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Abstract: In recent years, the differential evolution algorithm (DEA) has frequently been 23 

used to tackle various water resource problems due to its powerful search ability. 24 

However, one challenge of using the DEA is the tedious effort required to fine-tune 25 

parameter values due to a lack of theoretical understanding of what governs its searching 26 

behavior. This study investigates DEA’s search behavior as a function of its parameter 27 

values. A range of behavioral metrics are developed to measure run-time statistics about 28 

DEA’s performance, with primary focus on the search quality, convergence properties 29 

and solution generation statistics. Water distribution system design problems are utilized 30 

to enable investigation of the behavioral analysis using the developed metrics. Results 31 

obtained offer an improved knowledge on how the control parameter values affect DEA’s 32 

search behavior, thereby providing guidance for parameter-tuning and hence hopefully 33 

increasing appropriate take-up of the DEA within the industry in tackling water resource 34 

optimization problems.  35 

 36 

Keywords: differential evolution algorithm, evolutionary algorithms, search behavior, 37 

water distribution systems, optimization. 38 

39 



1. Introduction 40 

In the water resource community, researchers and engineers often have to deal with 41 

various optimization problems. These include hydrological model calibration, the 42 

planning, design and operation of water resource systems (Nicklow et al., 2010). The 43 

optimization process tries to find the best solution of the given problem within the 44 

specified constraints. Optimizing water resource problems are often extremely difficult 45 

due to the highly nonlinear and complex decision spaces (Razavi et al., 2012). Although 46 

traditional deterministic optimization techniques have been attempted to solve these 47 

problems, the results have often been unsatisfactory (Zheng et al., 2011a).  48 

Over the past two decades, there has been a move towards developing or applying 49 

various evolutionary algorithms (EAs) to deal with water resource optimization problems 50 

(Maier et al., 2014). The differential evolution algorithm (DEA), first proposed by Storn 51 

and Price (1995) as one type of EA, has especially received a deal of attention in recent 52 

years (details of DEA are given in Section 3). For example, Vasan and Raju (2007) 53 

introduced the DEA to optimize flow allocations of an irrigation system; Reddy and 54 

Kumar (2007), applied the DEA to reservoir system optimization; Vasan and Simonovic 55 

(2010), and Zheng et al. (2013) employed the DEA to optimize the design of water 56 

distribution systems (WDSs). More recently, Chichakly et al. (2013) designed watershed-57 

based stormwater management plans using the DEA, and Joseph and Guillaume (2013) 58 

used the DEA to calibrate hydrological models. It has been reported in these studies that 59 

the DEA exhibited better performance in efficiently finding optimal solutions compared 60 

to other types of evolutionary algorithms (EAs), such as genetic algorithms (GAs) and ant 61 



colony optimization (ACO) algorithms. This shows that the DEA is promising for dealing 62 

with a broad array of water resource optimization problems. 63 

Previous studies have also shown that DEA’s search behavior is heavily dependent on 64 

the values of the control parameters F (the differential weight used in the mutation 65 

operator) and CR (the crossover probability used in the crossover operator), while it is not 66 

significantly affected by the varying population size N (Qin and Suganthan, 2005; Das 67 

and Suganthan, 2011). Using the same WDS case studies, Suribabu (2010) concluded 68 

that the performance of DEA is significantly better than GAs, while Marchi et al. (2014) 69 

stated that GAs gave better results overall than the DEA. This contradiction can be 70 

explained by the fact that different parameter values, including F and CR, were used in 71 

these DE applications. Zheng et al. (2011b) performed a sensitivity analysis of DEA’s 72 

parameters (F and CR) in terms of affecting the final solutions based on two WDS case 73 

studies. Results in their study showed that the DEA was unable to solve the optimization 74 

problems effectively if inappropriate parameter values were used. This suggests that a set 75 

of appropriate parameter values is very critical in obtaining the satisfactory performance 76 

of the DEA, which is similar as other types of EAs such as genetic algorithms and the 77 

harmony search algorithm (Savic and Walters, 1997; Geem, 2006). 78 

Suitable parameter values when using an EA approach are normally optimization 79 

problem-dependent due to the variation of fitness landscapes associated with different 80 

problems and problem types (Tolson et al., 2009). Typically, a trial-and-error approach is 81 

used to calibrate the parameter values for the DEA applied to given optimization 82 

problems in water resources (Reddy and Kumar, 2007). This results in a large 83 

computational overhead especially when dealing with real world optimization problems, 84 



for which a large number of decision variables are normally involved. The tedious effort 85 

required for tuning parameter values has been frequently claimed by practitioners as one 86 

of the main reasons for their reluctance to embrace EAs in practice (Geem and Sim, 87 

2010). 88 

In order to address this issue, two potential research directions have been adopted. The 89 

first direction is the development of parameter-free EAs. Wu and Walski (2005), for 90 

example, proposed a self-adaptive penalty approach within a GA to remove the pre-91 

setting of the penalty multiplier parameter for pipeline optimization. Geem and Sim 92 

(2010) proposed a parameter-setting-free harmony search algorithm to optimize the 93 

design of WDSs. More recently, Zheng et al. (2013b) proposed a self-adaptive 94 

differential evolution algorithm (SADE) to optimize the design of WDSs, in which the 95 

two control parameter values F and CR were adapted along with the evolution of the 96 

solutions rather than being pre-specified to fixed values in advance.  97 

The second research direction is the characterization of EA’s run-time search 98 

properties as a function of the varying control parameter values, thereby providing 99 

guidance for fine-tuning parameter values. Traditionally, an EA’s search performance is 100 

typically assessed based on end-of-run performance measures (i.e. statistics describing 101 

the least-cost solution found, and the time taken to find the least-cost solution, see 102 

discussions in the position paper by Maier et al., (2014)). A state-of-the-art example of 103 

the end-of-run performance analysis is the work by Hadka and Reed (2012), in which a 104 

diagnostic assessment framework was developed for evaluating the effectiveness, 105 

reliability, efficiency and controllability of multi-objective evolutionary algorithms 106 

(MOEAs). In contrast to the extensive research on the end-of run performance 107 



assessment, there has been few investigations into characterizing an algorithm’s 108 

properties from the point of view of the underlying run-time searching performance. The 109 

only example of the run-time performance analysis is the work of Zecchin et al. (2012), 110 

who investigated the run-time search behavior of various ACO operators applied to WDS 111 

optimization problems.  112 

In the context of a parametric study, the end-of-run statistics enable the determination 113 

of a direct relationship between an algorithm’s parameter settings and overall 114 

performance. However, a consideration of the run-time behavioral statistics can provide 115 

more insight as to how the different values of the control parameters affect an EA’s 116 

searching behavior in terms of the exploration (the ability to broadly explore the whole 117 

search space) and exploitation (the ability to intensively exploit the promising regions) 118 

within the search process (Maier et al., 2014). This insight should provide guidance not 119 

only for practitioners to select appropriate parameter values of EAs based on an available 120 

computational budget, but also for algorithm developers to understand more deeply the 121 

direct and measured impact of parameter variations on search behavior. For example, for 122 

applications with a limited computational budget, a set of parameter values should be 123 

selected in favor of exploitation. In contrast, if better quality solutions are preferred with 124 

relaxed computational constraints, the combination of the parameter values needs to 125 

possess more strength on the exploration ability. Building a fundamental understanding 126 

of EA’s working principles, such as the run-time searching behavior, as opposed to 127 

focusing only on the end-of-run performance, is an important future research objective as 128 

stated in the position paper by Maier et al., (2014). 129 



As previously outlined, Zheng et al. (2011b) conducted a parametric study on DEA’s 130 

control parameters (F and CR), followed by a development of a self-adaptive DE 131 

algorithm (Zheng et al., 2013) in order to remove the tedious parameter tuning process. 132 

