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Abstract 

Human spermatozoa are compromised by production of reactive oxygen species 

(ROS) and detection of ROS in spermatozoa is important for the diagnosis of male 

infertility.  Probes 2’,7’-dichlorohydrofluorescein diacetate (DCFH), dihydroethidium 

(DHE) and MitoSOX red (MSR) are commonly used for detecting ROS by flow 

cytometry, however these probes lack sensitivity to hydrogen peroxide (H2O2), which 

is particularly damaging to mammalian sperm cells.  This study reports the synthesis 

and use of three aryl boronate probes, peroxyfluor-1 (PF1), carboxy peroxyfluor-1 

(CPF1) and a novel probe 2(2-ethoxyethoxy)ethoxy peroxyfluor-1 (EEPF1) in human 

spermatozoa.  PF1 and EEPF1 were found to be effective in detecting H2O2 and 

peroxynitrite (ONOO–) produced by spermatozoa when stimulated with menadione or 

4-hydroxynonenal.  EEPF1 was more effective at detection of ROS in spermatozoa 

than DCFH, DHE and MSR; furthermore it distinguished poorly motile sperm as 

shown by greater ROS production.  EEPF1 should therefore have a significant role in 

diagnosis of oxidative stress in male infertility, cryopreservation, age, lifestyle and 

exposure to environmental toxicants. 

Introduction 

Reactive oxygen species (ROS) produced by human spermatozoa compromise 

sperm function [1-5] and as such their detection is important for the diagnosis of male 

infertility [6].  ROS are typically detected in human spermatozoa using fluorescent 

probes such as dihydroethidium (DHE), MitoSOX Red (MSR) and 2’,7’-

dichlorohydrofluorescein diacetate (DCFH) (Figure 1) [7].  DHE is an intracellular 

ROS probe that fluoresces within both the head and the mitochondrial midsection of 

the spermatozoa upon oxidation.  It is most commonly used for detection of 

superoxide (O2
•–), although it also reacts with hydrogen peroxide (H2O2) in the 
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presence of peroxidases, and with oxidases and cytochromes [8].  MSR is a charged 

variant of DHE that localises in the mitochondrial matrix to predominantly respond to 

and measure the generation of O2
•–.  DCFH is a fluorescein-based nonspecific probe 

that reportedly reacts with H2O2 [9] and other ROS, particularly hydroxyl radicals 

(•OH) and peroxynitrite (ONOO–) [10].  This probe has some disadvantages, since it 

requires the concomitant presence of peroxidases to react with H2O2 [11], can 

undergo autoxidation and is known to catalyse O2
•– production [9].  An aryl boronate 

probe reported by Chang et al. [12], peroxyfluor-1 (PF1), reacts with both H2O2 and 

ONOO–; but not •OH, O2
•–, nitrous oxide (NO) or hypochlorite (–OCl) [12, 13].  This 

class of probe has found wide use for the in vivo detection of H2O2 [14], including 

research into ROS production in cryopreserved mouse spermatozoa [15].  The ability 

of aryl boronates to detect the low levels of ROS generated by mammalian 

spermatozoa suggests this class of probe as a potential diagnostic tool for the 

selective detection of ROS, particularly H2O2 in sperm cells.  This would be of clinical 

significant as several independent studies have indicated that H2O2 is particularly 

damaging to mammalian sperm function [16-18]. 

A number of aryl boronates have been developed for use in a range biological 

applications [14].  We chose to use PF1, carboxyPF1 (CPF1) and a new probe 2(2-

ethoxyethoxy)ethoxy-PF1 (EEPF1) for the study as they are structurally similar to 

allow for direct and meaningful comparison, while being relatively easy to prepare on 

both small and larger scale.  This is an important consideration for future work in this 

area.  CPF1 is a variant of PF1 originally synthesised for attachment to other 

functional groups [19, 20].  EEPF1 contains a truncated polyethylene glycol (PEG) 

group with increased hydrogen bond acceptors to enhance the aqueous solubility 

relative to PF1.  A series of comparative studies were performed to define the 

relative ability of all three probes to detect ROS generation by human spermatozoa in 

a sensitive and selective manner.  This study examines the relative capacities of 

these probes to detect H2O2 and ONOO– spontaneously generated by human 

spermatozoa exhibiting impaired motility.  The results have important diagnostic 

implications for the facilitated detection of oxidative stress in mammalian 

spermatozoa exhibiting signs of impaired functionality. 
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Figure 1.  Chemical structures of the ROS sensors used in this study.  MSR, DHE 

and DCFH are oxidised by removal of the indicated hydrogens to produce a 

fluorescent aromatic structure.  PF1, CPF1 and EEPF1 are oxidised by the 

deprotection of the pinacolatoboron groups to produce highly fluorescent structures. 

