Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

Diabetes, 2011; 60(10):2624-2634

© 2011 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

Originally published at:
http://doi.org/10.2337/db11-0415

Permissions

http://creativecommons.org/licenses/by-nc-nd/3.0/

This is a human-readable summary of (and not a substitute for) the license.

Disclaimer

You are free to:

Share — copy and redistribute the material in any medium or format
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

http://hdl.handle.net/2440/87926
Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes

Rona J. Strawbridge,¹ Joséé Dupuis,²,³ Inga Prokopenko,⁴,⁵ Adam Barker,⁶ Emma Ahlvqvist,⁷ Denis Rybin,⁸ John R. Petrie,⁹ Mary E. Travers,⁴ Nabila Bouatia-Naji,¹⁰,¹¹ Antigone S. Dimas,¹²,¹³ Alexandra Nica,¹²,¹³ Eleanor Wheeler,¹⁴ Han Chen,² Benjamin F. Voight,¹⁵,¹⁶ Jalal Taneera,⁷ Stavroura Kanoni,¹³,¹⁷ John F. Peden,⁵,¹⁸ Fabiola Turrini,⁷,¹⁹ Stefan Gustafsson,²⁰ Carina Zabena,²¹,²² Peter Almgren,⁷ David J.P. Barker,²¹ Daniel Barnes,⁶ Elaine M. Dennison,²⁴ Johan G. Eriksson,²⁵,²⁶,²⁷,²⁸ Per Eriksson,¹ Eldodie Eury,¹⁰,¹¹ Lasse Folkersen,²⁹ Caroline S. Fox,³,³⁰ Timothy M. Frayling,⁶⁷ Anuj Goel,³,¹⁸ Harvest F. Gu,³² Momoko Horikoshi,⁴,⁵ Bo Isomaa,²⁷,³³ Momoko Horikoshi,⁴,⁵ Bo Isomaa,²⁷,³³

From the ¹Atherosclerosis Research Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden; the ²Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts; the ³National Heart, Lung, and Blood Institute, Bethesda, Maryland; the ⁴Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland; the ⁵Experimental Cardiovascular Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; the ⁶Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; the ⁷Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Plymouth, U.K.; the ⁸Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland; the ⁹Wellcome Trust Genome Campus, Hinxton, Cambridge, U.K.; the ¹⁰Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; the ¹¹Department of Clinical Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; the ¹²Wellcome Trust Sanger Institute, Hinxton, Cambridge, U.K.; the ¹³Department of Medicine, University of Oxford, Oxford, U.K.; the ¹⁴Institute of Biomedical and Clinical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ¹⁵Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; the ¹⁶Inserm UMR 859, Lille, France; the ¹⁷Department of Medicine, University of Kuopio and Kuopio University Hospital, Kuopio, Finland; the ¹⁸Department of Medical Science, Karolinska Institutet, Stockholm, Sweden; the ¹⁹Department of Medicine, University of Oxford, Oxford, U.K.; the ²⁰Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ²¹Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; the ²²Foundation Investigación Biomédica del Hospital Clínico San Carlos, Madrid, Spain; the ²³Heart Research Center, Orange General Hospital, Portland, Oregon; the ²⁴Metabolic Disease Research Center, Oregon Health and Science University, Portland, Oregon; the ²⁵MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, U.K.; the ²⁶National Institute for Health and Welfare, Helsinki, Finland; the ²⁷Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland; the ²⁸Folkhalsan Research Centre, Helsinki, Finland; the ²⁹Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland; the ³⁰Experimental Cardiovascular Research Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; the ³¹Institute of Biomedical and Clinical Sciences, Peninsula Medical School, Plymouth, U.K.; the ³²Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; the ³³Montefiore Department of Biostatistics, Uppsala University, Uppsala, Sweden; the ³⁴Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ³⁵Institute of Biomedical and Clinical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ³⁶Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ³⁷Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; the ³⁸Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ³⁹National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland; the ⁴⁰Department of Cell and Molecular Biosciences, Newcastle University, Newcastle, U.K.; the ⁴¹Department of Medical Sciences, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ⁴²Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland; the ⁴³Institute of Cellular Medicine, Newcastle University, Newcastle, U.K.; the ⁴⁴Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; the ⁴⁵Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ⁴⁶Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ⁴⁷Department of Medical Science, Molecular Medicine, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; the ⁴⁸Center for Non-Communicable Diseases Pakistan, Karachi.
OBJECTIVE—Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.

