant growth, but also economic margins. More work is needed involving valid, 4 

scientifically designed field trials with crops grown to harvest, in order to define application 5 

rate windows that will maximise growth whilst minimising the risk of economic loss. 6 

Interestingly, the majority of studies reviewed here only measured growth responses for less 7 

than 3 months during early vegetative growth. It remains unknown if the trends observed in 8 

the early stages of plant growth will be maintained for the duration of the plant life cycle and 9 

therefore translates into yield gains at harvest. This knowledge gap is currently being further 10 

pursued by the authors.    11 

The use of HS in conjunction with inorganic fertilisers is of direct relevance here, as HS may 12 

improve nutrient recovery by plants without enhancing growth per se, leading to reduced 13 

fertiliser input costs. There is also a real need to systematically determine the effects of 14 

adding HS on soil microbes and related carbon and nutrient cycling. Much of the work 15 

focussed on the effect of HS on nutrient acquisition by plants has been conducted in 16 

hydroponic systems and may therefore overlook the importance on plant-microbial 17 

associations in the rhizosphere.  18 

Finally, there is a paucity of data surrounding the long-term effects of HS, or of repeated HS 19 

application. The majority of studies reported here had durations of less than 6 months, and in 20 

many cases were only observed over daily or weekly timeframes. Any improvements to soil 21 

quality are likely to occur over longer periods and effects on crop growth may not be 22 

quantifiable in the short term, in accordance with long-term studies of other ‘organic’ 23 

agronomy practices (Clark et al., 1998; Gosling and Shepherd, 2005). 24 
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 1 

6. Conclusions 2 

This meta-analysis has shown that the growth response of plants to HS, although generally 3 

positive, is influenced by a number of environmental and management factors. Our findings 4 

indicate that the source of the HS in particular will have a strong impact on whether or not 5 

plant growth is significantly improved. Plant type and stress conditions also influence the 6 

plant growth response to HS, but to a lesser extent. Interactions between each of these factors 7 

and the HS application rate also moderate the plant growth response, emphasizing the 8 

complexity of obtaining predictable responses. More research is needed to characterise the 9 

structure-activity relations of HS, and how these can be exploited either through direct 10 

application or application as synergists with chemical or biological fertilisers. We conclude 11 

by reiterating that the prospects for using HS as plant growth stimulants in agricultural 12 

systems are theoretically strong, but continued research and extension is needed to realise 13 

their full potential under diverse environmental conditions. 14 
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Table 1. Significance (p-value) of models containing a single moderator, according to plant 1 

shoot or root dry weight response to HS application. Significant models are shown in bold 2 

(p<0.05). 3 

Moderator Shoot Growth Root Growth 

None a <0.001 <0.001 

Media 0.336 0.016 

Stress 0.015 0.144 

Plant type 0.026 0.031 

Application location 0.380 0.063 

Application rate 0.002 0.261 

Source <0.001 <0.001 

a Overall random-effect model without any moderators; significance indicates statistical 4 

difference between HS-treated plants and control (no HS treatment) plants.  5 

  6 
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Table 2. Pairwise interactions between explanatory variables in the optimised BRT model. 1 

Higher numbers indicate increased importance of the interaction for predicting a growth 2 

response. Grey cells are interactions contributing to RDW response; white cells are 3 

interactions contributing to SDW response. Numbers in bold show the two most important 4 

interactions. 5 

 
Media Stress Plant HS 

Source 

Application 

Site 

Application 

Rate 

Media 
 

2.38 0.03 0.82 0.03 2.72 

Stress 0.39 
 

1.23 7.89 0.86 1.73 

Plant 0.05 2.93 
 

0.94 0.27 0.65 

HS Source 0.41 0.3 0.96 
 

0.57 5.38 

Application Site 0.37 0.24 0.18 0.63 
 

0.76 

Application Rate 0.11 0.24 4.93 7.18 0.77 
 

 6 

  7 
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 1 

Figure 1. Estimated shoot growth response (weighted mean ± 95% confidence level) of plants 2 

to HS application for three significant explanatory moderators. Ratios > 1 indicate growth 3 

promotion; < 1 indicate growth suppression. The number of data points in each group is 4 

given in parentheses. 5 
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 1 

Figure 2. Estimated shoot growth response (weighted mean ± 95% confidence level) of plants 2 

to HS application for three significant explanatory moderators. Ratios > 1 indicate growth 3 

promotion; < 1 indicate growth suppression. The number of data points in each group is 4 

given in parentheses. 5 
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 1 

Figure 3. Relative contribution of explanatory variables to the optimum boosted regression 2 

tree model.  3 
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 1 

Figure 4. Modelled distribution of SDW response, grouped by explanatory predictor. Boxplots show median values (solid bold horizontal lines), 2 