 

Materials and Methods 

Materials: 

Unless otherwise stated all chemicals were purchased from Sigma Aldrich.  N-(3-

Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC-HCl) was obtained 

from GL Biochem (Shanghai).  4-Hydroxynonenal (4HNE) was from Sapphire 

Biosciences; MitoSox Red, dihydroethidium and Live/dead fixable FAR red stain 

were from Life Technologies.  2’,7’-Dichlorofluorescein diacetate was from molecular 

probes.  Freshly prepared Biggers, Whitten and Whittingham (BWW) medium was 

used for all experiments, supplemented with 1 mg/ml polyvinyl alcohol, 5 units/ml 

penicillin and 5 mg/ml streptomycin, and the osmolarity was kept between 290 and 

310 mOsm/kg [21]. 

Semen Samples: 

The University of Newcastle human ethics committee and the NSW state Minister for 

Health approved the use of semen samples for research.  A cohort of unselected, 

normozoospermic donors, mainly university students of unknown fertility status, 

supplied semen samples for this study.  Semen samples were produced into a sterile 

container and delivered to the laboratory within 1 hour of ejaculation. 

Sample Preparation:  

Spermatozoa were isolated by discontinuous Percoll gradient centrifugation using a 

simple 2-step design incorporating 44% and 88% Percoll as described 

previously [22].  Purified spermatozoa were recovered and washed with HEPES-
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buffered BWW supplemented with 1 mg/ml PVA [21], centrifuged at 500 g for 

5 minutes, and resuspended at a concentration of 2×107 cells/ml.  

Leukocyte Removal: 

Where indicated, all residual traces of leukocyte contamination in the sperm 

suspensions were removed using magnetic beads (Dynabeads, Dynal, Oslo, 

Norway) coated with a monoclonal antibody against the common leukocyte antigen, 

CD45 (Invitrogen, Carlsbad, C).  Following Percoll isolation, 5 × 106 cells in 100 µl 

BWW were added to pre-washed antibody-bound Dynabeads and then placed on a 

rotor for 30 min.  Following incubation, each sample was placed in a magnetic holder 

to separate leukocyte-bound Dynabeads from purified sperm cells in BWW.  Luminol-

peroxidase mediated chemiluminescence was then used in order to confirm the 

removal of leukocytes from each sperm suspension; for this purpose 20 µl of 

zymosan opsonized with autologous serum was added to each 400 µl sample, 5 min 

from the beginning of the luminometry run [7]. 

Treatments: 

Spermatozoa were treated with menadione (0-50 µM), arachidonic acid (AA; 0-

50 µM) and H2O2 (0-4 mM) for 15 min at 37 °C.  Treatments with 4HNE (0-400 µM) 

were for 30 min at 37 °C.  Stock solutions of menadione were made up fresh daily in 

dimethyl sulfoxide (DMSO), with a minimum dilution of 1/100 in BWW before being 

added to spermatozoa. 

Staining: 

After spermatozoa were treated they were incubated with PF1, CPF1 and EEPF1 for 

30 mins @ 37°C at a final concentration of 10 µM.  Stock solutions were made up 

using (DMSO) at a concentration of 10 mM. 

Flow Cytometry: 

A FACS-Canto Flow Cytometer (Becton Dickinson) was employed using a 488 nm 

argon laser coupled with emission measurements using the 530/30 band pass 

(green) FITC channel.  Ten thousand sperm events were recorded after non-sperm 

events were gated out.  Data were analysed using BD Diva Software (Becton 

Dickinson). 

Statistical Analysis: 

All graphed results are expressed as the mean ± standard error of the mean (SEM).  

Experiments were replicated at least three times with independent samples.  Data 

was then analysed by one-way analysis of variance (ANOVA) using Graphpad Prism 

6, followed by post-hoc comparison by Fisher’s LSD (Least Significant Difference). 