RESEARCH DESIGN AND METHODS—We have conducted a meta-analysis of genome-wide association tests of ~2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates.

RESULTS—Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10⁻⁵). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10⁻⁵), improved β-cell function (P = 1.1 × 10⁻⁸), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10⁻⁶). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets.

CONCLUSIONS—We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis. Diabetes 60:2624–2634, 2011

Genome-wide association studies (GWAS) have uncovered dozens of common genetic variants associated with risk for type 2 diabetes (T2D; reviewed in [1]). Known associated variants in these loci account for only a small proportion of the heritable component of T2D (1), suggesting that additional loci await discovery. The Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) was created under the premise that genome-wide analysis of continuous diabetes-related traits could not only identify loci regulating variation in these glycemic traits, but also yield additional T2D susceptibility loci and insights into the underlying physiology of these loci (2–5). In addition, the genetic study of T2D endophenotypes may help clarify the pathophysiologic heterogeneity of this disease by elucidating the respective roles of β-cell function, insulin secretion, processing and sensitivity, and glucose metabolism (6).

Discovery of novel genetic determinants of insulin secretion and action has primarily focused on insulin levels (3,4,7,8). Proinsulin is the molecular precursor for insulin and has relatively low insulin-like activity, and its enzymatic conversion into mature insulin and C-peptide is a critical step in insulin production and secretion (Supplementary Fig. 1). Although hyperinsulinemia typically denotes insulin resistance, high proinsulin in relation to circulating levels of mature insulin can indicate β-cell stress as a result of insulin resistance, impaired β-cell function, and/or insulin processing and secretion abnormalities (9) (Supplementary Fig. 2). There is good evidence that higher proinsulin predicts future T2D (10) and coronary artery disease (CAD) (11–13), even after taking fasting glucose levels into account. Interestingly, some loci previously associated with fasting glucose levels (MADD) or risk of T2D (TCF7L2, SLC30A8, CDKAL1) are also associated with higher circulating proinsulin (6,14–17). Therefore, genome-wide analysis of proinsulin levels could reveal additional novel loci increasing susceptibility for T2D and perhaps CAD.

Thus, to identify novel loci influencing proinsulin processing and secretion and potentially increasing susceptibility for T2D, we performed a meta-analysis of ~2.5 million directly genotyped or imputed autosomal single nucleotide polymorphisms (SNPs) from four GWAS of fasting proinsulin levels (adjusted for concomitant fasting insulin) including 10,701 nondiabetic adult men and women of European descent. Follow-up of 23 lead SNPs from the most significant association signals in up to 16,378 additional individuals of European ancestry detected nine genome-wide significant associations with proinsulin levels, including two novel signals in or near LARP6 and SGSM2, and the known glycemic loci ARAP1, MADD (two independent signals), TCF7L2, VPS13C/C2CD4A/B, SLC30A8, and PCSK1. Here we describe these genetic associations, perform fine-mapping to identify potential causal variants, assess gene expression in human tissues, and define their impact on other glycemic quantitative traits and risk of both T2D and CAD.

RESEARCH DESIGN AND METHODS

Cohort/study description. Four cohorts contributed to the discovery meta-analysis through the contribution of phenotypic and GWAS data. These included the Framingham Heart Study (n = 5,759), Precocious Coronary Artery Disease (PROCARDIS) (n = 3,200), the Finnland study (n = 1,372), and the Diabetes Genetics Initiative (DGI) (n = 511), for a total of 10,701 participants.
Eleven cohorts contributed to the follow-up efforts; these included Metabolic Syndrome in Men (METSIM) (n = 5,122), Botnia Prevalence, Prediction and Prevention of diabetes (Botnia-PPP) (n = 2,280), Helsinki Birth Cohort Study (HBCS) (n = 1,640), the Ely study (n = 1,568), the Hertfordshire study (n = 1,016), Uppsala Longitudinal Study of Adult Men (ULSAM) (n = 939). Relationship between Insulin Sensitivity and Cardiovascular disease (RISC) (n = 914), Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) (n = 912), Segovia (n = 911), the Greek Health Randomized Aging Study (GHRAS) (n = 688), and Stockholm Diabetes Prevention Program (SDPP) (n = 399), for a total of 16,378 participants (with maximal sample for any one SNP of 15,896). We excluded individuals with known diabetes, on antidiabetic treatment, or with fasting glucose ≥7 mmol/L (3); all participants were of European descent.

