Immune Monitoring of Kidney Transplant Recipients with Post-transplant Malignancy

Christopher Martin Hope

University of Adelaide
School of Health Science
Discipline of Medicine

Submitted: February 2014
Declaration:

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Christopher Martin Hope and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis entitled “The immune phenotype may relate to cancer development in kidney transplant recipients.” resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines.

Chris Hope
Acknowledgements:

First and foremost I wish to dedicate this thesis to, and acknowledge, those kidney transplant recipients who have donated blood, especially those who have subsequently died of their malignancies.

Secondly, I wish to acknowledge my supervisors, Dr Robert Carroll and Professor Toby Coates for enabling this research to occur and for their guidance and mentorship during the project.

I wish to thank all those who helped during my time at the Centre of Clinical and Experimental Transplantation (CCET), including; Katherine Pilkington for teaching me the intricacies of flow cytometry, Joy Mundy for access to the clinical flow laboratory’s BD FACS Canto II at a time when access to our own machine was limited and impractical.

Professor Simon Barry and Mrs Susan Bresatz-Akins, for teaching me the CD154 suppression of expression assay.

Professor Peter Heeger and staff, for allowing me to visit and perform a variety of assays within the Mount Sinai Medical School Laboratory the most important being the B cell proliferation and subsequent Clinical Trials in Organ Transplantation, Enzyme Linked Immuno-SPOT (ELISPOT) assay.

I wish to thank all those who have helped me during my time researching from Honours through to the end of this PhD.
Abstract:
Half of all long-term (>10 years) Australian Kidney Transplant Recipients (KTR) will develop Squamous Cell Carcinoma (SCC) or Solid Organ Cancer (SOC), making cancer the leading cause of death with a functioning kidney graft. Immunosuppressive drugs increase the risk of cancer but prevent rejection. Finding a balance of immunosuppression may decrease cancer incidence without increasing rejection incidence. United Kingdom (UK) KTR with cancer have increased Regulatory T cells (Tregs) and decreased Natural Killer (NK) cells compared to UK KTR without cancer. However, it is not known if these immune cells and their function differ in Australian KTR with SCC or SOC. If so, then these tests will identify patients at risk of developing cancer and may benefit from reduction of immunosuppression. The presence of Donor Specific Antibodies (DSA) and a positive IFN-γ Enzyme Linked Immuno-SPOT (ELISPOT) assay associates with antibody mediated rejection and can predict cell mediated rejection episodes, respectively. It is not known if these differ in KTR with cancer vs KTR with no cancer. An immune phenotype was analysed in 116 KTR and prospectively followed for 3.5 years. The immune function of Tregs and NK cells as well as viral, mitogen and allo-responses were measured in 50/116 (43%) of these KTR.

<table>
<thead>
<tr>
<th>Summary Table of Results</th>
<th>No Cancer</th>
<th>Cancer</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tregs cells/µl</td>
<td>8 (3, 19)</td>
<td>16 (6, 23)</td>
<td>0.016</td>
</tr>
<tr>
<td>NK cells/µl</td>
<td>107 (34, 195)</td>
<td>74 (43, 188)</td>
<td>0.980</td>
</tr>
<tr>
<td>CFSE 1:4 Treg:Eff. cell ratio, median (Range)</td>
<td>2 (1-7)</td>
<td>9 (3-15)</td>
<td><0.001</td>
</tr>
<tr>
<td>CD154 1:4 Treg:Eff. cell ratio, median (Range)</td>
<td>13 (5-54)</td>
<td>36 (13-73)</td>
<td>0.015</td>
</tr>
<tr>
<td>PBMC (NK cell) Lysis, median (Range)</td>
<td>2 (0-11)</td>
<td>0 (0-5)</td>
<td>0.037</td>
</tr>
<tr>
<td>Donor Specific Antibodies (DSA)</td>
<td>3 (16%)</td>
<td>3 (10%)</td>
<td>0.661</td>
</tr>
<tr>
<td>Mitogen stimulation (PHA), median (Range)</td>
<td>1467 (265-2000)</td>
<td>512 (51-1500)</td>
<td>0.002</td>
</tr>
<tr>
<td>Alloresponse (PRT), median (Range)</td>
<td>342 (11-1967)</td>
<td>151 (29-765)</td>
<td>0.008</td>
</tr>
</tbody>
</table>
KTR with cancer have different immune phenotype and function compared to KTR with no cancer. Memory B cells and CD8 γδ T cells associated with cancer development (Odds Ratio (95% C.I.); (1.03[1.00-1.06], p=0.038 and 1.01 [1.00-1.02], p=0.080, respectively). Treg numbers associate with SOC (p=0.053), predict SCC that develops (AUC=0.78), and can also predict aggressive lesions (AUC=0.86). Treg numbers are dynamic around cancer diagnosis (p=0.022) and resection (p<0.001). Australian KTR with cancer have increased non-specific Treg function (p<0.05) and decreased NK cell mediated cancer cytolysis (p=0.037), signs of a Treg induced/cancer-permissive immune system. Additionally, KTR have decreased IFN-γ release under allogeneic (p=0.008) and mitogenic stimulation (p=0.002) and similar levels of DSA (p=0.661) than KTR with no cancer.