ROS Selectivity Study: 

Solutions of PF1, CPF1, EEPF1 and DCFH in 20 mM HEPES buffer at pH 7.4 were 

treated with 100 µM of ROS: H2O2, ONOO–, –OCl, •OH, O2
•–, NO, and tert-butyl 

hydroperoxide (TBHP).  A stock solution of approximately 100 mM H2O2 in Milli-Q 
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water was prepared from a 30% H2O2 solution in water and the exact concentration 

was determined by UV absorption at 240 nm (ε240 = 43.6 M-1cm-1) using a Cary UV-

Vis-NIR 5000 Spectrophotometer.  A stock solution of NaOCl was similarly prepared 

and the –OCl concentration determined by UV absorption at 292 nm (ε292 = 350 M-

1cm-1).  A solution of ONOO– was prepared by a known method [23], and its 

concentration determined using UV absorption at 302 nm (ε302 = 1670 M-1cm-1).  •OH 

was produced by the Fenton reaction of 100 µM H2O2 with 1 mM FeClO4.  O2
•– was 

also produced by a known method [24], using a xanthine/xanthine oxidase system for 

production of O2
•– and catalase as a scavenger for any H2O2 produced.  NO was 

generated from S-nitrosoglutathione, and TBHP was diluted from a stock solution.  

The ROS were added to each probe and the fluorescence was monitored using a 

Biotek Synergy H4 fluorescence plate reader (excitation 450 nm, emission 520 nm) 

over 40 min. 

Fluorescence Controls for Menadione, AA and 4HNE 

Solutions of PF1, CPF1, EEPF1 in BWW were treated with menadione (0-50 µM), 

arachidonic acid (0-50 µM) or 4-hydroxynonenal (0-400 µM) to give a final probe 

concentration of 10 µM.  Samples were incubated for 15 min (30 min for 4HNE) at 

37°C, then fluorescence emission quantified using a Fluostar Optima (BMG 

Labtech),with settings of excitation filter 485 ± 10 nm, and emission filter at 520 nm.   

(a)

(b)

(c)

EEPF1 CPF1  

Scheme 1:  Synthesis of CPF1 and EEPF1.  (a)  1. MeSO3H, 140 °C, 72 h  2. 

Recrystallisation 2:1 acetic anhydride: pyridine [25]  (b)  Bis(pinacolato)diboron, 

Pd(dppf)Cl2, KOAc, DMF, mic. synth., 100 °C, 3 h  (c)  1. N-Hydroxysuccinimide, 

EDC-HCl, DMF, 1 h.  2.  2-(2-ethoxyethoxy)ethanol, 2 h 

Synthesis: 

Peroxyfluor-1 (PF1) was prepared as described [12] using microwave irradiation in 

place of conventional heating: 3’,6’-diiodofluoran[12] (89 mg, 0.16 mmol), 

bis(pinacolato)diboron (160 mg, 0.63 mmol), potassium acetate (141 mg, 0.63 mmol) 

and Pd(dppf)Cl2 (14 mg, 0.02 mmol) pre-dried in vacuo, were dissolved in DMF (4 

mL) under N2 atmosphere in a sealed microwave vial fitted with a Teflon cap.  The 

light brown mixture was reacted in a CEM Discover microwave synthesiser 
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(Matthews, NC) at 80 °C for 2 h.  The solvent was removed under reduced pressure 

to give a dark brown powder which was purified by column chromatography eluting 

with 4:1 hexane:ethyl acetate to give PF1 as a white solid.  (40 mg, 45%)  The 

sample was characterised by 300 MHz proton nuclear magnetic resonance 

spectroscopy (1HNMR) in deuterated chloroform.  1HNMR data:  δ 8.03 (1H, m), 7.74 

(2H, s), 7.60 (2H, m), 7.43 (2H, dd, J1=7.8Hz, J2=1.1Hz), 7.06 (1H, m), 6.86 (2H, d, 

J=7.8Hz), 1.35 (24H, s). 

CarboxyPeroxyfluor-1 (CPF1) [19] was similarly prepared: 3’,6’-Diiodo-6-

carboxyfluoran pyridinium salt [25] (109 mg, 0.16 mmol), bis(pinacolato)diboron (160 

mg, 0.63 mmol), potassium acetate (142 mg, 0.63 mmol) and Pd(dppf)Cl2 (13.9 mg, 

0.017 mmol) were dissolved in dry DMF (4 mL) in an anhydrous N2 atmosphere.  The 

resultant solution was reacted in a sealed microwave vial sealed with a Teflon cap at 