Proinsulin and insulin measurements. Proinsulin (pmol/L) was measured from fasting whole blood, plasma, or serum or a combination of these using enzyme-linked immunosorbent or immunometric assays. Fasting insulin (pmol/L) was measured using either enzyme-linked immunosorbent, immunofluorescent, or radioimmunometric assays (Supplementary Table 1).

Genotyping. Genome-wide commercial arrays (Affymetrix 500K, MIPS 50K, and Illumina Human1M/610K) were used by the four discovery cohorts as described in Supplementary Table 1. Imputation and quality control methods are described in the Supplementary Data.

Statistical analyses. We aimed to identify genetic variants associated with high proinsulin levels relative to an individual’s fasting insulin levels. This can be done by examining proinsulin-to-insulin ratios or by statistically adjusting proinsulin for fasting insulin. We chose the latter because the adjusted trait has comparable predictive value (18) and displayed better statistical performance in pilot studies and adequate heritability in the Framingham Heart Study, one of the larger cohorts examined here (h² = 0.36 vs. 0.34 for the proinsulin-to-insulin ratio). In Framingham, correlation between the adjusted trait and the ratio was 0.95, and the quantile-quantile GWAS plots were comparable.

We used a linear regression model with natural log transformed fasting proinsulin as the dependent variable and genotypes as predictors, with adjustment for natural-log transformed fasting insulin values, sex, age, geographical covariates (if applicable), and age squared (Framingham only) to evaluate the association under an additive genetic model. Association analysis was performed by individual studies using SNPTEST (19), STATA (20), PLINK (21), or LMEKIN (R kinship package) software (22). Genome-wide association inflation coefficients were estimated for each discovery cohort using the genomic control (GC) method (23) and applied subsequently to each individual SNP association test statistics to correct for cryptic relatedness. The λ GC value for the final meta-analysis of proinsulin adjusted for fasting insulin was 1.01. The inverse-variance fixed effects meta-analysis method was used to evaluate the pooled regression estimates for additively coded SNPs using METAL (24). Sex interaction effects were evaluated with a function in the GWAMA software (25).

Follow-up SNP selection and analysis. We carried forward to stage 2 the most significant SNP from each of 21 independent loci that showed association with proinsulin in stage 1 analyses at P < 1 × 10⁻⁵. Additionally, two SNPs near the P < 1 × 10⁻⁵ threshold (in ASAP2 and a gene desert region) were carried forward as a result of biological plausibility (ASAP2 is involved in vesicular transport) and/or consistency of direction of effect in all discovery stage 1 studies (both loci). We genotyped these 23 variants in 11 additional stage 2 studies totaling 16,378 nondiabetic participants of European ancestry (Supplementary Table 1; genotyping assays and conditions are available upon request). We meta-analyzed stage 1 and stage 2 results using inverse-variance weighted fixed effects meta-analysis methods, including up to 27,070 participants.

Additional analyses and expression and expression quantitative trait loci (eQTL) studies are described in the Supplementary Data.
RESULTS

METHODS) in 11 cohorts totaling up to 16,378 nondiabetic follow-up cohorts (Supplementary Table 2). Joint meta-analysis of discovery and follow-up studies (stage 2) and global (stage 1 + Supplementary analysis) revealed nine signals at genome-wide significance (Table 1). In conditional analyses on the two strongest signals reproduced during conditional analysis results are shown. **P < 5×10^{-8}.