Both studies solely focused on the end-of-run statistics within the given computational 133 

budget, ignoring the algorithm’s run-time searching properties. Therefore, the question 134 

still remains as to why certain algorithms or algorithms with certain parameterization 135 

outperformed others for the selected case studies, and how the internal operators and 136 

mechanisms alter the DEA’s run-time searching behavior that lead up to the end-of-run 137 

performance. This paper is such an attempt to address this issue.  138 

To facilitate the search behavior analysis, a range of behavioral measures are 139 

developed for the DEA in the current study. The primary run-time statistics of interest 140 

concern the population variance, the search quality, the convergence measures, the 141 

percentage of the time spent in the feasible and infeasible regions, and the percentage of 142 

improved solutions within each generation. The WDS design problem, as one typical type 143 

of complex optimization problems in water resources (Fu and Kapelan, 2011), is 144 

considered to analyze the search behavior of the DEA with respect to varying parameter 145 

values. Three WDS case studies with increased scales and complexity are used in the 146 

current study.  147 

Various metrics have been developed to enable the non-dominant set comparison in the 148 

multi-objective EA (MOEA) domain. For example, to assess MOEA’s final searching 149 

performance, Ang et al. (2002) proposed to plot the non-dominated solutions against their 150 

distance to the Pareto front and their distance between each other, while Hadka and Reed 151 

(2012) utilized a broad range of performance metrics including the hypervolume, the 152 



generational distance, the inverse generational distance, the additive epsilon indicator and 153 

the spread. These studies have made merit in developing metrics to evaluate MOEA’s 154 

end-of-run performance, while they significantly differ to the focus of this study that 155 

attempts to develop various metrics to measure the DEA’s run-time performance in the 156 

single-objective space. 157 

Although the impact of different parameter values (F and CR) on DEA’s performance 158 

is investigated in this study, it is not intended to derive a quantitive relationship between 159 

the case studies (different scales and complexity) and the appropriate parameter values. 160 

The aim of the present study is to: (1) develop and demonstrate the utility of metrics for 161 

analyzing the DEA’s run-time search behavior; and (2) characterize the influence of 162 

varying parameter values (F and CR) on the DEA’s searching behavior (exploration and 163 

exploitation) through an empirical numerical study, and compare the empirical results 164 

with prior theoretical results from Zharie (2002, 2009) using the complex WDS design 165 

problems. It is anticipated that such improved knowledge can provide qualitative 166 

guidance to design the DEA to possess various exploration and exploitation emphasis 167 

according to the problem scales and complexity as well as the available computational 168 

budgets.  169 

The remainder of this paper is organized as follows. Section 2 briefly describes the WDS 170 

optimization problem, followed by a presentation of the DEA in Section 3. Section 4 171 

presents the developed metrics for measuring the search behavior of DEAs and Section 5 172 

describes the three WDS case studies used in the current study. Section 6 shows the results 173 

of search behavior analysis for each case study. Finally, the discussion and conclusions of 174 

this paper are outlined in Section 7. 175 



2. Water distribution system optimization problem 176 

Typically, a single-objective WDS design problem is to minimize the system total life 177 

cycle costs (pipes, tanks, valves and other components) while satisfying pressure head 178 

constraints at each node. Given a WDS design problem involving the selection of n pipe 179 

diameters [ ]  ,,, T
21 nddd =D , this problem can be defined as: 180 

Minimize ∑
=

=
n

j
jj dcf

1
)(  (1) 

Subject to:   

    )( minh≥DH  (2) 

  }{  Ad j ∈  (3) 

where f=network cost that is to be minimized; di=diameter of the pipe i; jc  is the cost 181 

function for pipe i associated with the choice of the decision variable dj; n=total number of 182 

pipes in the network; )(DH  represents the performance constraints of the design solution D, 183 

with  )( minh≥DH  showing that the design pressure head at each demand node is above (or 184 

equal to) its corresponding minimum allowable pressure head  minh  (the determination of 185 

)(DH  normally involves a hydraulic simulation model (EPANET2.0 in this study), which 186 

solves the nonlinear mass and energy balance equations for flows and heads in the network); 187 

and A = a set of commercially available pipe diameters.  188 



3. Differential evolution algorithm 189 

The DEA, first introduced by Storn and Price (1995), is a simple yet powerful EA for 190 

global optimization. There are three important operators involved in the process of the 191 

DEA, including the mutation operator, the crossover operator and the selection operator. 192 

The process of a typical DEA is outlined as follows (Storn and Price, 1995): 193 

Initialization. The DEA is a population based stochastic search technique. Thus, an 194 

initial population with a population size N is required to start its search. The individual i 195 

(  2....., ,1  Ni = ), at generation number G (  1....., ,0 max GG = ) can be described as a 196 

variable vector [ ]  ,,, T
,,,,2,,1 GinGiGii,G xxxX = , where maxG  is the number of the maximum 197 

allowable generations, and n is the number of decision variables within the problem. 198 

Initial solutions (at 0=G ) are typically generated by uniformly randomizing individuals 199 

within the total search space as 200 

)](1,0[ min,max,,min,0,, jjjijij xxRandxx −+=  i=1, 2,….N, j=1, 2, ….n (4) 

where min,jx  and max,jx  are respectively the minimum and maximum bounds of the jth 201 

decision variable; and ]1,0[, jiRand  represents a uniform distribution random variable in 202 

the range [0, 1], which is generated independently for each decision variable j in the ith 203 

vector. i,GX  is denoted as a target vector to be improved by the following three operators. 204 

Mutation 205 

The DEA is mainly differentiated from other EAs by its mutation approach, in that a 206 

mutant vector [ ]  ,,, T
,,,,2,,1 GinGiGii,G vvvV = , with respect to each individual i,GX , is 207 



produced by adding the weighted difference (with differential weight F) between two 208 

random population members to third member from the current population. This is given 209 

as: 210 

)( ,,,,
321 GrGrGrGi iii XXFXV −+=  (5) 

where Gr iX ,1
, Gr iX ,2

, and Gr iX ,3
 are three different vectors randomly selected from the 211 

current population ( iii rrr 321 ≠≠ ). These three indexes are randomly selected, without 212 

replacement, for each mutant vector.  213 

Crossover 214 

After the mutation, a trial vector [ ]  ,,, T
,,,,2,,1 GinGiGii,G uuuU =   is generated though 215 

selecting solution component values either from i,GX  or i,GV . The binomial crossover 216 

operator is mathematically given as: 217 





 ≤

=
otherwise  ,

]1,0[ if  ,

,,

,,,
,,

Gij

jiGij
Gij x

CRRandv
u  (6) 

where CR (0≤ CR ≤1) is the crossover probability. As shown in Equation (6), if 218 

]1,0[, jiRand  is smaller than CR, the value Gijv ,,  in the mutant vector is copied to the trial 219 

vector Giju ,, , otherwise, the jth trial vector value is inherited from GiX , .  220 

Selection 221 

After crossover, all the trial vectors are evaluated using the objective function f( i,GU ) 222 

and compared with their corresponding target vectors f( i,GX ). The vector with a lower 223 



objective function value (given the problem is a minimization problem) survives for the 224 

next generation. That is 225 



 ≤

=+ otherwise  ,
)()( if  ,

 
,

,,,
1,

Gi

GiGiGi
Gi X

XfUfU
X  (7) 

The use of the minimization problem in Equation (4) does not lose the generality of the 226 

DEA, as a maximization problem can be easily converted to a minimization problem 227 