100 °C for 3 h in a CEM Discover microwave synthesiser (Matthews, NC).  The 

solution was evaporated under reduced pressure to give a dark brown powder, which 

was purified by flash column chromatography eluting with neat ethyl acetate to give 

CPF1 as a light brown solid.  (55 mg, 58%)  The sample was similarly characterised: 
1HNMR (CDCl3, 300MHz):  δ 8.29 (dd, 1H, J1=7.8Hz, J2=1.4Hz), 8.11 (d, 1H, 

J=7.8Hz), 7.79-7.73 (m, 3H), 7.43 (dd, 2H, J1=7.8Hz, J2=1.1Hz), 6.81 (d, 2H, 

J=7.8Hz), 1.35 (s, 24H). 

2-(2-Ethoxyethoxy)ethoxy Peroxyfluor-1 (EEPF1): CPF1 (50 mg, 0.08 mmol), N-

hydroxysuccinimide (11 mg, 0.08 mmol) and EDC-HCl (26 mg, 0.13 mmol) were 

added to DMF (1 mL) in a dry N2 glovebox and stirred for 1 h.  2-(2-

Ethoxyethoxy)ethanol (23 µL, 0.17 mmol) in dry DMF (0.5mL) was added and the 

solution stirred for a further 2 h.  The solvent was removed under reduced pressure, 

and the resultant solid was purified by column chromatography eluting with ethyl 

acetate to give EEPF1 as a white powder.  (28 mg, 47%)  The sample was similarly 

characterised by 1HNMR (CDCl3, 500MHz):  δ 8.28 (1H, dd, J1=8.0Hz, J2=1.0Hz), 

8.09 (1H, d, J1=8.0Hz), 7.76 (2H, s), 7.71 (1H, s), 7.44 (2H, d, J1=8.0Hz), 6.82 (2H, d, 

J=7.5Hz), 4.42 (2H, t, J=4.5Hz), 3.76 (2H, t, J=4Hz), 3.61 (2H, t, J=2.75), 3.52 (2H, t, 

J=4.5Hz), 3.45 (2H, q, J=7Hz), 1.35 (24H, s), 1.14 (3H, t, J=7Hz).  This new boronate 

probe was also characterised by 500MHz carbon 13 nuclear magnetic resonance 

spectroscopy (13CNMR) and high resolution mass spectrometry (HRMS).13CNMR 

(CDCl3, 125MHz):  δ 168.6, 164.9, 154.0, 150.5, 136.5, 131.2, 130.0, 129.7, 129.4, 

129.0, 128.8, 126.9, 125.3, 125.1, 123.8, 120.5, 84.2, 70.6, 69.8, 68.9, 64.8, 24.9, 

15.1.  HRMS: calculated 712.3226, found 712.3237. 

Results and Discussion  

 

ROS Characterisation of Probes 

The sensitivity of EEPF1 to H2O2 was defined by incubating separate samples with 0-

100 µM H2O2 and monitoring the resultant fluorescence, see Figure 2A.  A clear, 

dose dependant response is evident, with an emission maximum at 525 nm.  EEPF1 

was also incubated with 100 µM of each individual ROS to determine the selectivity 

of EEPF1 for various ROS and the reactivity profiles are summarised in Figure 2B.  

For comparison, the reaction of DCFH with each ROS was also characterised and 
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the results are shown in Figure 2C.  Similar reactivity profiles for PF1 and CPF1 are 

reported in the supplementary data.  EEPF1 showed good reactivity with H2O2, and 

although there is a significant initial fluorescence response from ONOO–, a greater 

overall fluorescence was observed for H2O2 over 40 min.  This is likely due to the 

more transient nature of ONOO– compared with H2O2.  Limited fluorescence was 

observed for the reaction of EEPF1 with all other ROS studied, with a similar result 

for the other aryl boronates (Figure S1).  By contrast, DCFH reacts best with both 

ONOO– and •OH (Figure 2C) and to a lesser extent with –OCl and O2
•–, but not H2O2, 

as shown in Figure 2C.  This lack of reactivity to H2O2 is consistent with some 

literature [10], but contrasts other reports that infer the detection of H2O2 using this 

probe [9].  However, DCFH is able to detect other ROS such as •OH produced from 

H2O2 in vivo, and also H2O2 in the presence of peroxidases [11].  Thus, the aryl 

boronates have a clear advantage over DCFH for the detection of H2O2 in the 

absence of any external catalyst. 

