Table of Contents

Chapter 1 General Introduction ... 1

1.1 CO2 transport .. 2

1.1.1 Resistance along the CO2 pathway inside leaves ... 2

1.1.2 CO2 diffusion through biological membranes ... 4

1.2 General features of Aquaporins .. 12

1.2.1 Aquaporin classification, and sub-cellular and tissue localization .. 13

1.2.2 Structural characteristics of aquaporins ... 15

1.3 Aquaporin functions ... 16

1.3.1 Water uptake .. 16

1.3.2 Non-charged small neutral solute transport ... 19

1.3.3 Gas transport ... 21

1.3.4 Ion transport via aquaporins ... 23

1.4 Aquaporins blockers ... 24

1.5 Interaction between aquaporins .. 26

1.6 Conclusion and project aims ... 28

Chapter 2 Water and CO2 transport across leaf plasma membranes ... 31

2.1 Introduction ... 31

2.2 Materials and Methods .. 34

2.2.1 Plant material and growth conditions ... 34

2.2.2 Stomatal conductance measurement ... 34

2.2.3 Vesicle isolation .. 35

2.2.4 Vesicle size determination .. 37

2.2.5 Water permeability (Pw) determination ... 38

2.2.6 CO2 uptake experiments .. 40

2.2.7 Final intracellular pH calculation .. 42

2.2.8 Inhibitors .. 43

2.2.9 Arabidopsis vesicles ... 43

2.3 Results ... 44

2.3.1 Water permeability (Pw) determination ... 44

2.3.2 CO2 Permeability .. 46

2.3.3 Stomatal conductance measurement .. 57

2.3.4 Water permeability of dark and drought treated peas ... 58

2.3.5 Arabidopsis vesicles ... 61

2.3.6 The relationship between water permeability and CO2 permeability 63

2.4 Discussion ... 65
Chapter 4 Ion Currents Induced by \textit{AtPIP2;1} in \textit{Xenopus} Oocytes .. 111

4.1 Introduction .. 111

4.2 Materials and Methods .. 114

4.2.1 Oocytes harvesting and cRNA injection 114

4.2.2 cRNA synthesis .. 115

4.2.3 Voltage-clamp pipettes ... 115

Chapter 3 Functional Characterisation of \textit{Arabidopsis} aquaporins 75

3.1 Introduction .. 75

3.2 Materials and Methods ... 81

3.2.1 Solutions, media and bacterial transformation 81

3.2.2 Cloning \textit{Arabidopsis} \textit{PIP1}s and \textit{PIP2}s into pEntry TOPO® vector .. 82

3.2.3 Cloning \textit{Arabidopsis} \textit{PIP1}s and \textit{PIP2}s into oocyte expression vector .. 85

3.2.4 Site-directed mutagenesis of \textit{AtPIP2;1} (G100W) 87

3.2.5 cRNA transcription .. 88

3.2.6 cRNA purity check and concentration quantification 90

3.2.7 Harvesting oocytes ... 91

3.2.8 Expression of \textit{Arabidopsis} aquaporins in \textit{Xenopus} oocytes 92

3.2.9 Oocytes swelling assay ... 92

3.3 Results .. 94

3.3.1 Transcription of cRNA and cRNA concentration quantification 94

3.3.2 Aquaporin activity—the swelling assay ... 96

3.3.3 Expression of PIPs alone or in PIP1-PIP2 combinations in \textit{Xenopus} oocytes .. 99

3.3.4 Mutant \textit{Atpip2;1} .. 101

3.3.5 Effect of silver-sulfadiazine on aquaporin water permeability 103

3.4 Discussion .. 104

3.4.1 Water permeability of \textit{AtPIP1}s and \textit{AtPIP2}s 104

3.4.2 Interaction between \textit{AtPIP1}s and \textit{AtPIP2}s 106

3.4.3 Aquaporin inhibition .. 108

Chapter 2 CO2 Transport .. 65

2.1 Introduction .. 65

2.2 Do aquaporins facilitate CO2 transport ... 65

2.3 High water permeability indicating high aquaporins activity 67

2.4 The acidification rate inside vesicles .. 67

2.5 Carbonic anhydrase ... 68

2.6 Pure biophysical point of view ... 69

2.7 Aquaporin inhibitor effects ... 71

2.8 Selecting the most appropriate temperature to measure CO2 permeability .. 72

2.9 Correlation of water permeability and CO2 permeability and conclusion .. 72

Chapter 1 Introduction ... 115

1.1 Introduction .. 115

1.2 The importance of CO2 ... 115

1.3 The role of CO2 in model organisms .. 116

1.4 The role of CO2 in plants ... 117

1.5 The role of CO2 in photosynthesis .. 118

1.6 The role of CO2 in animal physiology ... 119

1.7 The role of CO2 in disease ... 120

1.8 The role of CO2 in environment .. 121

1.9 The role of CO2 in climate change .. 122

1.10 The role of CO2 in human health .. 123

1.11 The role of CO2 in industrial processes 124

1.12 The role of CO2 in agricultural practices 125

1.13 The role of CO2 in energy production ... 126

1.14 The role of CO2 in geology ... 127