(Das and Suganthan, 2011).  228 

The mutation, crossover and selection operators are repeated aiming to seek the best 229 

variable vector *X  as such  ):( )( )( * nfXfXf ℜ⊆Ω<  holds for all Ω∈X , where Ω  230 

is the domain of the search space with the constraints satisfied ( nℜ=Ω  for unconstrained 231 

optimization problems). In practice, it is difficult, if not impossible, to find the global 232 

optimal solution for a large-scale and complex optimization problem. A limited 233 

computational budget, such as a specified number of the maximum allowable generation 234 

maxG , is normally used as the stopping criteria for the DEA to provide a near-global 235 

optimum. 236 

For the design of WDS problem as describe from Equations (1) to (3), the pipe 237 

diameters for each of the decision variables can only be selected from the predetermined 238 

discrete set A (see Equation 3). Therefore, the continuous values produced in the 239 

initialization and the mutation processes in the DEA were converted to the nearest 240 

discrete pipe diameters in A following Vasan and Simonovic (2010). The minimum 241 

pressure head minh  was taken as the constraints for each demand node, where 242 

EPANET2.0 was used to obtain the nodal pressure head for each candidate solution. A 243 



penalty approach was adopted (Zecchin et al., 2012) to handle constraints, in which the 244 

solutions with constraints (Equation 2) violated (referred as infeasible solutions) were 245 

penalized, followed by performing the selection operator (Equation 7).  246 

4. Behavior analysis measures 247 

This study develops a range of behavioral measures to investigate DEA’s search 248 

behavior as a function of the two control parameters: F and CR. These measures concern 249 

the search quality, the convergence properties, and the run-time solution generation 250 

statistics such as the percentage time spent in the feasible and infeasible regions, and the 251 

percentage of improved solutions within each generation. Details of these measure 252 

metrics are given in following sub-sections. 253 

4.1 Measures of the search quality 254 

Search quality measures are used to characterize both the fitness of a searching 255 

population in the objective space, and the closeness of a searching population to the 256 

known optimum region in the decision space (Zecchin et al., 2012). For a single objective 257 

optimization problem, an important indicator for measuring the search quality is related 258 

to the best solution )(min Gf  (given the minimization problem) found at each generation 259 

G, where  260 

)(min)(
},...,{min

,,1

XfGf
GNG XXX∈

=  (8) 

This measure has been widely used to assess the performance of the search algorithms 261 

(see Zecchin et al., 2012 for details). Equation (8) provides the information of the best 262 

known solution at each generation in the objective space.  263 



Another fundamental measure of an algorithm’s search quality is the production of 264 

solutions that are increasingly close to the global optimum *X  in the decision space. The 265 

closeness of the searching algorithm (DEA in this study) to the *X  can be quantitively 266 

measured using: 267 

*

},...,{min ,min)(
,,1

XXGd
GNG XXX∈

=  (9) 

where YX ,  is a topological distance metric between solutions X and Y. In contrast to 268 

the aforementioned variance diversity measures, typically for combinatorial problems an 269 

appropriate metric is the Hamming distance, which is given as 270 

∑
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and I is the indicator function, given by 271 

( )


 =

=
otherwise1

0
,

yx
yxI  (11) 

The values in Equation (9) versus the generations provide insight into the search 272 

quality of an algorithm, and its ability to search in the near optimal region. The global 273 

optimum *X  may be unknown for some case studies. In such situations, the current best 274 

known solution can be adopted, which still enables an indication of how the searching 275 

approaches the promising regions that contain the good quality near-optimal solutions.  276 

4.2 Measures of convergence  277 

The run-time convergence measures are aimed at quantifying the spread, or 278 

distribution, of an EA’s population of solutions through the decision space. In the 279 



following, first a range of general convergence measures are discussed, followed by the 280 

population diversity measures that are adopted to compare our numerical results with the 281 

theoretical convergence relationship derived by Zharie (2002, 2009). 282 

4.2.1 General convergence measures  283 

Convergence has often been defined in the objective space where the objective 284 

function values (normally consider the best solutions) are not further improved within a 285 

specified time-frame (Zheng et al., 2014). However, such a convergence measure may 286 

not be valid as a further improvement in the objective function value can be likely when a 287 

sufficiently large computational budget is allowed. Alternatively, convergence can be 288 

defined as being dependent on the topological distance between solutions within the 289 

decision space. Zecchin et al. (2012) proposed a measure in which the mean of the total 290 

pairwise Hamming distance between all solutions within the population was used to 291 

measure the extent of convergence. This convergence measure has been adopted in the 292 

current study. The mean population search distance can be defined as 293 

∑∑
−

= +=−
=

1

1 1
,, ,

)1(
2)(

N

i

N

ij
GjGimean XX

NN
Gd  (12) 

where 2/)1( −NN  is the total number of pairs of the candidate solutions.  294 

The mean population search distance in Equation (12) provides a quantitative measure 295 

of the spread of solutions over the search domain, with large and low values respectively 296 

corresponding to periods of high exploration (broad searching within the decision space) 297 

and exploitation (confined focused searching within the decision space). Variation of the 298 

mean search distance with the generation indicates the convergence behavior, and can 299 

provide insight into how this behavior is influenced by control parameter settings. For 300 



example, for a given EA with a certain control parameter setting, if the )(Gdmean  value 301 

decreases particularly quickly, this indicates that such a parameter setting focuses more 302 

on exploitation of the identified good information rather than exploration of the search 303 

space, and hence it is more likely to converge at a sub-optimal solution. Conversely, if 304 

the value of )(Gdmean  decreases at a very slow rate, this suggests that the given parameter 305 

setting is insufficient in exploiting the determined promising regions, and hence, results 306 

in a slow convergence.  307 

An alternative measure of convergence is also proposed below. In addition to 308 

quantifying the spread of solutions within a decision space, it is also of interest to know 309 

whether the search has converged only in some dimensions of the decision space, whilst 310 

still broadly searching in the other decision variables. Such information provides 311 

meaningful knowledge on the convergence properties of the search process, as, for a 312 

given problem, the convergence speed of one decision variable may differ to the others 313 

due to the variation in the separability of a given dimension, and the sensitivity of the 314 

objective to a given variable. This metric is referred as the number of converged decision 315 

variables NC , which is mathematically expressed as: 316 

( )∑
=

−=
n

j
GjGNC

1
, )Varsgn(1)(  (13) 

where sgn() is the signum function, and Varj,G is the sample variance of the population  317 

for decision variable j, that is { }GNjGj xx ,,,1, ,, . The term ( ) 1)Varsgn(1 , =− Gj  when 318 

Gj ,Var =0, suggesting that all solutions in the current generation G have selected the same 319 

value for the jth decision variable, and this decision variable has converged. It is noted 320 



that signum function used here only has two alternatives with 0 and 1 due to the non-321 

negative of the variance value ( Gj ,Var ).  322 

The measure )(GNC  gives the number of decision variables (or search space dimensions) 323 

that have been converged at generation G. It is straightforward to record which decision 324 

variables have converged, as such information can provide a better understanding of 325 

which decision variables are difficult to determine, allowing for the guided use of 326 

preconditioning or local search to facilitate in the determination of these variables. Other 327 

methods have previously been developed to measure the convergence status of the 328 

decision variables within the searching process, in order to perturb selected solutions to 329 

avoid premature convergence (Geem et al., 2001). For instance, some researchers used 330 

the pattern recognition approach to extract pattern(s) from the solutions in the later 331 

searching period, during which most solutions tend to resemble each other (i.e., many 332 

solutions have identical values for the same decision variables, see Michalski and 333 

Wojtusiak (2012) for details). 334 

4.2.2. Measures of the population variance 335 

The population variance can be characterized by the averaged variance of all solution 336 

components in the population )(Var GX  (e.g., Zharie, 2002; Das and Suganth, 2011), that 337 

is 338 

{ }∑
=

=
n

j
GNjGjX xx

n
G

1
,,,1, ,,Var1)(Var   (14) 