25th-75th quartiles (box), 1.5 times the interquartile range  (whiskers), outliers (circle points) and extreme outliers (star points). Abbreviations for 3 

the HS source are brown coal (BC); green waste compost (CGW), manure compost (CM) and not reported (NR). 4 
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 1 

Figure 5. Modelled distribution of RDW response, grouped by explanatory predictor.  Boxplots show median values (solid bold horizontal lines), 2 

25th-75th quartiles (box), 1.5 times the interquartile range  (whiskers), outliers (circle points) and extreme outliers (star points). Abbreviations for 3 

the HS source are brown coal (BC); green waste compost (CGW), manure compost (CM) and not reported (NR). 4 
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 1 

Figure 6. Effect of application rate on SDW response under different scenarios of HS source 2 

and plant type. The black dashed lines show linear fits to the data and have been 3 

superimposed to aid interpretation. Data above the grey dashed line indicate shoot growth 4 

promotion by HS; data below indicate shoot growth suppression.  5 
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 1 

Figure 7. Effect of application rate on RDW response under different scenarios of HS source 2 

and plant type. Stress levels are given as: no stress (N), moderate stress (L) and high stress 3 

(H). The black dashed lines show linear fits to the data and have been superimposed to aid 4 

interpretation. Data above the grey dashed line indicate shoot growth promotion by HS; data 5 

below indicate shoot growth suppression.6 
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  1 

Figure 8. Effect of application rate of brown coal-derived HS on SDW. Dashed lines show 2 

quadratic fits to rates less than 50 mg kg-1 (short dash) and rates greater than or equal to 50 3 

mg kg-1 (long-dash). 4 

  5 

-0.3

-0.15

0

0.15

0.3

0.45

0.6

0.75

0.9

0 50 100 150 200 250

Ln
 R

es
po

ns
e

Application rate (mg kg-1)



52 
 

Appendix 1. Study references for SDW data used in the meta-analysis. 1 

 2 

No. ID Authors Title Year Source title Vol. Iss. Page 
start 

Page 
end 

1 5 Azcona, I., Pascual, I., 
Aguirreolea, J., Fuentes, M., 
Garcia-Mina, J., Sanchez-Diaz, 
M. 

Growth and development of pepper are affected by 
humic substances derived from composted sludge 

2011 Journal of Plant 
Nutrition and Soil 
Science 

174 6 916 924 

2 6 Ertani, A., Francioso, O., 
Tugnoli, V., Righi, V., Nardi, 
S. 

Effect of commercial lignosulfonate-humate on 
Zea mays L. metabolism 

2011 Journal of Agricultural 
and Food Chemistry 

59 22 11940 11948 

3 14 Yarkova, T.A. Chemical modification of humic acids by the 
introduction of indole-containing fragments 

2011 Solid Fuel Chemistry 45 4 261 266 

4 25 Saruhan, V., Kusvuran, A., 
Kokten, K. 

The effect of different replications of humic acid 
fertilization on yield performances of common 
vetch (Vicia sativa L.) 

2011 African Journal of 
Biotechnology 

10 29 5587 5592 

5 38 Tahir, M.M., Khurshid, M., 
Khan, M.Z., Abbasi, M.K., 
Kazmi, M.H. 

Lignite-derived humic acid effect on growth of 
wheat plants in different soils 

2011 Pedosphere 21 1 124 131 

6 38 Tahir, M.M., Khurshid, M., 
Khan, M.Z., Abbasi, M.K., 
Kazmi, M.H. 

Lignite-derived humic acid effect on growth of 
wheat plants in different soils 

2011 Pedosphere 21 1 124 131 

7 15 Obsuwan, K., Namchote, S., 
Sanmanee, N., Panishkan, K., 
Dharmvanij, S. 

Effect of various concentrations of humic acid on 
growth and development of eggplant seedlings in 
tissue cultures at low nutrient level 

2011 Proceedings of World 
Academy of Science, 
Engineering and 
Technology 

80 
 

276 278 

8 32 Khaled, H., Fawy, H. Effect of different Levels of humic acids on the 
nutrient content, plant growth, and soil properties 
under conditions of salinity 

2011 Soil and Water 
Research 

6 1 21 29 

9 41 Cordeiro, F.C., Santa-Catarina, 
C., Silveira, V., De Souza, S.R. 

Humic acid effect on catalase activity and the 
generation of reactive oxygen species in corn (Zea 
mays) 

2011 Bioscience, 
Biotechnology and 
Biochemistry 

75 1 70 74 

10 42 Morard, P., Eyheraguibel, B., 
Morard, M., Silvestre, J. 

Direct effects of Humic-Like substance on growth, 
water, and mineral nutrition of various species 

2011 Journal of Plant 
Nutrition 

34 1 46 59 
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11 44 Celik, H., Katkat, A.V., Asik, 
B.B., Turan, M.A. 