  

Figure 2. Fluorescence characterisation of EEPF1 and comparison with DCFH for 

selectivity to ROS.  A) Absorption and emission spectra of EEPF1 when treated with 

0, 10, 25, 50, 75 and 100 µM H2O2 and incubated at 37 °C for 40 min in 20 mM 

HEPES buffer. (Excitation at 450 nm). B) EEPF1 and C) DCFH selectivity data, each 

incubated at 37 °C with 100 µM ROS and measured at 0, 10, 20, 30 and 40 min.  

(Excitation 450 nm, emission 520 nm).  

Comparative Study on ROS Production in Human Spermatozoa 

The ability of the aryl boronates PF1, CPF1, EEPF1 and other probes described in 

the literature (the dihydrofluorescein DCFH and the hydroethidiums DHE and MSR) 
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to detect ROS in spermatozoa was then studied in populations of human 

spermatozoa, with a view to defining their relative abilities to detect cellular ROS 

generation.  ROS production in human spermatozoa was induced by treating 

samples with three different compounds, menadione, AA and 4HNE [7].  Menadione 

is a redox cycling quinone known to produce significant oxidative stress due to 

quinone oxidoreductase activity [26, 27].  AA is a cis-unsaturated fatty acid 

associated with the production of O2
•– by sperm mitochondria [28, 29], while 4HNE is 

a lipid-derived aldehyde responsible for the induction of mitochondrial ROS 

generation in senescent spermatozoa [30].  Further samples were also treated with 

4mM H2O2 as a positive control for probes sensitive to H2O2 (DCFH, PF1, CPF1, 

EEPF1).  The ROS-producing compounds were incubated separately with each 

probe (DCFH, DHE, MSR, PF1, CPF1 and EEPF1) and the resulting fluorescence 

response was measured by flow cytometry. 

Figure 3 shows the percentage of fluorescent spermatozoa, indicating the 

percentage of spermatozoa that generated ROS as measured by each probe.  MSR 

showed the largest background fluorescence in the negative control samples (Figure 

3A), with significantly higher fluorescent populations (P < 0.05) than aryl boronates 

PF1 and CPF1, presumably reflecting the active generation of mitochondrial ROS by 

populations of human spermatozoa, as previously described [31].  For the treated 

sperm samples, those incubated with DHE exhibited the smallest fluorescent 

populations for all stimuli (Figures 3B-D).  Conversely, those stained with EEPF1 

consistently showed the largest fluorescent populations, with over 90% responding 

positively following treatment with the ROS-generating reagents (Figures 3B-D).  PF1 

also showed readily measurable fluorescent responses to the stimuli, with 

comparable or larger fluorescent populations than DCFH, DHE and MSR (Figures 

3B-D).  Staining spermatozoa with CPF1 gave the lowest fluorescent populations of 

all three aryl boronates.  Nevertheless, treated sperm were more fluorescent with 

CPF1 than with DHE and DCFH within the sperm treated with AA (Figure 3C) and 

4HNE (Figure 3D) treatment groups. 

Thus the aryl boronates PF1 and EEPF1 were the most broadly sensitive of the 

probes to ROS produced by spermatozoa on stimulation with menadione, AA and 

4HNE (Figures 3B-D) with the latter clearly being the most sensitive.  The third aryl 

boronate (CPF1), while sensitive, gave less consistent results.  Of the other probes, 

MSR gave the greatest response to each stimuli (Figure 3B-D), while DHE was the 

least sensitive. 

The fluorescent populations shown in Figure 3 also provide some insights into which 

ROS are produced by spermatozoa on treatment with menadione and 4HNE (results 

for AA are discussed separately, see Figure 4).  Thus for samples stained with MSR, 

a smaller proportion of fluorescent cells was apparent for 4HNE treatments (Figure 

3D) compared to menadione (Figure 3B), suggesting that the latter is the more 

efficient stimulator of O2
•– production.  In contrast, fluorescence of the aryl boronates 

PF1, CPF1 and EEPF1 were similar between menadione and 4HNE treatments 

(Figures 3B & 3D), indicating similar levels of H2O2/ONOO– production.  This 

suggests an efficient conversion of O2
•– (detected by MSR) to H2O2 or ONOO– 

(detected by the aryl boronates) in those samples treated with 4HNE.  However, 

similar to MSR, DCFH showed a lack of sensitivity for the ROS produced in response 
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to 4HNE (Figure 3D) compared with the menadione (Figure 3B) treatments.  Yet 