Typically, a high value of )(Var GX  indicates that the search is spread broadly 339 

throughout the decision space, and for a relatively low value, the search is focused on 340 



small areas. It is noted that the )(Var GX  only measures the overall variance of the 341 

population, and cannot provide the searching status of each decision variable (i.e., it may 342 

suffer from scaling issues if some variables are much larger than others in magnitude). In 343 

the current study, all the decision variables have the identical diameter options for each 344 

case study. Therefore, the )(Var GX  can provide a proper measure of the DEA’s 345 

population variance within each generation.  346 

It is important to note that both the )(Gdmean  (Equation 12) and the )(Var GX  347 

(Equation 14) can be used to indicate the convergence properties of the searching 348 

algorithm, but differing in that the former considers the total pairwise Hamming distance 349 

while the latter uses the variance of all solutions in the decision space. The main reason 350 

for the introduction of )(Var GX  is to compare the empirical searching variance (this 351 

study) with the theoretical work of Zaharie (2002, 2009).  352 

Motivated by the theoretical work of Zaharie (2002), to enable a more detailed analysis 353 

of the DEA operators, three forms of population variance were considered, namely: (1) 354 

the variance after the mutation operator, )(Var GV ; (2) the variance after the crossover 355 

operator )(Var GU ; and (3) the variance after the selection operator, )(Var GX . Zaharie 356 

(2002) studied the impact of CR and F on VarV(G) and VarU(G), and derived theoretical 357 

expressions for the expected value of these variance as a function of the population 358 

variance at the end of the previous iteration 359 
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where it is seen that the DEA parameters (F and CR) influence the expected variances by 360 

providing a scaling factor to the parent population variance at generation G-1. It is 361 

important to note that the influence of the selection operator on the population variance is 362 

not amenable to theoretical analysis, and hence no theoretical estimates exist relating 363 

[ ]E Var ( )X G  to Var ( 1)X G − . 364 

Typically, to ensure reasonable performance, DEA’s population variance should be 365 

increased after the mutation and crossover operators, followed by a decrease owing to the 366 

selection action (Zaharie, 2009). The rationale behind this is that an algorithm with an 367 

expanded exploration after mutation and crossover is more likely to find promising 368 

regions (especially for large search spaces) and the variance reduction caused by the 369 

selection permits intensive searching in the identified small regions. Such an interactive 370 

process with appropriate balance (i.e., trade-off between exploration and exploitation) has 371 

been demonstrated to be effective in guaranteeing EA’s performance (Zecchin et al., 372 

2012). Motivated by this, DEA’s parameter combinations that satisfy the equation 373 

022
2

2 =+−
N

CR
N
CRCRF  (17) 

can be considered to be critical since they result in a population whose variance remains 374 

constant overall. If the influence of the selection is removed (i.e., all the trial solutions are 375 

accepted), Equation (17) predicts that F will display a critical value, Fc, such that the 376 

population variance decreases when F< Fc and increases if F> Fc. By solving Equation 377 

(17), Fc can be described as (Zaharie, 2009) 378 



N
CRFc

2/1−
=  (18) 

The Fc establishes a lower limit for F in the sense that smaller value will induce 379 

premature convergence even on a flat objective function landscape (Zaharie, 2009). One 380 

contribution of this study is to validate these theoretical predictions (Equations 15, 16 and 381 

18) using the large and complex WDS design problems.  382 

4.3 Solution generation statistics  383 

Constraints are often involved in water resource optimization problems, contributing to 384 

the complexity of the search spaces. A candidate solution that satisfies all constraints is a 385 

feasible solution, otherwise it is termed an infeasible solution. The efficiency with the 386 

feasible solution found is also an important assessment criteria for searching algorithms 387 

especially when dealing with complex water resource optimization problems. Following 388 

Zecchin et al (2012), in the current study, we use the percent of the solutions (PF%) in 389 

the feasible region to measure DEA’s search behavior and investigate how this varies 390 

throughout the algorithm’s total search time. For the WDS design problems considered in 391 

the current study, the feasible solutions need to satisfy Equation (2), where the nodal 392 

pressure heads should be no less than the minimum allowable pressure head minh .  393 

An additional measure providing an important statistic of the DEA’s behavior is the 394 

percentage of improved solutions found by the DEA within each iteration (PI%). The 395 

DEA constructs solutions through the processes of mutation, crossover and selection, 396 

where only improved solutions are selected, and all others are rejected (see Equation 7). 397 

Consequently, considering the percentage of improved solutions provides a measure of 398 



the effectiveness of the mutation and crossover operators in terms of generating improved 399 

solutions. 400 

It is highlighted that the six measure metrics were designed to measure the DEA’s run-401 

time searching behavior from different aspects, thereby offering a comprehensive 402 

assessment on how parameter settings influence the evolution of DEA’s search, such as 403 

convergence behavior and productive solution improvement stages throughout the 404 

searching process. As anticipated, and observed in the results, although the two solution-405 

quality measures have a high correlation with one another, their measurements are in 406 

different spaces (i.e. )(min Gf  is an objective space measure, and )(min Gd  is a decision 407 

space measure). Similarly, the three convergence measures possess a high correlation as 408 

they are all indicators of convergence as shown in the results, but, again they are 409 

measuring different aspects: the mean population distance )(Gdmean  deals with the 410 

Hamming distance metric and considers pairwise differences between all solutions, the 411 

variance measure uses a Euclidian distance metric in the decision space to facilitate 412 

comparison with the theoretical work of Zaharie (2002, 2009), and the NC(G) measure 413 

considers the number of decision space dimensions for which there is no exploratory 414 

activity. This study adopts this array of measures to attempt to give a broad description of 415 

run-time behavior, where relationships between the measures are discussed. However, a 416 

focused comparative study of the measures themselves is not the focus of this work. 417 

5. Case studies 418 

Three different WDS case studies with different sizes and complexity were optimized 419 

by the DEA with varying control parameter values in the current study. These case 420 



studies were the Hanoi Problem with 34 decision variables (HP34), the ZJN network with 421 

164 decision variables (ZJN164) and the Balerma network with 454 decision variables 422 

(BN454). Note that the subscript number is the number of decision variables for each case 423 

study. Details of the HP34, ZJN164, and BN454 case studies can be found in Fujiwara and 424 

Khang (1990), Zheng et al., (2011a) and Reca and Martínez (2006) respectively. The 425 

current best known solution for HP34 was first reported by Reca and Martínez (2006) with 426 

a cost of $6.081 million. Zheng et al. (2011a) found the current best known solutions for 427 

the ZJN164 and BN454 case studies with cost of $7.082 million and €1.923 million 428 

respectively. The total search space and the current best known solution for each case 429 

study are given in Table 1. 430 

The behavioral metrics given in Section 4 were used to analyze the behavior of the 431 

DEA with varying control parameter values (F and CR). The population sizes (N) used 432 

for each case study was given in Table 1, which was selected based on the guidance 433 

provided in Zheng et al. (2013). The current best known solutions for these case studies 434 

were assumed to be the global optimums to enable the behavior analysis given in 435 

Equation (9).  436 

The computational experiments were designed as follows: for each case study, a value 437 

of CR=0.5 was first used to explore DEA’s search behavior as a function of varying the 438 

differential weight F including F ∈{0.1, 0.3, 0.5, 0.7, 0.9} using the developed metrics; 439 

then the value of F that yielded robust results within the given computational budget was 440 

used to investigate the search properties of the DEA with respect to the varying CR with 441 

CR ∈{0.2, 0.4, 0.6, 0.8}. To understand the interactions between F and CR, we also 442 



investigated the DEA’s performance for each F ∈{0.1, 0.3, 0.5, 0.7, 0.9} paired with 443 

each CR ∈ {0.1, 0.5, 0.9} using the proposed metrics. It is highlighted that the focus of 444 

this paper is to explore DEA’s searching behavior as a result of the varying parameter 445 

values rather than empirically calibrating the parameters for each case study.  446 