Supplementary Table 2. Genomic loci harboring two independent signals 19 kb apart (rs10501320 and rs10838687; P = 1.5×10^{-8}) reached genome-wide significance after adjusting for fasting glucose and BMI (but not BMI adjusted during conditional analysis). Of note, when adjusting for fasting glucose or BMI (but not BMI adjusted during conditional analysis), the combined evidence from our meta-analysis reduced the heterogeneity. We also noted an association in women (P = 0.17; Supplementary Fig. 4), with the exception of the tail of the distribution (Fig. 1). The clean dataset showed no systematic deviation from the null expectation, with the overall I² in % (n = 19,168) = 26,599 and I² = 0.0130 (0.005) 2.4

<table>
<thead>
<tr>
<th>SNP Nearest gene CHR Position</th>
<th>Discovery</th>
<th>Replication</th>
<th>AIC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs10501320</td>
<td>-1094</td>
<td>0.64</td>
<td>4.2</td>
<td>SLC30A8</td>
</tr>
<tr>
<td>rs10838687</td>
<td>-1182</td>
<td>0.69</td>
<td>4.2</td>
<td>LARP6</td>
</tr>
<tr>
<td>rs2017603</td>
<td>-1018</td>
<td>0.58</td>
<td>3.8</td>
<td>MADD</td>
</tr>
<tr>
<td>rs9727115</td>
<td>-1989</td>
<td>0.64</td>
<td>5.3</td>
<td>ARAP1</td>
</tr>
<tr>
<td>rs11558471</td>
<td>-1185</td>
<td>0.30</td>
<td>3.5</td>
<td>ARAP1</td>
</tr>
<tr>
<td>rs4502156</td>
<td>-1218</td>
<td>0.58</td>
<td>3.8</td>
<td>MADD</td>
</tr>
<tr>
<td>rs114748339</td>
<td>-1147</td>
<td>0.30</td>
<td>3.5</td>
<td>ARAP1</td>
</tr>
<tr>
<td>rs7903146</td>
<td>-721</td>
<td>0.15</td>
<td>3.3</td>
<td>TCF7L2</td>
</tr>
<tr>
<td>rs4502156</td>
<td>-1218</td>
<td>0.58</td>
<td>3.8</td>
<td>MADD</td>
</tr>
<tr>
<td>rs114748339</td>
<td>-1147</td>
<td>0.30</td>
<td>3.5</td>
<td>ARAP1</td>
</tr>
<tr>
<td>rs7903146</td>
<td>-721</td>
<td>0.15</td>
<td>3.3</td>
<td>TCF7L2</td>
</tr>
</tbody>
</table>

TABLE 1: Loci associated with fasting proinsulin levels at genome-wide levels of statistical significance.
of the METSIM cohort improved the heterogeneity score and produced nominal significance for the association in men (P = 0.02), the effect size remained threefold stronger in women than in men (β-coefficient 0.0427 vs. 0.0165, respectively).

To provide further reassurance regarding any residual heterogeneity, we repeated our meta-analyses based on P values (rather than β-coefficients) and meta-analyzed the resulting z scores. Our findings were essentially unchanged, suggesting that heterogeneity in the β-estimates across cohorts has not produced spurious results.

Exploration of proinsulin processing mechanisms. Proinsulin is initially cleaved to 32,33-split proinsulin and further to insulin and C-peptide before secretion (Supplementary Fig. 1); we were therefore interested in the effects of the nine top SNPs on these traits. The proinsulin-raising alleles of each SNP were consistently associated with higher 32,33-split proinsulin levels, with effect sizes following the rank order of proinsulin effect sizes. Nearly all associations reached nominal conventional levels of statistical significance in this smaller dataset of 4,103–6,343 individuals with measures of 32,33-split proinsulin levels (all P < 1.5 × 10⁻³, with the exception of the conditional signal at MADD). The insulinogenic index (27), which measures dynamic insulin secretion during the first 30 min after an oral glucose load and was available in 14,956 subjects, showed nominal associations for four loci. Of these, the proinsulin-raising alleles were associated with a lower insulinogenic index at VPS13C/C2CD4A/B, TCF7L2, and SLC30A8 and higher at ARAP1 (Table 2).