These data indicate that KTR with cancer who have reduced allo-responses may have the potential to have alterations to their immunosuppressive drug levels. This reduction and its effects on the immune system can be monitored using the assays described in this thesis.
4.3 Results ...64
 4.3.1 Utilisation of HELIOS as natural Treg (nTreg) marker ..64
 4.3.2 Immune Phenotype and association to cancer in KTR ..65
 4.3.3 Viral and immunosuppression drug related associations to immune phenotype70
 4.3.4 Induction therapy and immune phenotype ...74
 4.3.5 Immunosuppression regimen and immune phenotype ...75
 4.3.6 Immune phenotype ability to predict cancer ...84
 4.3.7 Cancer presence and immune phenotype ...91
 4.4 Discussion ..93

Chapter 5: Immune Cell Function ...100
 5.1 Introduction ...100
 5.1.1 Chapter Aims: ..103
 5.1.2 Chapter Hypotheses: ...103
 5.2 Chapter Methods: ..103
 5.2.1 Carboxyfluorescein diacetate succinimidyl ester (CFSE) dilution assay103
 5.2.2 CD154 suppression of expression assay ...107
 5.2.3 Lactate Dehydrogenase (LDH) release assay ..109
 5.2.4 Target Induce NK cell Loss (TINKL) Assay ...115
 5.3 Results ...117
 5.3.1 CFSE dilution assay of nTreg function in Kidney Transplant Recipients (KTR)117
 5.3.2 CD154 suppression of expression of natural Treg (nTreg) function in Kidney Transplant Recipients (KTR) ...120
 5.3.3 Correlations of CD154 to CFSE suppression assays ...122
 5.3.4 Cancer and LDH release in KTR ..122
 5.4 Discussion ..127

Chapter 6: Measurement of Alloresponses ...130
 6.1 Introduction ...130
 6.1.1 Chapter Aims ..132
 6.1.2 Chapter Hypotheses ...132
 6.2 Chapter Methods ...132
 6.2.1 Panel of Reactive Antibodies (PRA) solid phase assay ...132
 6.2.2 Panel of Reactive T cells (PRT) stimulated Interferon-γ Enzyme Linked Immuno-SPOT (ELISPOT) assay ...133
 6.3 Results ...139
6.3.1 Anti-Human Leukocyte Antigen (HLA) and Anti-Donor Specific Antibodies (DSA) in Kidney Transplant Recipients (KTR) ... 140

6.3.2 Panel of Reactive T-cells (PRT) Interferon-gamma (IFN-γ) response in Kidney Transplant Recipients (KTR) as measured by Enzyme Linked ImmunoSPOT (ELISPOT). ... 141

6.3.3 Viral and mitogen stimulated Interferon-γ release .. 143

6.4 Discussion ... 144

Chapter 7: Concluding remarks and future directions .. 146

7.1 Key findings .. 146

7.1.1 Patient Cohort Characteristics ... 146

7.1.2 Immune Phenotype ... 146

7.1.3 Immune Cell function ... 146

7.1.4 Allo-responses .. 146

7.2 Future directions .. 147

7.3 Conclusions ... 149

References:.. 150

Appendix: Published Paper: .. 1508