Effect of foliar-applied humic acid to dry weight 
and mineral nutrient uptake of maize under 
calcareous soil conditions 

2011 Communications in 
Soil Science and Plant 
Analysis 

42 1 29 38 

12 61 Cimrin, K.M., Turkmen, O., 
Turan, M., Tuncer, B. 

Phosphorus and humic acid application alleviate 
salinity stress of pepper seedling 

2010 African Journal of 
Biotechnology 

9 36 5845 5851 

13 62 Baldotto, L.E.B., Baldotto, 
M.A., Canellas, L.P., Bressan-
Smith, R., Olivares, F.L. 

Growth promotion of pineapple 'Vitoria' by humic 
acids and burkholderia spp. during acclimatization  

2010 Revista Brasileira de 
Ciencia do Solo 

34 5 1593 1600 

14 63 Gulser, F., Sonmez, F., Boysan, 
S. 

Effects of calcium nitrate and humic acid on 
pepper seedling growth under saline condition 

2010 Journal of 
Environmental 
Biology 

31 5 
SU
PP
L. 

873 876 

15 67 Paksoy, M., Turkmen, O., 
Dursun, A. 

Effects of potassium and humic acid on 
emergence, growth and nutrient contents of okra 
(Abelmoschus esculentus L.) seedling under saline 
soil conditions 

2010 African Journal of 
Biotechnology 

9 33 5343 5346 

16 70 Petrus, A.C., Ahmed, O.H., 
Muhamad, A.M.N., Nasir, 
H.M., Jiwan, M. 

Effect of K-N-humates on dry matter production 
and nutrient use efficiency of maize in Sarawak, 
Malaysia 

2010 TheScientificWorldJou
rnal 

10 
 

1282 1292 

17 58 Asli, S., Neumann, P.M. Rhizosphere humic acid interacts with root cell 
walls to reduce hydraulic conductivity and plant 
development 

2010 Plant and Soil 336 1 313 322 

18 78 Hartz, T.K., Bottoms, T.G. Humic substances generally ineffective in 
improving vegetable crop nutrient uptake or 
productivity 

2010 HortScience 45 6 906 910 

19 80 Mora, V., Bacaicoa, E., 
Zamarreno, A.-M., Aguirre, E., 
Garnica, M., Fuentes, M., 
Garcia-Mina, J.-M. 

Action of humic acid on promotion of cucumber 
shoot growth involves nitrate-related changes 
associated with the root-to-shoot distribution of 
cytokinins, polyamines and mineral nutrients 

2010 Journal of Plant 
Physiology 

167 8 633 642 

20 51 Kirn, A., Kashif, S.R., Yaseen, 
M. 

Using indigenous humic acid from lignite to 
increase growth and yield of okra (Abelmoschus 
esculentus L.) 

2010 Soil and Environment 29 2 187 191 

21 52 El-Hefny, E.M. Effect of saline irrigation water and humic acid 
application on growth and productivity of two 
cultivars of cowpea (Vigna unguiculata L. Walp) 

2010 Journal of Applied 
Sciences Research 

6 12 6154 6168 

22 99 Bandiera, M., Mosca, G., 
Vamerali, T. 

Humic acids affect root characteristics of fodder 
radish (Raphanus sativus L. var. oleiformis Pers.) 
in metal-polluted wastes 

2009 Desalination 246 1-3 78 91 
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H., Katkat, A.V. 
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2009 Asian Journal of Crop 
Science 
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24 100 Kasim, S., Ahmed, O.H., 
Majid, N.M.A., Yusop, M.K., 
Jalloh, M.B. 
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an acid soil of Sarawak, Malaysia 

2009 American Journal of 
Applied Sciences 

6 7 1289 1294 

25 112 Nikbakht, A., Kafi, M., 
Babalar, M., Xia, Y.P., Luo, A., 
Etemadi, N.-A. 
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31 12 2155 2167 

26 126 Eyheraguibel, B., Silvestre, J., 
Morard, P. 
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27 127 De Santiago, A., Quintero, 
J.M., Carmona, E., Delgado, A. 
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28 132 Clapp, C.E., Shenker, M., 
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Research 

24 2 
SU
PP
L. 
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263 268 

30 128 Marino, G., Francioso, O., 
Carletti, P., Nardi, S., Gessa, C. 

Mineral content and root respiration of in vitro 
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31 116 Celik, H., Katkat, A.V., Asik, 
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and Soil Science 
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M.A., Simoes, M.L., Martin-
Neto, L., Facanha, A.R., 
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Zhu, Y.-G. 
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33 196 Gryndler, M., Hrselova, H., 
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Rezacova, V., Merhautova, V. 
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