We detected no nominal associations with fasting C-peptide (P > 0.05). Given the differences in hepatic clearance of insulin and C-peptide, we also performed sensitivity analyses to account for any possible impact this may have had on our results. We adjusted proinsulin levels for fasting C-peptide rather than fasting insulin in two cohorts (Ely and Botnia-PPP); comparison of β-estimates showed that the majority of loci had very similar effect sizes and the same rank order was preserved, arguing against noticeable discrepancies between the two adjustment schemes.

Association with other glycemic traits. To clarify potential mechanisms, the top nine signals (ARAP1, two at MADD, PCSK1, TCF7L2, VPS13C/C2CD4A/B, SLC30A8, LARP6, and SGSM2) were also examined in relation to other glucometabolic traits (fasting and 2-h postload glucose and insulin, homeostasis model assessment estimates of β-cell function [HOMA-B] and insulin resistance [HOMA-IR]) [28], glycated hemoglobin [A1C], T2D, and BMI [Table 3]. We investigated results available from MAGIC meta-analyses of GWAS of glycemic traits (3–5) and obtained T2D and BMI results in collaboration with the Diabetes Genetics Replication And Meta-analysis (DIAGRAM) (29) and Genomewide Investigation of Anthropometric measures (GIANT) (30) consortia, respectively. Nominal associations (P < 0.05) were found for fasting glucose (with the proinsulin-raising allele increasing fasting glucose levels at MADD, SLC30A8, TCF7L2, and VPS13C/C2CD4A/B and decreasing fasting glucose levels at ARAP1 and PCSK1), fasting insulin (increased levels at ARAP1, LARP6, and SGSM2 and decreased levels at TCF7L2), HOMA-B (decreased at MADD, SLC30A8, VPS13C/C2CD4A/B, and TCF7L2 and increased at PCSK1, ARAP1, and LARP6), insulin resistance as measured by HOMA-IR (increased at LARP6 and SGSM2 and decreased at TCF7L2), 2-h postload glucose (decreased at SLC30A8 and VPS13C/C2CD4A/B and increased at ARAP1 and TCF7L2).

We detected no significant associations for 2-h postload insulin or insulin sensitivity as estimated by the Matsuda index (31) (Table 3).

Associations with T2D were confirmed for four known T2D loci (SLC30A8, ARAP1, VPS13C/C2CD4A/B, and TCF7L2; Table 3). Counterintuitively, the proinsulin-raising allele of ARAP1 (formerly known as CENDT2 and reported as such in DIAGRAM+) (29) was associated with a lower fasting glucose (0.019 mg/dl per A allele; P = 1.7 × 10⁻⁵), lower A1C (0.023%; P = 0.02), and a lower risk of T2D (odds ratio [OR] 0.88; P = 7.8 × 10⁻⁶, Table 3). The two novel loci (LARP6 and SGSM2) did not show significant associations with T2D (OR [95% CI]: 1.01 [0.95–1.07] and 1.01 [0.96–1.08], respectively), indicating that if they increase T2D risk they do so to an extent confined within the bounds of narrow 95% CI.

Fine-mapping, copy number variants, and tissue expression. We used MACH (32) or IMPUTE (19) applied to the 1000 Genomes CEU reference panel (www.1000genomes.org) to carry out imputation of ~8 million autosomal SNPs with minor allele frequency >1%. Analysis of 1000 Genomes-imputed data in the four discovery cohorts indicates that although there are low-frequency (1–5%) variant genes that influence levels of circulating proinsulin, these are found in the same loci that contain common proinsulin-influencing variants, and none of them yield substantially stronger signals than the index SNP at each locus (Supplementary Fig. 5).

Using current databases of copy number variants (33) and the SNAP software (http://www.broadinstitute.org/mpg/snap/index.php; CEU, HapMap release 22), we checked whether any of the proinsulin-associated SNPs were within 500 kb and in linkage disequilibrium (LD) with any of the SNPs known to tag copy number variants in the human genome. No copy number variant tag SNPs with r² > 0.3 were found within 500 kb of our lead SNPs.