For each parameter set, 20 runs were performed with different random number seeds 447 

for each case study. A preliminary analysis of the raw time-series behavioral data 448 

demonstrated that, despite some variation across different seeds, the overall trends were 449 

similar. As such, the averaged results over the 20 runs are presented in this paper in order 450 

to provide a more statistically meaningful characterization of the searching behavior. 451 

However, it is important to note that Kollat and Reed (2006) found that when comparing 452 

the end-of-run performance (not the run-time behavior as did in this paper) of multi-453 

objective algorithms, performance difference across random number seeds for a single 454 

parameterization could be more influential than variations in the parameter settings.  455 

In the current study, a penalty cost approach was used to handle constraints, where the 456 

penalty cost was set to equal the value of the penalty factor R (R=108 in this study), 457 

multiplied by the maximum violation of the pressure constraints (Zecchin et al., 2012). 458 

Although DEA’s performance was affected by the penalty multiplier, for large R this 459 

performance difference is insignificant, and as such the use of the identical R=108 was 460 

adopted for each parameter set to enable a fair comparison. The detailed investigation on 461 

the penalty multiplier values is beyond the scope of the current study. 462 

6. Results and Discussion 463 



The presentation of the results is structured as follows. Firstly the influence of the 464 

differential weight F and the crossover probability CR on the changes in population 465 

variance, as induced by the operations of mutation and crossover, are discussed in 466 

Section 6.1. Within this section, comparisons between our empirical results and the 467 

theoretical work of Zaharie (2002, 2009) are presented. Following this the independent 468 

influence of F and CR on the search behavior as measured by the run-time metrics from 469 

Section 4 is explored in Sections 6.2 and 6.3. Within each parameter themed section, the 470 

discussion covers first the search quality measures, followed by the convergence 471 

measures and finally the solution generation statistics. The interaction between F and CR 472 

is covered in Section 6.4, followed by a discussion of the main practical findings in 473 

Section 6.5 474 

6.1 Influence of F and CR on changes in population variance  475 

The population variance measure results presented in Figure 1 are normalized by the 476 

variance of the seeded solutions at G = 1 for the HP34 case study. Two general trends can 477 

be observed from this figure. Firstly, a mild increase in the population variance occurs 478 

before a continual reduction, implying that the DEA initially expands its exploration 479 

before convergence. Secondly, the mutation operation (black lines) serves to increase the 480 

population diversity, and that the actions of crossover (red lines) and selection (blue lines) 481 

decrease the population variance, that is VarV(G) >VarU(G) > VarX(G).  482 

As seen in Figure 1, an increase in the differential weight F offers larger population 483 

diversity after mutation, encouraging greater exploration. This increase in diversity is 484 

expected as F controls the amount that a randomly selected trial vector is perturbed by 485 

the difference between two other chosen vectors (see Equation 5). Consequently, a larger 486 



F will result in a larger perturbation of the selected vector, and will serve to encourage a 487 

broader exploration of the search space.  488 

It is also observed from Figure 1 that a higher value of CR maintains greater 489 

population variance (red lines) after crossover relative to the parent population (blue 490 

lines). This can be explained that low values of CR imply that an increased number of 491 

solution components are inherited from the less diverse parent population than the more 492 

diverse mutant population. These observed results are qualitatively consistent with the 493 

theoretical predictions of Zaharie (2002) that the expected variance after mutation and 494 

crossover increases for larger F and CR (Equations 15 and 16). Similar observations were 495 

made for other parameter sets and other case studies. The variance metric itself provides 496 

only convergence-based information (i.e. how diverse the population of solution is) but 497 

provides no information about the quality of the search (for example a rapid decrease in 498 

the variance can be caused by either a premature convergence or a quick identification on 499 

the global optimum). Therefore, other metrics, such as the solution quality, have to be 500 

used to assist the diagnostic assessment of an algorithm’s searching behavior. 501 

Figure 2 show the surface plots of the errors (percentage relative difference %) 502 

between the theoretical variance ratios in Equations 15 and 16 and the experimental 503 

results for all parameter combinations used for the three case studies. Considering Figure 504 

2, it can be concluded that the differences between the theoretical predictions and the 505 

experimental observations are consistently minor for all F and CR values applied to the 506 

three case studies (within 2%), suggesting an excellent quantitative agreement. This 507 

indicates that the theoretical predictions (Equations 15 and 16) can be used to 508 

quantitatively determine the changes in population variance as a function of the F and CR 509 



values, intuitively meaning that larger values of F and CR produce larger variances in 510 

solutions after mutation and crossover operators.  511 

Following the work of Zaharie (2009), we turned off the selection operator (e.g., all 512 

trial solutions are accepted) to validate the theoretical lower limit of the F (Fc in Equation 513 

18) using the three case studies. Figure 3 shows the parameter values (N, F and CR), the 514 

theoretical values of Fc (black lines) and the population variances for each case study. It 515 

is seen from Figure 3 that the population variances with Fc are overall constant against 516 

generations for each case study despite expected random fluctuations, while for F>Fc and 517 

F<Fc, the population variances respectively increase and decrease. These experimental 518 

results are again matched well with the theoretical lower bounds of the F value (Equation 519 

18).  520 

In practice, the objective function landscapes are seldom flat, and hence F must be 521 

larger than Fc to counteract the additional reduction in variance that selection induces. 522 

Such an improved knowledge can provide guidance for selecting the appropriate 523 

parameter values when applying DEAs to water resource optimization problems. 524 

6.2 Influence of differential weight F 525 

Numerical results for the study of the influence of F on the DEA’s behavior are given 526 

in Figures 4 to 6. As shown in these figures, the DEA’s improvement in search quality for 527 

increasing generation number is observed by the decreasing objective function value in 528 

subfigures (a) ( )(min)(
},...,{min

,,1
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= ), and the decreasing distance to the known 529 

optimal solution in subfigures (b) ( *
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= ). Despite the existence 530 



of many local minima for WDS design problems arising from the nonlinear constraints in 531 

Equation (2), the highly correlated pattern within these figures (i.e. objective function 532 

cost is highly correlated to distance from the global minima) implies that the objective 533 

surface possesses a large valley type structure, with the local minima clustered within a 534 

small sub-region of the decision space.  535 

A notable general feature observed within the quality metrics is that, in most cases, the 536 

DEA achieves the majority of its solution improvement within the very early stages of the 537 

search. A consideration of subfigures (a) and (b) in Figures 4 to 6 shows that a decreasing 538 

F drives a faster initial solution improvement, which is consistent with the increased 539 

exploitative behavior expected for low F. For the small case study (Figure 4), the 540 

explorative higher values of F resulted in an improved performance, as premature 541 

convergence to sub-optimal solutions was observed at lower F values. In contrast, the 542 

lower values of F improve DEA's performance for the larger case studies for the given 543 

run-times (Figures 5 and 6), as the rate of solution improvement for the higher values of 544 

F was significantly slower due to the relatively larger focus on exploration.  545 

The convergence of the DEA is represented by the decreasing values in the mean 546 

population distance ( ∑∑
−
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subfigures d). The metric dmean(G) (Equation 17) represents the overall population spread, 549 

while the NC(G) (Equation 18) provides the number of converged decision variables in 550 

the search space. As shown in Figures 4 to 6, an inverse similarity of the pattern within 551 



subfigures (c) and (d) is observed, suggesting that both measures are equally indicative 552 

assessment of the search convergence. Compared to dmean(G), the metric NC(G) offer 553 

greater insight in the search properties since it can provide the information on the number 554 

of converged decision variables as well as which decision variables have converged. 555 

Such improved understanding can provide guidance to apply preconditioning methods 556 

