A GEOPHYSICAL INVESTIGATION OF THE LAKE HARRIS KOMATIITE, SOUTH AUSTRALIA.

John M. Tesselaar B.Sc.

This thesis is submitted as partial fulfilment for the Honours Degree of Bachelor of Science.
November 1994

The University of Adelaide
The Department of Geology and Geophysics

Australian National Grid Reference
Gairdner Sheet (SH53-15) 1: 250 000
Kingoonya Sheet (SH53-11) 1: 250 000
Childara Sheet (SH53-14) 1: 250 000
Tarcoola Sheet (SH53-10) 1: 250 000
Abstract

The Archaean and Proterozoic basement of the Gawler Craton is poorly understood, due mainly to the sparse outcrop. A high resolution aeromagnetic survey has been carried out to help increase the knowledge of this area and encourage exploration. The Lake Harris Komatiite, approximately 500 km northwest of Adelaide forms a prominent linear magnetic anomaly which was drilled on the basis of this survey.

Petrographic studies reveal that the komatiite is serpentinised. This low-temperature hydrothermal metamorphic process is important in understanding the magnetic properties of the komatiite as the degree of serpentinisation is proportional to the magnetic susceptibility. Magnetite is formed during this process as a by product of the breakdown of olivine into serpentine and chlorite. Various nickel sulphides were also formed during this process. Shear zones in the komatiite have been subsequently altered by hydrothermal fluids which have deposited native copper.

A series of linear magnetic features are visible on the aeromagnetic map of the komatiite. The vertical gradient was used to model these features, interpreted to be komatiite flows. The vertical gradient enhances near surface anomalies and improves the resolution of such bodies. Modelling reveals that the komatiite has been folded twice, the first tightly on an east west fold axis; the second is a gentle north trending fold caused by doming when the Glenloth Granite intruded the komatiite. These folds are offset by a series of dip slip and strike slip north west trending faults.

The results of this study indicate that the best exploration targets in this area would be komatiite hosted Ni - Au deposits or hydrothermal Au -Cu deposits.
Acknowledgements

I wish to thank my supervisor, Shanti Rajagopalan for making this project possible and for all of the support and help that she has given to me throughout the year. Thanks also to Peter Brooker and Richard Hillis for the support and interest which they have shown in my project. Thanks also to Ross Both who proved invaluable with his help in identifying the opaque mineralogy.

The data was supplied by the Mines and Energy South Australia, for which I am very grateful. Thankyou especially to Sue Daly, Martin Fairclough, and Stuart Robertson for the valuable discussions held throughout the year.

Thanks to the technical staff of the geology department, especially John Willoughby and Sherry Proferes for all of the help and advice they gave me throughout the year.

I also wish to thank all of the postgraduate students for discussions and help with editing throughout the year. Bruce Schaeffer, Jamie Burgess, John Teasdale, and Stephen Markham were especially helpful.

Thankyou also to all of the honors students who made life that little bit easier. Thanks especially to Pete, Mike, Jason, and Rob for assistance with editing. Thanks to Susan for assistance with diagrams and to Adam for help with figure 6.6.

Finally I wish to thank my parents for all of the help and support (especially financial) which they have given me throughout my 16 years of study.
CONTENTS

Abstract
Acknowledgments
List of Figures
List of Plates
List of Appendices
List of computer programs

1. Introduction ... 1

2. Geological Setting
 2.1 Gawler Craton ... 2
 2.2 Mulgathing Complex ... 2
 2.3 The Lake Harris Komatiite ... 4

3. Komatiites
 3.1 Introduction ... 5
 3.2 Tectonic implications ... 5
 3.3 Economic implications ... 6
 3.4 Serpentinitisation .. 7
 3.5 Magnetic Properties ... 7

4. The magnetic petrology of the Lake Harris Komatiite
 4.1 Introduction ... 8
 4.2 Lithology ... 8
 4.3 Bulk Susceptibility ... 8
 4.4 Petrographic study .. 12
 4.5 Discussion ... 14

5. Regional Geophysics
 5.1 Introduction ... 17
 5.2 Data Processing ... 18
 5.3 Map Interpretation ... 19
 5.4 Gairdner Dykes ... 23
 5.5 Comparison to Gawler Craton and Stuart Shelf ... 25
6. Detailed Komatiite Interpretation
6.1 Introduction and methodology ... 27
6.2 The index dyke .. 27
6.3 Remanence ... 28
6.4 Interpretation .. 30
6.5 Structural history ... 31
6.6 Comparison to Mt. Edwards, Western Australia 32

7. Conclusions and Recommendations 34
 7.1 Recommendations for future work and exploration 35

8. References .. 36

LIST OF FIGURES

 Following Page

1.1 Location map ... 1
1.2 The study area ... 1
2.1 Modified stratigraphic column .. 2
2.2 Regional geology .. 3
4.1 Comparison log DDH#1 .. 11
4.2 Comparison log DDH#2 .. 11
5.1 TMI Lake Harris Region .. 18
5.2 Vertical Gradient Lake Harris Region 19
5.3 Regional residual separations .. 19
5.4 Geophysical interpretation (overlay) 18
5.5 Outcrop map ... 19
5.6 Row and column numbers (overlay) 19
5.7 Geophysical interpretation .. 20
5.8 Stacked profiles of the K-2 anomaly 23
5.9 Stacked profiles of the Gairdner Dykes 24
5.10 Models of the Gairdner dykes ... 24
6.1 Vertical gradient of the Lake Harris Komatiite 27
6.2 Overlays of anomalies selected for modelling 27
6.3 Sample points of models (overlay) 27
6.4 Comparison of dyke and thin plate model 27
6.5 Dyke models of the komatiite ... 28
6.6 Structural model of the komatiite 31
6.7 Mt Edwards, geology and geophysics 33
List Of Tables

Table 4.1 Summary of Diamond Drill Holes 9
Table 4.2 Thin sections summary Following page 12
Table 4.3 Parameters of modelled dykes 25
Table 6.1 Paramaters of modelled komatiite bodies Following page 30

List Of Plates

Plate 1 Selected photomicrographs Following page 14

List Of Appendices

Appendix A: Susceptibility logs for DDH-1 and DDH-2
Appendix B: Ion microprobe data

List Of Computer Software Used

Gridding and contouring algorithms: John Paine
Transformations of the magnetic data: Zhiqun Shi
Image processing and regional - residual separation: Shanti Rajagopalan
Interactive modelling program GAMMA: John Paine
Interactive modelling program POTENT: Richard Almond