Potential peripheral biomarkers for chronic pain

Yuen H. Kwok BSc (Hons)

Discipline of Pharmacology, School of Medical Sciences

(Faculty of Health Sciences)

The University of Adelaide

June 2014

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Table of Contents

Abstract		vii
Declaration		ix
Acknowled	gments	xi
Abbreviatio	ns	xiii
Chapter 1.	Introduction	1
1.1. Cu	rrent assessments for chronic pain	3
1.1.1.	Pain scales	3
1.1.2.	Pain assessments by observation of pain behaviours	6
1.1.3.	Under treatment of chronic pain	6
1.1.4.	Other issues related to the current methods for pain assessments	7
1.2. Bio	omarkers	9
1.2.1.	What is a biomarker?	9
1.2.2.	The need for biomarkers	9
1.2.3.	Usefulness of biomarkers	10
1.2.4.	Evaluation of biomarkers	11
1.2.5.	Validation of biomarkers	12
1.2.6.	Potential biomarker for chronic pain: neuroimaging	13
1.3. Ne	ural mechanisms of chronic pain	15
1.3.1.	Nociceptive pain	15
1.3.2.	Inflammatory pain	16
1.3.3.	Chronic pain	17
1.3.4.	Structural changes after injury	18
1.3.5.	Peripheral sensitization: ectopic activity	
1.3.6.	Central sensitization	19
	rrent treatments for chronic pain	
Yuen H. Kwo	k, PhD Thesis 2014	ii

1.4.1.	Established treatments	22
1.4.2.	Solutions for improving treatments for chronic pain	23
1.5. Ne	euroimmune contributions to chronic pain	25
1.5.1.	How do peripheral immune cells contribute to chronic pain?	25
1.5.2.	Immunocompotent cells in the CNS: glia	31
1.5.3.	Microglia and astrocytes	32
1.5.4.	Involvement of glia in chronic pain	33
1.5.5.	Microglia can initiate chronic pain whilst astrocytes maintain it	34
1.5.6.	Mediators released from glial cells indirectly contribute to chronic pain	35
1.5.7.	Potential activators of glial cells	35
1.6. To	II-like receptors	36
1.6.1.	TLR signalling pathways	36
1.6.2.	Expressions and locations of TLRs	
1.6.3.	The involvement of TLR2 in chronic pain	
1.6.4.	The involvement of TLR4 in chronic pain	41
1.6.5.	Influences other than TLR2 and 4	43
1.6.6.	TLR7 activation contributes to itch and not pain	44
1.7. Ro	le of inflammatory mediators in chronic pain	46
1.7.1.	Cytokines	47
1.7.2.	Role of interleukin-1 β in chronic pain	47
1.8. TL	R responsiveness	51
1.9. Ot	her techniques used in this project	55
1.9.1.	Preclinical model: Graded chronic constriction injury model	55
1.9.2.	Assessment of basal pain sensitivity: Cold pain test	55
1.10. 5	Summary	
1.11. F	Research Aims	58

Chapter 2.	TLR responsiveness of the human peripheral blood mononuclear cells as a	3
potential biom	narker for chronic pain	61
Statement of <i>I</i>	Authorship	63
Chapter 3.	Forward and backward translation of TLR responsiveness between a	
preclinical net	uropathic pain model and a chronic pain patient cohort	72
Statement of <i>I</i>	Authorship	74
Chapter 4.	Utility of TLR responsiveness for the assessment of a novel treatment	92
Statement of <i>I</i>	Authorship	94
Chapter 5.	Conclusion	131
Chapter 6.	References	137
Appendix A.	Supplementary tables	162
Appendix B.	Potential biomarkers for pain: Neopterin & reduced white cell count	174
	Potential biomarkers for pain: Neopterin & reduced white cell count	
B.1. Introd		174
B.1. Introd B.2. Mater	duction	174 176
B.1. Introd B.2. Mater B.2.1. (duction	174 176 176
B.1. Introd B.2. Mater B.2.1. (B.2.2. N	duction rials and methods	174 176 176 177
B.1. Introd B.2. Mater B.2.1. (B.2.2. N B.2.3. S	duction rials and methods Cell count Veopterin assay	174 176 176 177 177
B.1. Introd B.2. Mater B.2.1. (B.2.2. N B.2.3. S B.3. Resu	duction rials and methods Cell count Veopterin assay Statistical analysis	174 176 176 177 177 177
B.1. Introd B.2. Mater B.2.1. (B.2.2. N B.2.3. S B.3. Resu	duction rials and methods Cell count Neopterin assay Statistical analysis	174 176 176 177 177 177 179
B.1. Introd B.2. Mater B.2.1. (B.2.2. N B.2.3. S B.3. Resu B.4. Discu Appendix C.	duction	174 176 176 177 177 177 179 181
B.1. Introd B.2. Mater B.2.1. (B.2.2. N B.2.3. S B.3. Resu B.4. Discu Appendix C. C.1. R cor	duction rials and methods Cell count Veopterin assay Statistical analysis Its Its Development of data derived statistical models for study 2 and 3	174 176 176 177 177 177 179 181
B.1. Introd B.2. Mater B.2.1. (C B.2.2. N B.2.3. S B.3. Resu B.4. Discu Appendix C. C.1. R cor C.1.1. F	duction rials and methods Cell count Veopterin assay Statistical analysis Its Its Ission Development of data derived statistical models for study 2 and 3 nmands for the generation of models	174 176 176 177 177 177 179 181 182
B.1. Introd B.2. Mater B.2.1. C B.2.2. N B.2.3. S B.3. Resu B.4. Discu Appendix C. C.1. R cor C.1.1. F responder	duction rials and methods Cell count Veopterin assay Statistical analysis Its Its Development of data derived statistical models for study 2 and 3 nmands for the generation of models for categorization of the pain presence (Model A) (Chapter 3 for rats and humans) &	174 176 176 177 177 177 179 181 182