DCFH is also known to react with H2O2 and ONOO–, as do the aryl boronates, 

suggesting that DCFH should have similar sensitivity to the 4HNE treatment as to 

menadione.  This incongruity could be due to the production of •OH in samples 

treated with menadione and not those treated with 4HNE.  The •OH radical reacts 

with DCFH but not with the aryl boronates, which would result in the greater positive 

populations observed for DCFH in samples treated with menadione than 4HNE 

(Figures 3B & 3D).  Another likely explanation is the need for oxidation of DCFH to 

be facilitated by peroxidase which may not be trivial due to the highly 

compartmentalised nature of the spermatozoon, limiting the distribution and hence 

catalytic availability of the peroxidase.  This again highlights the significant 

advantage of the aryl boronates over DCFH in this regard, as no external catalysis is 

required to produce a fluorescent response. 

We next investigated the fluorescence of PF1, CPF1 and EEPF1 on incubation with 

menadione, AA and 4HNE in absence of spermatozoa, to directly assess the 

reactivity of the probes to these compounds.  Menadione (12.5, 25, 50µM), AA (12.5, 

25, 50µM) and 4HNE (100, 200, 400µM) were separately incubated with PF1, CPF1 

and EEPF1 and the resulting fluorescence measured.  A fluorescent response was 

not observed when PF1, CPF1 or EEPF1 were incubated with menadione or 4HNE 

(see Figure 4).  However, AA did cause a dose-dependent response with PF1 (r = 

0.9999), CPF1 (r = 0.9898) and EEPF1 (0.9994) as shown in Figure 4.  This is 

possibly due to auto-oxidation of AA, generating a hydroperoxide [32] capable of 

deprotecting the aryl boronates of the probes, thus leading to a fluorescent response.  

This may explain the observed increase in fluorescent population for PF1, CPF1 and 

EEPF1 in the presence of AA compared to those populations stained with DCFH, 

DHE and MSR.  AA was not used to induce ROS production in further experiments 

using spermatozoa with PF1, CPF1 and EEPF1. 
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Figure 3.  Analysis of flow cytometry results, showing the percentage of human 

sperm populations which indicated a fluorescent response.  A) Negative control 

sample with no external stimulus.  Samples exposed to stimuli:  B) 50 µM menadione 

for 15 min, C) 50 µM AA for 15 min or D) 200 µM 4HNE for 30 min.  Significance 

levels: *P < 0.05, **P < 0.01, ***P < 0.001 compared with untreated sample.  †P < 

0.05, ††P < 0.01, †††P < 0.001 as compared on graphs. 

 

Figure 4.  Fluorescence response of PF1, CPF1 and EEPF1 to menadione, AA and 

4HNE in the absence of spermatozoa.  Fluorescence readings were recorded in 

BWW solution after 30 min of incubation at 37 °C by a microplate reader.  Excitation 

wavelength was 485 nm, emission recorded at 520 nm.  Each probe gave a dose-

dependent response upon exposure to AA, however no significant response was 

recorded when incubated with either menadione or 4HNE. 

0

10

20

30

40

50

60

70

80

90

100

PF1 CPF1 EEPF1 DCFH DHE MSR

P
o

s
it

iv
e
 (

%
) 

Probe 

A) 

† 
† 

0

10

20

30

40

50

60

70

80

90

100

PF1 CPF1 EEPF1 DCFH DHE MSR

P
o

s
it

iv
e
 (

%
) 

Probe 

B) 

* 

*** 

* 

** 

†† 
†† 

† 

0

10

20

30

40

50

60

70

80

90

100

PF1 CPF1 EEPF1 DCFH DHE MSR

P
o

s
it

iv
e
 (

%
) 

Probe 

C) 

* 
** 

*** 

* 

† 
† 

† 
† 

0

10

20

30

40

50

60

70

80

90

100

PF1 CPF1 EEPF1 DCFH DHE MSR

P
o

s
it

iv
e
 (

%
) 

Probe 

D) 

** 

* 

††† 
†† 

† 

0

100

200

300

400

500

600

700

800

12.5 25 50 12.5 25 50 100 200 400

Men AA 4HNE

F
lu

o
re

s
c
e
n

c
e
 (

A
.U

.)
 