1.15 The role of CO2 in astronomy .. 128

1.16 The role of CO2 in space exploration .. 129

1.17 The role of CO2 in space exploration .. 130

1.18 The role of CO2 in space exploration .. 131

1.19 The role of CO2 in space exploration .. 132

1.20 The role of CO2 in space exploration .. 133

1.21 The role of CO2 in space exploration .. 134

1.22 The role of CO2 in space exploration .. 135

1.23 The role of CO2 in space exploration .. 136

1.24 The role of CO2 in space exploration .. 137

1.25 The role of CO2 in space exploration .. 138

1.26 The role of CO2 in space exploration .. 139

1.27 The role of CO2 in space exploration .. 140

1.28 The role of CO2 in space exploration .. 141

1.29 The role of CO2 in space exploration .. 142

1.30 The role of CO2 in space exploration .. 143

1.31 The role of CO2 in space exploration .. 144

1.32 The role of CO2 in space exploration .. 145

1.33 The role of CO2 in space exploration .. 146

1.34 The role of CO2 in space exploration .. 147

1.35 The role of CO2 in space exploration .. 148

1.36 The role of CO2 in space exploration .. 149

1.37 The role of CO2 in space exploration .. 150

1.38 The role of CO2 in space exploration .. 151

1.39 The role of CO2 in space exploration .. 152

1.40 The role of CO2 in space exploration .. 153

1.41 The role of CO2 in space exploration .. 154

1.42 The role of CO2 in space exploration .. 155

1.43 The role of CO2 in space exploration .. 156

1.44 The role of CO2 in space exploration .. 157

1.45 The role of CO2 in space exploration .. 158

1.46 The role of CO2 in space exploration .. 159

1.47 The role of CO2 in space exploration .. 160

1.48 The role of CO2 in space exploration .. 161

1.49 The role of CO2 in space exploration .. 162

1.50 The role of CO2 in space exploration .. 163
ABSTRACT

CO₂ diffusion across membranes is one of the rate limiting steps during photosynthesis, therefore understanding the process of CO₂ permeation across membranes is important. The question of whether CO₂ transport across membranes can be facilitated by aquaporins is very controversial. Previous research where aquaporins were heterologously expressed in either *Xenopus* oocytes or yeast protoplasts showed that some plasma membrane intrinsic proteins (PIPs) or animal aquaporins could facilitate CO₂ transport. However, others have demonstrated using molecular simulation approaches and biophysical calculations that the unstirred layer poses the major rate limiting step for CO₂ diffusion across membranes, and that it is unlikely that CO₂ permeates via the water pathway in aquaporins, because this pathway exhibits a greater energy barrier compared to that for the lipid bilayer.

If water and CO₂ share the same pathway through aquaporins or if the presence and activity of aquaporins somehow affects CO₂ permeation, there should be a correlation between water permeability and CO₂ permeability. Therefore, by employing the stopped-flow technique and using pea plasma membrane vesicles isolated from pea leaves, this thesis explored the links between CO₂ permeability and water permeability. Plasma membrane vesicles from pea plants that were grown in different conditions showed considerable variability in water permeability. The very high and variable (between preparations) water permeability (0.06 to 0.18 m s⁻¹) plus the low activation energy (10.8 KJ mol⁻¹) of water transport indicated aquaporins dominated water flow, yet there was no significant correlation between water permeability and CO₂ permeability (1.49 x 10⁻² cm s⁻¹). The activation energy for CO₂ permeation was 37 KJ/mol which is about double that for CO₂ diffusion in water. Also the aquaporin inhibitor silver sulfadiazine resulted in a large inhibition of water permeability but this did not affect CO₂ permeability. Similar results were obtained for plasma membrane
vesicles isolated from *Arabidopsis* leaves though the water permeability was lower. In performing these measurements care was taken to exclude artifacts caused by the concentration of carbonic anhydrase (CA) and its temperature dependence, since vesicular entrapped CA was required to measure CO$_2$ permeability via changes in vesicular pH.