C.1.3. For the prediction of f IL-1 β central output by models generated from peripheral outputs and prediction of pain presence in humans (Model D; Chapter 3) and responders of ibudilast (Chapter 4) 185

Appendix D.	Appendix References	186
-------------	---------------------	-----

Table of Figures and Tables

Figure 1–1 Schematic representation of the three pain intensity scores.	4
Figure 1–2 Multiple sites that can be modified during neuropathic pain	16
Figure 1–3 The interaction between neuron and glial cells in the central region	32
Figure 1–4. A schematic representation of TLR4 signalling	37
Figure B–1. The synthesis pathway of GTP (Tegeder et al., 2006)	175
Figure B–2. Number of cell count after isolation with the use of Optiprep [™]	178
Figure B–3. No group differences were detected in the serum neopterin levels.	178

Table 1–1. Evidence of TLR responsiveness in humans with immune mediated diseases
Table A–1. Individual information on chronic pain sufferers in Chapter 2 162
Table A–2. Best-fit logistic regression model results for the prediction of pain for rats post CCI165
Table A–3. Best-fit logistic regression model results for the prediction of the pain severity in rats post
CCI168
Table A–4. Best-fit logistic regression model from rats (Peripheral only) and from humans to predict
the presence of pain in chronic pain patients173

Abstract

Chronic pain biomarkers can assist clinicians to diagnose patients, identify underlying mechanisms of disease, reduce the time and cost to reach a decision in early clinical trials and guide personalized pain treatments. Unfortunately, to date, there is no validated biomarker for chronic pain due to the difficulty in accessing the central nervous system. However, emerging literature has consistently provided evidence for the involvement of the immune system to play a substantial role in the modulation of chronic pain. Thus, this thesis examines components of the immune system such as Toll like receptor (TLR) signalling, peripheral immune cells and pro-inflammatory cytokine as an accessible source which may mirror similarities in brain immune cells and capture the changes in chronic pain state.

Therefore, the purpose of this thesis was to examine the use of peripheral immune cell reactivity as a potential biomarker for chronic pain. The first study was conducted in heterogeneous chronic pain and pain-free cohorts. Peripheral blood mononuclear cells (PBMCs) were isolated and stimulated with various TLR agonists to generate a pro-inflammatory cytokine interleukin-1 β (IL-1 β) concentration response curve. Chronic pain patients displayed significantly enhanced expression of IL-1 β compared with the pain-free cohort hence the TLR responsiveness demonstrated face validity as a chronic pain biomarker.

The second study demonstrated the translatability of the importance of TLR responsiveness in a preclinical neuropathic pain model. IL-1 β levels were quantified from basal and TLR2/4 agonist stimulated isolated rat PBMCs and spinal cord tissues, and together with the behaviour responses were used to generate statistical models. The main findings of this study were the inclusion of basal and TLR agonist stimulated outputs were required to predict the presence of pain and severity of allodynia with high sensitivity and specificity and that peripherally collected outputs correlated with the outputs from the spinal cord, suggesting the ability of peripheral outputs to give insight into

central signalling. In addition, a mathematical model developed from rat studies using peripheral and central tissues was able to identify chronic pain patients by their peripheral blood response with high accuracy.

The final study assessed TLR responsiveness of isolated PBMCs collected from a cohort of medication overuse headache (MOH) patients to determine the efficacy of a novel treatment for headache (ibudilast). This study consisted of MOH patients on 8 weeks of either placebo or ibudilast treatments. After 8 weeks of treatment, both groups did not experience a change in their headache frequency or intensity. However, a significant reduction in the TLR responsiveness occurred in the ibudilast group. These data provide the first evidence of a biomarker for ibudilast treatment.

In sum, this thesis provides evidence that peripheral cells are a good source to be biomarker for chronic pain and the importance to assess TLR signalling as an approach to capture the dysregulated immune system as a result of chronic pain. The discovered biomarkers require further replication and validation before than can be routinely used. However, the present finding can assist with the development of future cellular biomarkers for chronic pain.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

Kwok YH, Hutchinson MR, Gentgall MG & Rolan PE. (2012). Increased Responsiveness of Peripheral Blood Mononuclear Cells to In Vitro TLR 2, 4 and 7 Ligand Stimulation in Chronic Pain Patients. *PLoS ONE* 7(8), e44232.