Concentrations of compounds (µM) 

PF1 CPF1 EEPF1



11 
 

 

Figure 5.  Analysis of flow cytometry results for menadione, 4HNE and H2O2 treated 

spermatozoa. A) Menadione treated spermatozoa exhibit dose-response correlation 

with PF1 and CPF1; however EEPF1 show large positive populations to 12.5, 25 and 

50 µM treatments.  B) PF1, CPF1 and EEPF1 all exhibit dose-response correlations 

to sperm stimulated with 4HNE.  C) EEPF1 show a dose-response correlating to 

spermatozoa treated with H2O2 concentrations 0-500 µM.  Significance levels: *P < 

0.05, **P < 0.01, ***P < 0.001 compared with untreated sample.  †P < 0.05, ††P < 

0.01 as compared on graph. 

Sensitivity of Aryl Boronates to ROS Production in Human Spermatozoa 

Dose-dependent studies were subsequently carried out to further define the 

sensitivity of the three new aryl boronates PF1, CPF1 and EEPF1 in spermatozoa 

stimulated with menadione, 4HNE and H2O2.  Diphenylene iodonium (DPI), an 

inhibitor of NO and O2
•– production by flavoproteins, was used to further test the 

sensitivity of the probes for ROS generation.  

Menadione 

Populations of spermatozoa treated with menadione and incubated with EEPF1 

show the largest fluorescent populations, see Figure 5A.  This result is consistent 

with the earlier study comparing the aryl boronates to previously studied probes, 

where EEPF1 gave the greatest fluorescent response of the six probes as shown in 

Figure 3.  However, the populations stained with EEPF1 (Figure 5A) were over 90 % 

positive at even the lowest concentration of menadione (12.5 µM), significantly larger 

than PF1 (P < 0.05).  Populations stained with PF1 also revealed a dose-dependent 

increase in activity when treated with 12.5-50 µM menadione (Figure 5A, r = 0.937).  

In contrast, the fluorescent responses of populations stained with CPF1 were not 

statistically significant even at 50 µM menadione (Figure 5A).  Thus it appears that 

the new probe EEPF1 is the most effective of the probes for ROS production in 

spermatozoa on stimulation with menadione.  The existing aryl boronate PF1 is 
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significantly less effective, while CPF1 is the least effective of all three.  Microscope 

images of spermatozoa stained with CPF1 and EEPF1 were obtained (see 

supplementary data).  ROS produced by both the head and the mitochondria-rich 

midpiece can be seen, indicating that neither CPF1 nor EEPF1 stained specifically 

for a location inside the cell. 

Co-incubation of DPI with 50 µM menadione did not significantly decrease the 

positive population for EEPF1 and although suggested, no statistically significant 

reduction in signal was recorded in the presence of PF1 and CPF1 (Figure 5A) when 

treated with DPI.  Overall, incubation with menadione indicated greater sensitivity of 

EEPF1 over PF1 and CPF1, suggesting that it may be a particularly useful probe for 

the detection of intracellular ROS.  

4HNE 

Figure 5B shows the fluorescent responses for spermatozoa treated with 4HNE.  

Samples stained with PF1 or EEPF1 revealed significant fluorescent populations at 

100, 200 and 400 µM treatments of 4HNE.  However those samples incubated with 

CPF1 did not produce a significant fluorescent response as a consequence of the 

large variation associated with these measurements.  The signal generated in the 

presence of PF1 was significantly reduced (P < 0.05) in the presence of DPI.  

However, incubating with DPI did not reduce the fluorescent response for samples 

treated with EEPF1, again suggesting an increased efficacy over PF1.  From these 

results it is clear that both PF1 and EEPF1 were capable of detecting significant H2O2 

or ONOO– production by 4HNE-stimulated spermatozoa.  

H2O2 

EEPF1 gave the greatest fluorescent response to ROS in populations of 

spermatozoa treated with H2O2, see Figure 5C.  These fluorescent populations 

correlated with the concentration of H2O2 added (r = 0.946, P < 0.01).  Figure 5C also 

shows that in contrast, samples stained with PF1 only gave a limited increase in 

positivity at 250 µM and 500 µM of H2O2 while CPF1 generated a negligible 

fluorescence response, even for samples treated with up to 500 µM of H2O2.  These 

results again indicate greater efficacy of EEPF1 over PF1 and CPF1 for the detection 

of ROS produced by human spermatozoa stimulated with H2O2. 