To guide identification of the gene responsible for each association signal, we also examined the gene expression profile of selected genes in each associated region across a range of human tissues, including islets and fluorescence-activated cell (FAC)-sorted β-cells (Fig. 3A–F and Supplementary Fig. 6). We defined 1-Mb intervals around the lead SNP at each locus and prioritized biologically plausible genes as gleaned from the literature (see Box in Supplementary Data). We were able to demonstrate β-cell expression of most genes examined (Fig. 3F). However, at the LARP6 locus, CT62 is expressed exclusively in testis, likely excluding it as a relevant gene in this context. At the ARAP1 locus, STARD10 is expressed more strongly in pancreatic and islet tissue than any other tissue type; similarly, at the VPS13C locus both C2CD4A and C2CD4B demonstrate higher expression in pancreas and islets than all other tissue types.

We also studied the expression of the transcript for the gene closest to the index SNP at each of the nine replicated loci in human islets isolated from 55 non-diabetic and 9 diabetic individuals. Of the nine loci, PCSK1 (P = 0.02) and MADD (P = 0.07) demonstrated 35–45% lower expression in subjects with T2D compared with control subjects.

Functional exploitation. We evaluated whether any of the associated SNPs was in strong LD with a potentially causal variant. We used SNPper (34) to classify all SNPs within 500 kb of our lead SNP at each locus and prioritized biologically plausible expression. No copy number variant tag SNPs with r² > 0.8 with any of the 1-Mb regions. We found that PCSK1 rs6235 codes for a non-synonymous variant (S690T), which is in perfect LD with rs6234, another missense variant (Q665E); both were
FIG. 2. Regional plots of eight genomic regions containing novel genome-wide significant associations. For each region, directly genotyped and imputed SNPs are plotted with their meta-analysis P values (as $-\log_{10}$ values) as a function of genomic position (NCBI Build 36). In each panel, the stage 1 discovery SNP taken forward to stage 2 follow-up is represented by a purple diamond (with global meta-analysis P value), with its stage 1 discovery P value denoted by a red diamond with bolded borders. Estimated recombination rates (taken from HapMap) are plotted to reflect the local LD structure around the associated SNPs and their correlated proxies (according to a white to red scale from $r^2 = 0$ to 1, based on pairwise r^2 values from HapMap CEU). Gene annotations were taken from the University of California Santa Cruz genome browser. A: ARAP1 region; B: MADD region; C: PCSK1 region; D: TCF7L2 region; E: VPS13C/C2CD4A/B region; F: SLC30A8 region; G: LARP6 region; H: SGSM2 region.
TABLE 2

Association of proinsulin loci with insulin-processing traits

<table>
<thead>
<tr>
<th>SNP</th>
<th>Alleles</th>
<th>Nearest gene</th>
<th>Nearest gene</th>
<th>Association with proinsulin-raising alleles</th>
<th>Proinsulin-raising/A</th>
<th>Proinsulin-raising/other</th>
<th>Association with fasting insulin</th>
<th>Association with HOMA-B</th>
<th>Association with Insulinogenic index</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs11603334</td>
<td>A/G</td>
<td>ARAP1</td>
<td>0.012</td>
<td>0.02</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs10051320</td>
<td>A/G</td>
<td>MADD</td>
<td>0.003</td>
<td>0.01</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs7000124</td>
<td>T/C</td>
<td>TC</td>
<td>0.05</td>
<td>0.02</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs11358671</td>
<td>T/C</td>
<td>SLCO1A5/C2CD4A/B</td>
<td>0.006</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1083818</td>
<td>T/C</td>
<td>ZHF17,1</td>
<td>0.15</td>
<td>0.04</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs9407518</td>
<td>T/C</td>
<td>ZHF26</td>
<td>0.008</td>
<td>0.02</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs4790333</td>
<td>T/C</td>
<td>SGSM2</td>
<td>0.015</td>
<td>0.05</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

β-Coefficients are adjusted for age, sex, and study-specific covariates (if applicable).