(e.g. local search or engineering judgment) to the decision variables that are difficult to 557 

converge, thereby enhancing the efficiency of the whole search process. This is especially 558 

useful when dealing with difficult or large-scale optimization problems.  559 

As observed in subfigures (c) and (d) in Figures 4 to 6, the rate of convergence 560 

decreases for increasing F, which is consistent with the theoretical predictions of a 561 

greater explorative behavior for higher F. This inability to converge for high F is most 562 

markedly observed for the larger case studies (Figures 5 and 6). For the smaller case 563 

study, the fast convergence led to only sub-optimal solutions being found. In contrast, in 564 

the larger case studies, the fast convergence associated with the lower values of F 565 

enabled the DEA to exploit good information and drive the search into the near optimal 566 

regions (see subfigures (a) and (b)) using the given computational budget. However, it 567 

should be noted that the use of the larger F may be more likely to find further improved 568 

solutions (or global optimum) for large-scale optimization problems if a sufficiently large 569 

computational budget is allowed (Zaharie, 2002).  570 

As observed in subfigures (e) of Figures 4 to 6, the DEA tended to generate mainly 571 

infeasible solutions within the very early stages of the search followed by an increase in 572 

the search effort to exclusively focus in the feasible region. For the ZJN164 and BN454, the 573 

convergence to the feasible region is very rapid. However, consistent with previous 574 



findings (Zecchin et al., 2012), an increased search effort was required to locate and 575 

focus the search within the feasible region for the small-scale, but difficult, HP34 case 576 

study, owing to the notably small feasible region for this problem. From Figures 4 to 6 577 

(subfigures (e)), it can also be observed that the fast convergence associated with the low 578 

values of F serves to more rapidly drive the search effort into the feasible region.  579 

Subfigures (f) in Figures 4 to 6 show the percentage of improved solutions (PI%) 580 

against the generations for each parameter sets applied to the three case studies. The 581 

value of PI% determined during the selection operation within the DEA typically varied 582 

from around 50% in the early stages of the search, following a relatively rapid decline to 583 

less than 10% in the intermediate to longer stages of the search. It was also detected that a 584 

lower F can produce a larger value of PI% in the early stages of the search for all case 585 

studies, followed by a quick decline or even PI% =0 in the later stage. In contrast, a 586 

mildly increased emphasis on mutation (higher F) was observed to lead to a sustained, 587 

albeit low, solution improvement in later stages of the search. Despite the lower values of 588 

percentage of improved solutions in these later stages, this residual exploration for high F 589 

values was demonstrated to be an effective strategy for improving the solution quality for 590 

the difficult (small feasible region) HP34 and the large and more complex BN454, as 591 

observed by the solution quality measures in subfigures (a) and (b) demonstrates. 592 

Considering the solution quality plots (subfigures (a) and (b) of Figures 4 to 6) and the 593 

PI%, it can be concluded that lower values of F are more likely to be trapped by local 594 

optimal solutions, although they can produce better quality solutions and large PI% values 595 

in the early stages of the search. This is because the search of the DEA with a lower value 596 

of F is dominated by exploitation, resulting in premature convergence. In contrast, the 597 



DEA with larger F values possess higher likelihood to find better solutions due to the 598 

greater exploration, but at expense of dramatically increased computational overheads, 599 

especially for the larger case studies (Figures 5 and 6). 600 

Based on all measures presented in Figures 4 to 6, it was found that DEA’s 601 

performance (solution quality and the convergence speed) is more sensitive to the 602 

selected F values when the size of the optimization problem becomes larger. For the HP34 603 

case study, the measures of distance to the global optimum (dmin(G), equation (9)) and the 604 

mean population distance (dmean (G), equation (12)) decreases with the increasing 605 

generations even if an extremely large F=0.9 was used, while these two measures stay 606 

approximately constant for the large case studies ZJN164 when 7.0≥F  and BN454 when 607 

5.0≥F  within the given computation-frame.  608 

6.3 Influence of crossover probability CR 609 

Based on results in Section 6.2, we selected the F values that produced the best final 610 

solution quality (solution quality measure) within the given computational budget for the 611 

case studies to enable the influence study of varying CR on DEA’s searching behavior. 612 

The results are given in Figures 7 to 9. As observed in subfigures (a) and (b) of these 613 

three figures, higher values of CR drive a faster improvement in the solution quality, but 614 

leading to premature convergence. The rapid solution improvement in the early searching 615 

stages for high values of CR indicate the effectiveness of the increased emphasis on 616 

exploration in the crossover operator in these early stages. However, despite the initial 617 

slower solution improvement rates, lower values of CR tended to yield better quality 618 

solutions in the later stages of the search, indicating the importance of an exploitative 619 



crossover operator in these later stages, as for low CR values, the DEA searches more 620 

intensively in the neighborhood close to the parent population. 621 

It is observed that DEA’s performance in terms of the solution quality exhibits a low 622 

sensitivity to varying CR values as long as appropriate F values have been given, 623 

especially for the large case studies (ZJN164 and BN454). This suggests that DEA’s search 624 

quality is more controlled by the mutation operator compared to the crossover operator 625 

when dealing with large and complex search spaces.  626 

From subfigures (c) and (d) in Figures 7 to 9 it is seen that, consistently for all case 627 

studies, the convergence speed increased for higher values of CR. This finding, on the 628 

surface, contradicts the theoretical analysis from Zaharie (2002), in which an increase in 629 

CR was demonstrated to enhance the population variance and hence would be expected to 630 

slow down the convergence. Such a counter intuitive finding was also observed in the 631 

numerical studies of Montgomery and Chen (2010), who found for a range of test 632 

functions, higher CR led to faster convergence rates. 633 

To explain this paradox, it is important to note that the increase in population variance 634 

(i.e., diversity) caused by the crossover operator occurs prior to the selection operator. As 635 

a consequence, this diversity increase cannot be directly translated to an increase in the 636 

diversity of the next generation of solutions. Our experiments results showed that such 637 

diversity increase associated with larger values of CR was significantly reduced through 638 

the selection operator. This can be explained by that larger CR encourages larger 639 

exploratory moves that are less likely to consistently generate improved solutions, and 640 

consequently, the selection operator drives the search toward the already found sub-641 



optimal solutions quickly, resulting in premature convergence (Montgomery and Chen, 642 

2010). In contrast, smaller exploratory moves (small perturbations about the parent 643 

population) are associated with smaller CR values, which, although more likely to 644 

produce improved solutions in later generations, will result in a slower and more gradual 645 

convergence of the algorithm. As to be expected, the rapid convergence (large CR values) 646 

typically led to sub-optimal solutions, where the slower and more gradual convergence 647 

for the lower CR values (CR ≤ 0.4) typically led to improved longer term solutions. 648 

Figures 8 and 9 (subfigure (e)) show that the faster converging DEAs (large CR) drive 649 

the search effort more rapidly into the feasible region, except for the case of the HP34 650 

(Figure 7) where the most rapid convergence appears to retain a high percentage of the 651 

search effort in the infeasible region until the later stages of the search. This anomaly can 652 

be understood by considering the combination of the small feasible region in the HP34 653 

with the larger exploratory moves associated with the larger CR=0.8. Namely that the 654 

exploratory moves still tended to generate infeasible solutions quite late in the search due 655 

to the small feasible region associated with the HP34, whilst for the low CR, the smaller 656 

exploratory moves in the neighborhood of the parent population tended to yield a higher 657 

percentage of feasible solutions. 658 

The trends in the percentage of improved solutions (PI%) observed in subfigures (f) in 659 