Because there are not many aquaporins that have been identified in pea, some *Arabidopsis* aquaporins that have been suggested to be involved in CO$_2$ transport were expressed in *Xenopus* oocytes for further investigation. Water transport via these aquaporins was first studied. It was demonstrated that PIP2s were functional water channels when expressed alone, while PIP1s were not. However when PIP1 and PIP2 aquaporins were co-expressed in *Xenopus* oocytes a greater than additive effect on water permeation was observed for some combinations. This suggested that AtPIP1;2 and AtPIP2;1, and AtPIP1;5 and AtPIP2;1 interact. A previously identified natural mutation in the pore region of VvPIP2;5 from grapevine (G100W), which prevented water flow, was used to probe AtPIP2;1 and its interaction with AtPIP1;2. This showed that the interaction still occurred despite the lower water permeation of the combined pair when expressed in *Xenopus* oocytes.

Originally, the CO$_2$ permeabilities of the *Arabidopsis* aquaporins of interest were intended to be tested using the external pH micro-electrode technique which was first employed to test CO$_2$ transport across *Xenopus* oocyte plasma membrane. However, one of the criteria for using this technique is that the expression of the aquaporins should not induce any ion conductance, which would potentially alter external pH either directly or indirectly. Therefore, electrophysiology experiments were conducted to test whether the expressed aquaporins induced any ionic currents. It was found that AtPIP2;1 indeed induced ionic currents selective to anions including HCO$_3^-$ when expressed in *Xenopus* oocytes. It was
demonstrated that AtPIP2;1 homotetramer was likely to function as an ion channel since when co-expressed with its interacting partner (AtPIP1;2) this abolished the anion conductance. Furthermore the G100W mutation also prevented anion conductance of the AtPIP2;1 indicating that the pathway may be via the water pore. Expression of AtPIP2;1 in *Saccharomyces cerevisiae* was undertaken to test a potential anion sensitivity induced by the expression of AtPIP2;1. The expression of AtPIP2;1 induced increased water permeability of the yeast spheroplast as it does in *Xenopus* oocytes, and gave a low growth phenotype on all media tested, however this could not be linked to increased anion transport.

This thesis has demonstrated that measurements of CO$_2$ permeability are extremely difficult and likely to be limited by factors not always controlled for in previous experiments. Furthermore it has been demonstrated that some plant PIP aquaporins may function as anion channels and that this could complicate the interpretation of CO$_2$ permeation particularly when the HCO$_3^-$ anion can permeate as was demonstrated for AtPIP2;1.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Zhao Manchun

September 2013
Acknowledgments

I wish to thank my supervisors Prof. Steve Tyerman, Dr Carolyn Schultz and Dr Brent Kaiser for their great support and guidance throughout my PhD. In particular, I would like to express my sincere appreciation for Prof. Steve Tyerman for teaching me many physiology techniques and many encouraging discussions that extended my ideas.

A special thank you to Dr Carolyn Schultz for teaching me molecular knowledge and techniques. Your kind assistance is greatly appreciated. I am particularly grateful to Dr Sunita Ramesh for kindly teaching me some molecular techniques and answering so many of my questions about molecular experiments and her assistance with the *Xenopus* oocyte experiments. Thank you to Ms Wendy Sullivan for her excellent technical support, harvesting the oocytes and teaching me some specific techniques in the laboratory. Thank you to all the members of the Tyerman lab, Kaiser lab and Gilliham lab who have assisted in any way during my studies, in particular Danielle Mazurkiewicz for answering many of my questions concerning molecular biology and yeast.

Thank you to Prof. John Evans in Australian National University for many discussions that extended my ideas and Ms Stephanie McCaffery for excellent technical support.

Thank you to all members in Plant Research Centre, especially Skadi Lau, Zeyu Xiao, Danielle Mazurkiewicz, Johannes Scharwies, Asmini Athman and Hayden Ng Weng Wah for your friendship, endless laughs and support. A special thank you to Ms Nenah Mackenzie for her treats for lunch, spring rolls, cakes and big support.
Thank you to my friends at my conservation group – Natural History Society of South Australia Inc. and my “morning walking group” for the friendship and lovely company.

I gratefully acknowledge the International Postgraduate Research Scholarship for the financial support.

Finally, a special thank you to my husband, Vince, my parents and extended family for their continuing love and support throughout my study.