We report the first meta-analysis of genome-wide association datasets for circulating fasting proinsulin. We adjusted proinsulin for fasting insulin levels, aiming to capture an increase in proinsulin relative to the nonspecific activation of the insulin processing pathway induced by generalized insulin resistance (Supplementary Fig. 2). Loci that simply influence insulin resistance are typically sought by a GWAS for fasting insulin or more sophisticated measures of insulin sensitivity (3,4,6). Thus, we hoped to identify loci that indicate the inability of the β-cell to process proinsulin adequately in response to metabolic demands.

We have identified nine signals at eight loci associated with higher proinsulin levels (see Box in Supplementary Data). Two of these loci (LARP6 and SGSM2) have not been previously related to metabolic traits. A 10th signal emerged after sex-stratified analyses; an explanation for the female-specific genome-wide significant association at DDX31 requires fine-mapping to identify the causal gene. Although the function of the DDX31 gene product is unknown, other members of the DEAD-box protein family have been implicated in sex-specific processes such as spermatogenesis (39). We have also replicated at the genome-wide level previously reported nominal associations of MADD, TCF7L2, VPS13C/C2CD4A/B, SLCO1A5, and PCSK1 with proinsulin (6.14–17.40). The knowledge that TCF7L2, SLCO1A5, VPS13C/C2CD4A/B, and ARAP1 are established T2D loci provides reassurance that a quest for genetic determinants of proinsulin can serve to identify disease-associated signals. Interestingly, the proinsulin-raising predicted to be nondamaging by PolyPhen (35) and SIFT (36). At SLC30A8, the proinsulin-associated SNP rs11558471 is a perfect proxy for the known T2D-associated SNP rs13266634, encoding R325W. The T allele (encoding tryptophan) is predicted to be benign by PolyPhen, but damaging by SIFT. We found no other strong (r^2 >0.8) correlations in HapMap CEU with potentially functional SNPs within 1 Mb of the lead signals.

We also tested whether any of the proinsulin-associated SNPs might influence proximal (cis) expression of human transcripts, in tissues available to us that had been paired to genetic data. We found a significant association (P = 0.01 permutation threshold) of rs1549318 with expression levels of LARP6 in adipose tissue. SNP rs1549318 is located ~37 kb from LARP6, and the proinsulin-raising T allele is associated with lower levels of expression. Analysis of an eQTL database from human liver indicated that the proinsulin-raising A allele of the lead SNP at the SGSM2 locus (rs179456) was associated with increased liver expression of TRPS1 (P = 0.004).

CAD. We constructed unweighted and weighted genotype scores composed of the nine genome-wide significant proinsulin-raising alleles, with weights defined by the β-coefficients from our replication meta-analysis, and tested the association of these scores with CAD in the Coronary Artery Disease Genome-wide Replication And Meta-Analysis (CARDIoGRAM) (37)/settings = 22,000 CAD case subjects and 60,000 control subjects) and CAD (38) (n = 15,420 CAD case subjects and 15,062 control subjects) datasets. Neither weighted nor unweighted genotype scores reached nominal significance in either dataset (P = 0.47 and 0.81 for unweighted and weighted scores in CARDIoGRAM, respectively; P = 0.60 and 0.43 for unweighted and weighted scores in CAD, respectively).

DISCUSSION

We report the first meta-analysis of genome-wide association datasets for circulating fasting proinsulin. We adjusted proinsulin for fasting insulin levels, aiming to capture an increase in proinsulin relative to the nonspecific activation of the insulin processing pathway induced by generalized insulin resistance (Supplementary Fig. 2). Loci that simply influence insulin resistance are typically sought by a GWAS for fasting insulin or more sophisticated measures of insulin sensitivity (3,4,6). Thus, we hoped to identify loci that indicate the inability of the β-cell to process proinsulin adequately in response to metabolic demands.