Figures 7 to 9 supports the explanation of the highly convergent behavior for large CR 660 

and the corresponding slow convergence for low CR. Namely, the smaller exploratory 661 

moves associated with lower values of CR result in a higher percentage of improved 662 

solutions found albeit at the cost of convergence rate and a slower overall rate of solution 663 

improvement. 664 



It is interesting to note that there is a sudden increase in the values of PI% immediately 665 

before DEA’s convergence as shown in subfigures (f) in Figures 7 to 9 (also Figure 10 in 666 

the next section), with the occurrence time dependent on the values of CR (i.e. larger CR 667 

values tend to have this phenomenon earlier due to the faster convergence). This is 668 

especially apparent for large case studies ZJN164 and BN454. This phenomenon can be 669 

attributed to the fact that the search is restricted within a particular region, in which a 670 

near globally optimal solution is located, and no better solutions are found after a long 671 

time exploration. As such, due to the selection pressure, all the population members 672 

converge to this identified optimal solution quickly and hence a large percentage of 673 

improved solutions (PI%) can be expected for this short process.  674 

6.4 Interaction between F and CR 675 

The parametric behavioral analysis presented in Sections 6.2 and 6.3 represents a 676 

detailed study of the individual parameters under a ceteris paribus assumption. In this 677 

section, we extend our study by considering the interaction between the two parameters F 678 

and CR, and how their combined variation influenced the DEA’s searching behavior. 679 

Within the previous sections, the parameter considered was varied throughout its feasible 680 

range, whilst the other parameter was held constant at typical standard values. In the 681 

following, to study the interactive effects between F and CR, the DEA’s behavior for low 682 

and high values of F with a range of CR values is considered. These parameter 683 

combinations were applied to the three case studies and their performance was measured 684 

using the three selected metrics only: the search quality (minimum cost), the convergence 685 



( )(Gdmean ), and the percent of improved solutions (PI%). Figures 10 and 11 respectively 686 

show the results of F=0.1 and 0.9 with three different CR values (CR = 0.1, 0.5, and 0.9).  687 

Considering the low F=0.1 (Figure 10), it was found that the lower values of CR were 688 

able to find better quality solutions in the later searching stages, while the large CR 689 

values tended to prematurely converge in a rapid speed for each case study. Based on the 690 

obtained knowledge in Sections 6.2 and 6.3, this is expected as both small F and large CR 691 

were exploitation encouraging, resulting in quick convergence to sub-optimal solutions. 692 

In contrast, the lower CR values with relatively stronger explorative ability were able to 693 

counteract the powerful exploitative behavior associated with the small F, leading to a 694 

better balance between exploration and exploitation, and accordingly an improved 695 

performance (solution quality) in the later searching phases. As shown in Figure 10, a 696 

DEA with a small F combined with a large CR is more likely to produce improved 697 

solutions (i.e., higher PI%) at the initial searching stage due to its great exploitative 698 

ability, but followed by a rapid decrease in PI% caused by the premature convergence. 699 

As for the results for the tuned F values in Figures 7-9, the larger CR values tend to 700 

converge faster when a rather low F value (F=0.1) was used for the three case studies as 701 

shown in Figure 10. 702 

When a very strong explorative searching is used (F=0.9), a large value of CR is 703 

expected to offer a relatively better trade-off between exploration and exploitation, since 704 

larger CR values are demonstrated to be more exploitation emphasizing, as in Section 6.3. 705 

This is reflected by the fact that relatively larger CR (e.g., CR=0.5 and 0.9) yielded better 706 

quality solutions, faster convergence speed, and a slightly larger percent of improved 707 



solutions compared to CR=0.1 for the relatively small HP34 case study in the later 708 

generations (see Figure 11).  709 

Interestingly, for the two large case studies ZJN164 and BN454 (also the early searching 710 

stage of the HP34 case study), CR=0.1 produced better quality solutions than CR=0.5 and 711 

0.9 due to its higher likelihood to find improved solutions within a small neighborhood of 712 

the parent population (low CR values are associated with small exploratory perturbations 713 

on the parent population). This is because a high CR value combined with a large F=0.9 714 

produces too large explorative moves at the initial searching phase, and hence is less 715 

likely to find the promising regions especially for large scale optimization problems. This 716 

results in a slow convergence speed as well as a slow improvement in the solution quality 717 

as demonstrated in Figure 11. Therefore, when a very large F value is used (e.g., F=0.9), 718 

a relatively smaller CR value is more appropriate in offering good quality solutions 719 

within a limited computational time-frame, although a large CR is more likely to find 720 

better solutions if the computational resource is sufficient.  721 

A notable observation made from Figures 10 and 11 is that the crossover probability 722 

(CR) becomes more important to DEA’s performance when an improper F value is used, 723 

compared to its reduced importance in the case of a tuned F, as demonstrated in Section 724 

6.3. This suggests that the interaction strength between the two control parameter values 725 

is F value dependent. As shown in Figure 10, a relatively low CR value was able to 726 

appreciably enhance DEA’s performance when a very low F was used. In the case of a 727 

very large F being assigned, a relatively small CR significantly improved DEA’s 728 

searching effectiveness in the early stages, especially for the large case studies (Figure 729 



11). However, a variation of CR had limited influence on DEA’s searching quality when 730 

an appropriate F was used as illustrated in Section 6.3.  731 

6.5 Behavior result discussions  732 

Based on the comprehensive analysis of DEA’s search behavior using the six 733 

developed metrics, the results obtained can provide guidance for parameter tuning or 734 

design of adaptive parameter algorithms as outlined below.  735 

The best parameter sets for a given optimization problem are dependent on the 736 

computational budget. If a larger computational resource is allowed, a relatively larger 737 

value of F combined with a lower value of CR is expected to produce better quality 738 

solutions. Care is needed to determine appropriate F for very large case studies as the 739 

sufficient computation time-frame associated with large values of F for finding good 740 

quality solutions can be extremely large (see Figure 11). As such, a low to middle range 741 

(F ≤ 0.5) is recommended for large and complex optimization problems.  742 

If the computational budget is limited, a milder mutation strategy with low values of F 743 

(if say F= 0.2 or 0.3, which emphasis on local search) and a moderate value of CR (e.g., 744 

CR=0.5 or 0.6) can be used to emphasize the DEA’s exploitative behavior in the early 745 

stages of the search, thereby offering sub-optimal solutions quickly. Such parameter 746 

combinations can be typically used to deal with realistic optimization problems in water 747 

resources (if say a WDS design problem with 10000 decision variable), since, for these 748 

complex problems, finding reasonable solutions of low cost with the given time-frame is 749 

more important than locating the global optimum that requires significant computational 750 

overheads. 751 



Although it is difficult, if not impossible, to quantitively establish the relationship 752 

between the scales/complexity of the case study and the best parameter values, the 753 

improved understanding of DEA’s searching behavior suggests that a relatively lower 754 

value of F (e.g., F= 0.2 or 0.3) combined with a relatively larger CR (e.g., CR=0.5 or 0.6) 755 

are mostly likely to provide good near-optimal solutions for a larger case study (i.e., a 756 

larger search space) within the computational budget that is typically available in practice.  757 

The observed run-time search behavior of the DEA can provide guidance to design 758 

more powerful algorithms (e.g. self-adaptive DEA). For example, a self-adaptive DEA 759 

may dynamically balance the exploration and exploitation by adjusting the values F and 760 

CR values throughout the entire search process: strengthen the exploitation in the early 761 

stage using a smaller F and a larger CR, while force a stronger explorative searching 762 

behavior with a larger F and a lower CR in the later stage. 763 

7. Summary and Conclusions 764 

The research presented in this paper provided a detailed study of the behavior of DEAs 765 

as influenced by the controlling parameters of F (differential weight) and CR (crossover 766 

probability) applied to the classical civil engineering water distribution design problem. 767 

The run-time behavioral metrics have considered the solution quality measures, 768 

convergence measures, and other search properties such as percentage of effort spent in 769 

the feasible region, and the generation-wise percentage of improved solutions (from one 770 

generation to the next). Three case studies with ranging from 34 to 454 decision variables 771 

have been used to enable the investigation of DEA’s behavior analysis. These include 772 