Kwok YH, Tuke J, Nicotra LL, Grace PG, Rolan PE, Hutchinson MR (2013) TLR 2 and 4 Responsiveness from Isolated Peripheral Blood Mononuclear Cells from Rats and Humans as Potential Chronic Pain Biomarkers. *PLoS ONE* 8(10), e77799. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Yuen Hei Kwok

Date

Acknowledgments

I would like to sincerely thank my supervisors Professor Paul Rolan and Professor Mark Hutchinson for giving me the opportunity to undertake such an exciting project. Their enthusiasm and immense knowledge really formed a concrete picture in my mind as to what "being passionate" is really about and I strive to be as passionate a researcher as them one day. Their ongoing encouragement, patience and guidance over the years are greatly appreciated and I could not have wished for better supervisors.

The research presented in this thesis would have been impossible without the financial support from the Faculty of Health Sciences Divisional PhD Scholarship as well as support from the Pain and Anaesthesia Research Clinic. The opportunities to present my work at numerous national and international conferences were generously supported by the Australasian Society for Clinical and Experimental Pharmacologists and Toxicologists Travel Grant, Australian Pain Society PhD Travel grant, Faculty of Health Sciences Postgraduate Travelling Fellowship, The School of Medical Sciences Postgraduate Travel Award and Professor Paul Rolan.

I would also like to acknowledge the work and express my gratitude to the following people: Melanie Gentgall and all the staffs at the Pain and Anaesthesia Research Clinic for teaching me how to run clinical studies as well as providing their clinical expertise; Dr Jonathan Tuke and Prof Mark Hutchinson for teaching me how to use and develop scripts for the statistical programming of R; Jacinta Johnson and Nicole Sumracki for their collaborations with the clinical studies; Lauren Nicotra for the collaboration with the preclinical study; Dr Janet Coller and Dr Dan Barratt for assistance with genotyping; I would like to thank Dr Dan Barratt again for his patience in training me on extracting RNA and providing insightful troubleshooting microarray advices; I'm also very grateful to Perona Ho who helped proofread my thesis; I would like to express my thanks to Gordon Crabbe and Karen Nunes-Vraz for their administrative support; I would like to thank all past and present members of the Discipline of Pharmacology as they have provided me with valuable feedback throughout the years, which will be remembered; I would like to thank all the past and present students in the Discipline of Pharmacology and particularly to my colleagues in N529a and N511. They have been amazing and I will never forget the fun times we shared.

Furthermore, I am thankful to my friends for being so supportive and understanding over the years, whether it was chatting over lunch/dinner, hiking, watching the latest movies, singing karaoke or just hanging out -those moments have kept my life in balance!

Last but not least, I would like to thank my family, especially my parents. They have been my pillars of support both emotionally and financially and their constant encouragement really helped me get to where I am today and for that I am infinitely grateful.

Abbreviations

ATP	Adensoine triphosphate
cAMP	Cyclic adenosine monophosphate
CCI	Chronic constriction injury
CCL	Chemokine (C-C) motif ligand
CNS	Central nervous system
COX	Cyclooxygenase
DAMPs	Danger-associated molecular patterns
DRG	Dorsal root ganglia
ELISA	Enzyme-linked immunosorbent assay
FCS	Fetal calf serum
FDA	Food and Drug Administration
fMRI	Functional magnetic resonance imaging
GABA	γ-aminobutyric acid
GFAP	Glial fibrillary acidic protein
КО	Knockout
IL	Interleukin
ΙκΒ-α	NFκB inhibitor α
inos Irak	Nitric oxide synthase IL-1 receptor-associated kinase
LPS	Lipopolysaccharide
МАРК	Mitogen-activated protein kinase
МОН	Medication overuse headache
MyD88	Myeloid differentiation primary response gene 88
MSU crystals	Monosodium urate crystals

NGF	Nerve growth factor
NF-ĸB	Nuclear factor- κB
NMDA	N-methyl-D-aspartate glutamate
NNT	Number needed to treat
NO	Nitric oxide
Nox2	NADPH oxidase 2
NRS	Numeric rating scale
NSAIDS	Nonsteroidal anti-inflammatory drugs
P2X4	Purinergic receptor
PAMPs	Pathogen-associated molecular patterns
PBMCs	Peripheral blood mononuclear cells
SSRIs	Selective serotonin reuptake inhibitors
StEP	Standardized Evaluation of Pain
SDSN	Supernatant of damaged sensory neurons
TCA	Tricyclics antidepressants
TIR	Toll/IL-1 receptor
TGF-β1	Transforming growth factor beta
TLR	Toll-like receptor
TNF-α	Tumour necrosis factor alpha
TRAF6	Tumour necrosis factor receptor 6
TRIF	TIR-doman containing adapter-inducing interferon- β
VAS	Visual analogue scale
VRS	Verbal rating scale