We have identified nine signals at eight loci associated with higher proinsulin levels (see Box in Supplementary Data). Two of these loci (LARP6 and SGSM2) have not been previously related to metabolic traits. A 10th signal emerged after sex-stratified analyses; an explanation for the female-specific genome-wide significant association at DDX31 requires fine-mapping to identify the causal gene. Although the function of the DDX31 gene product is unknown, other members of the DEAD-box protein family have been implicated in sex-specific processes such as spermatogenesis (39). We have also replicated at the genome-wide level previously reported nominal associations of MADD, TCF7L2, VPS13C/C2CD4A/B, SLCO1A5, and PCSK1 with proinsulin (6.14–17.40). The knowledge that TCF7L2, SLCO1A5, VPS13C/C2CD4A/B, and ARAP1 are established T2D loci provides reassurance that a quest for genetic determinants of proinsulin can serve to identify disease-associated signals. Interestingly, the proinsulin-raising
![Image of the page being read naturally](image-url)
A member of the NR1 subfamily of nuclear hormone receptors) are expressed in FAC-sorted β-cells, the relative expression of the first two is much higher in islets than in other human tissues, again suggesting that these two genes, encoding nuclear factors that are upregulated in response to inflammation, may be particularly relevant to endocrine pancreatic function.

The genome-wide association of a missense variant in PCSK1 with fasting proinsulin also serves as a positive control. PCSK1 encodes the protein prohormone convertase...
L3 (PC1), which is the first enzyme in the proinsulin processing pathway, where it cleaves proinsulin to 32,33-split proinsulin (Supplementary Fig. 1). A related enzyme, PC2, acts on 32,33-split proinsulin in the second processing step. People deficient in PC1 become obese at an early age and exhibit pituitary hypofunction because of the lack of several mature peptide hormones (45), whereas PC2-null mice demonstrate increased levels of 32,33-split proinsulin (46). The rs6235 SNP reported here results in the substitution of a serine residue for threonine at position 690 of the molecule; the minor allele (Thr) is associated with higher proinsulin levels. A nominal association of the same allele with higher proinsulin levels has recently been reported (40); its association with higher BMI is only nominal here, but confirms a previous report (47). This specific amino acid change has been shown not to affect enzyme catalysis or maturation of the protein in vitro (47), but the COOH terminus of the protein (where S690T is located, adjacent to a conserved proline residue) is known to direct the correct subcellular targeting of the protein as well as stabilizing and partially inhibiting PC1. Although one might expect lower levels of the reaction product (32,33-split proinsulin) in carriers of the risk allele, the potential diversion of the substrate down its alternate path (giving rise to 65,66-split proinsulin, whose assay typically has 60% cross-reactivity with 32,33-split proinsulin) requires further study. Alternatively, if changes in the activity of PC1 also stabilize and partially inhibit PC2, we might expect lower levels of the reaction product (32,33-split proinsulin) as well as impaired proinsulin processing and the reaction of 32,33-split proinsulin on CAD.

A recent report (47) notes that the minor allele (Thr) is associated with faster proinsulin processing and the reaction of 32,33-split proinsulin. The minor allele (Thr) is associated with lower proinsulin levels. A nominal association of the same allele with higher BMI has recently been reported (40); its association with higher BMI is only nominal here, but confirms a previous report (47). This specific amino acid change has been shown not to affect enzyme catalysis or maturation of the proinsulin in vitro (47), but the COOH terminus of the proinsulin (where S690T is located, adjacent to a conserved proline residue) is known to direct the correct subcellular targeting of the protein as well as stabilizing and partially inhibiting PC1. Although one might expect lower levels of the reaction product (32,33-split proinsulin) in carriers of the risk allele, the potential diversion of the substrate down its alternate path (giving rise to 65,66-split proinsulin, whose assay typically has 60% cross-reactivity with 32,33-split proinsulin) requires further study. Alternatively, if changes in the activity of PC1 also stabilize and partially inhibit PC2, we might expect lower levels of the reaction product (32,33-split proinsulin) as well as impaired proinsulin processing and the reaction of 32,33-split proinsulin on CAD.
32. Li Y, Abecasis GR. Mach 1.0: rapid haplotype reconstruction and missing genotype inference (Abstract). Am J Hum Genet 2006;S79:2290
34. Riva A, Kohane IS. A SNP-centric database for the investigation of the human genome. BMC Bioinformatics 2004;5:33