HP34, ZJN164 and BN454, where the subscript represents the number of decision variables.  773 



The six developed measure metrics have effectively characterized DEA’s run-time 774 

searching behavior, thereby providing great insight on how the control parameters (F and 775 

CR) alter the DEA’s searching performance. Such improved understanding can provide 776 

useful guidance in determining the appropriate parameter values with reduced 777 

computational effort relative to the traditional trial-and-error approach (detailed 778 

discussion are given in Section 6.5). In addition to the practical implications, this study 779 

also offers important new findings and contributions, which are summarized in the 780 

following. 781 

1. Excellent agreement between predicted and observed population variance as well as 782 

the lower bound of the mutation parameter F has been found in this study, indicating 783 

the practical utility of the theoretical work of Zaharie (2002, 2009). Such improved 784 

knowledge can provide guidance in selecting appropriate parameter values for DEAs 785 

applied to complex engineering optimization problems. To authors’ knowledge, this 786 

is the first time that these theoretical results have been validated using complex 787 

water resource optimization problems.  788 

2. The interaction strength between the F and CR parameters is varied as a function of 789 

the F, where the CR’s impact is limited in terms of the searching quality (see Figures 790 

7-9) when a proper F value is used. For an inappropriate F value, the influence of 791 

CR becomes more significant (Figures 10 and 11). This indicates that DEA’s 792 

performance is more dominated by the parameter F. This finding is important 793 

knowledge for the fine-tuning of DEA’s parameters. For example, when the 794 

computational resource is limited, the practitioners may fix using a moderate 795 



crossover strength (e.g. CR=0.5), and only tune the values of F to ensure a well 796 

performing DEA. 797 

3. It was found that a very high CR value (CR>0.8) often reduce DEA’s diversity with 798 

a rapid speed, resulting in a high likelihood of premature convergence. In contrast, a 799 

very low CR (CR<0.2) is typically slow in convergence, although it is more likely to 800 

offer better solutions when the computational budget is sufficient. Therefore, a 801 

moderate value of CR ]6.0 ,3.0[∈  (combined with a tuned F) is highly likely to 802 

provide effective trade-offs between exploration and exploitation within the 803 

typically available computational budget. This finding significantly differs to the 804 

previous work that a CR=0.9 was considered as the de facto standard crossover 805 

strength for DEAs (Zaharie, 2009) and GAs (Savic and Walters, 1997; Reca and 806 

Martínez, 2006). 807 

The developed metrics in this study transcend the specific algorithms and can be used 808 

to analyze the search behavior of any types of evolutionary algorithms (EAs). It is 809 

expected that the improved knowledge of EAs’ working principles obtained using these 810 

metrics can enhance their appropriate take-up within the industry in handling various water 811 

resource optimization problems. One important future study is to investigate the sensitivity 812 

of the DEA’s run-time searching performance as a function of varying formulations of 813 

water network design problems.  814 
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Figure captions 912 

Figure 1. Search diversity normalized variance measures for the DEA applied to the 913 

HP34. Results are averaged from 20 runs with different random number seeds. 914 

Black, red and blue lines represent VarV(G), VarU(G) and VarX(G) respectively. 915 

Figure 2. Surface plots of the percentage differences (%) between the theoretical 916 

population variance ratios (Equations 15 and 16) and the experimental results for 917 

the three case studies using various F and CR values. Results are averaged from 20 918 

runs with different random number seeds for each parameter set. 919 

Figure 3. The population variance variations versus generations for the three case 920 

studies. Note that the values of Fc (black lines) are derived based on Equation (18). 921 

These results are obtained without selection pressure (i.e., all trial solutions are 922 

accepted).Results are averaged from 20 runs with different random number seeds 923 

for each parameter set. 924 

Figure 4: Behavioral metrics for DEAs with different values of F applied to the HP34 925 

case study: (a) )(min Gf ; (b) )(min Gd ; (c) )(Gdmean ; (d) )(GNC ; (e) PF%, and; (f) 926 

PI%. Parameter values are N =100, CR=0.5, and F=0.1 (black), 0.3(red), 0.5 (blue), 927 

0.7 (green), 0.9 (orange). Results are averaged from 20 runs with different random 928 

number seeds. 929 

Figure 5: Behavioral metrics for DEAs with different values of F applied to the 930 

ZJN164 case study: (a) )(min Gf ; (b) )(min Gd ; (c) )(Gdmean ; (d) )(GNC ; (e) PF%, and; 931 

(f) PI%. Parameter values are N =300, CR=0.5, and F=0.1 (black), 0.3(red), 0.5 932 



(blue), 0.7 (green), 0.9 (orange). Results are averaged from 20 runs with different 933 

random number seeds. 934 

Figure 6: Behavioral metrics for DEAs with different values of F applied to the 935 

BN454 case study: (a) )(min Gf ; (b) )(min Gd ; (c) )(Gdmean ; (d) )(GNC ; (e) PF%, and; 936 

(f) PI%. Parameter values are N =500, CR=0.5, and F=0.1 (black), 0.3(red), 0.5 937 

(blue), 0.7 (green), 0.9 (orange). Results are averaged from 20 runs with different 938 

random number seeds. 939 

Figure 7: Behavioral metrics for DEAs with different values of CR applied to the 940 

HP34 case study: (a) )(min Gf ; (b) )(min Gd ; (c) )(Gdmean ; (d) )(GNC ; (e) PF%, and; 941 

(f) PI%. Parameter values are N =100, F=0.7, and CR = 0.2 (black), 0.4 (red), 0.6 942 

(blue), 0.8 (green). Results are averaged from 20 runs with different random 943 

number seeds. 944 

Figure 8: Behavioral metrics for DEAs with different values of CR applied to the 945 

ZJN164 case study: (a) )(min Gf ; (b) )(min Gd ; (c) )(Gdmean ; (d) )(GNC ; (e) PF%, and; 946 

(f) PI%. Parameter values are N =300, F=0.3, CR = 0.2 (black), 0.4 (red), 0.6 (blue), 947 

0.8 (green). Results are averaged from 20 runs with different random number seeds. 948 

Figure 9: Behavioral metrics for DEAs with different values of CR applied to the 949 

BN454 case study: (a) )(min Gf ; (b) )(min Gd ; (c) )(Gdmean ; (d) )(GNC ; (e) PF%, and; 950 

(f) PI%. Parameter values are N =500, F=0.3, and CR= 0.2 (black), 0.4 (red), 0.6 951 

(blue), 0.8 (green). Results are averaged from 20 runs with different random 952 

number seeds. 953 



Figure 10: Behavioral metric results for DEAs applied to the three case studies. 954 

Parameter values are F=0.1, and CR = 0.1 (black), 0.5 (red), and 0.9 (blue). Results 955 

are averaged from 20 runs with different random number seeds. Note that the DEA 956 

with CR=0.9 and F=0.1 was unable to find the feasible solutions for the HP34 case 957 

study (i.e., the blue line is missing) 958 

Figure 11: Behavioral metric results for DEAs applied to the three case studies. 959 

Parameter values are F=0.9, and CR = 0.1 (black), 0.5 (red), and 0.9 (blue). Results 960 

are averaged from 20 runs with different random number seeds. 961 

  962 



Table 1 Case studies and the DEA parameter values. 963 

Case 
study 

No. of 
decision 
variables  

The size of the 
total search 

space 

Cost of the 
current best 

known solution 
(million) 

DEA 
Population 

size (N) 

Maximum 
allowable 

generations 

HP34 34 2.865×1026 $6.081  100  10000 
ZJN164 164 9.226×10187 $7.082 300 10000 
BN454 454 1×10454 €1.923 500 10000 
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