The mechanism by which H2O2 stimulates enhanced ROS generation by human 

spermatozoa is thought to involve the induction of lipid peroxidation followed by the 

covalent binding of lipid aldehydes such as 4HNE to proteins in the mitochondrial 

electron transport chain (ETC), particularly, succinic acid dehydrogenase [23].  The 

adduction of proteins within the ETC is, in turn, thought to lead to electron leakage 

and sustained ROS generation.  The fact that DPI, an inhibitor of flavoproteins 

involved in mitochondrial electron transport such as succinic acid dehydrogenase, 

could significantly impair the ROS response to H2O2 as detected by EEPF1 is in good 

agreement with this model. 

In light of these results, EEPF1 is clearly able to sense ROS produced by human 

spermatozoa more effectively than PF1, CPF1, DCFH, DHE or MSR.  Hence, we 

suggest that EEPF1 should be used in preference to DCFH, DHE or PF1, particularly 
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for detection of low concentrations (0-100 µM) of H2O2 or ONOO– in human 

spermatozoa. 

The different fluorescent responses of PF1, CPF1 and EEPF1 to ROS produced by 

spermatozoa (Figures 3 and 5) also provide some preliminary insights into structure-

activity relationships for the aryl boronate class of probe.  CPF1 consistently detected 

lower numbers of reactive spermatozoa than PF1 and EEPF1.  As fluorescein-based 

probes are susceptible to photobleaching, 10 µM solutions of CPF1 and PF1 were 

irradiated with a 100 mW 488 nm argon laser to ensure the cause for differing 

fluorescent responses was not a photobleaching effect.  CPF1 and PF1 showed 

comparable rates of photobleaching, as such, the reduced CPF1 positive populations 

observed in Figure 5 are not the results of differences in rates of photobleaching.  

However, for spermatozoa to be analysed by flow cytometry, the probe must be able 

to cross the plasma membrane in order to react with intracellular ROS and generate 

a fluorescent signal.  It is therefore likely that the impaired cellular uptake of CPF1 is 

responsible for its lack of activity.  Any localised fluctuation in pH would affect the 

ionisation of the carboxyl group of CPF1, which would, in turn, be expected to 

influence cell permeability and hence the intracellular concentration of this probe.  By 

contrast, EEPF1 is esterified with a truncated PEG (see Scheme 1) so would be 

expected to possess a higher capacity for intracellular penetration.  Furthermore, 

hydrolysis of the PEG ester by intracellular esterases may enhance cellular retention 

of the active species, as reported for a similar aryl boronate probe, PF6-AM [33]. 

Spontaneous ROS Generation by Human Spermatozoa 

Finally, the use of PF1, CPF1 and EEPF1 to detect spontaneous ROS generation by 

human spermatozoa was investigated to validate the use of these probes for 

detecting the increased ROS production associated with poorly motile sperm. To this 

end, the spermatozoa were separated on discontinuous Percoll gradients into 

subpopulations exhibiting high and low levels of motility respectively [7] (see 

methods section for detail).  These sperm populations were then separately 

incubated with either PF1, CPF1 or EEPF1.  Figure 6 clearly demonstrates the 

increased generation of ROS by poorly motile spermatozoa compared with their 

more motile counterparts.  A relative increase in the proportion of ROS–generating 

cells was detected in the poorly motile cells with PF1, CPF1 and EEPF1.  The largest 

increase was seen with EEPF1, which detected ROS generation in around 40% of 

the poorly motile cells compared with < 15% with PF1 and CPF1.  These results 

confirm EEPF1 as the most effective of these probes for the detection of released 

ROS in human spermatozoa.  As such, EEPF1 is recommended for use as an 

intracellular probe for detection of ROS in human spermatozoa. 
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Figure 6.  Analysis of flow cytometry results showing the percentage of poorly motile 

and motile samples of human spermatozoa populations indicating a fluorescent 

response.  EEPF1 provides a greater fluorescent response to the ROS produced in 

poorly motile sperm.  Significance level relative to motile sample: *P < 0.05 

 

Conclusion 

The aryl boronate probes discussed here react directly with H2O2 and therefore 

present a distinct advantage over DCFH, which we show to be insensitive to H2O2.  

PF1 and EEPF1 were also shown to be effective fluorescent probes for the detection 

of both H2O2 and ONOO– in human spermatozoa.  Both PF1 and EEPF1 were 

significantly more effective at detection of ROS by flow cytometry compared to DCFH 

and DHE when stimulated using menadione and 4HNE.  In particular, EEPF1 was 

the most effective of the studied probes for externally stimulated and spontaneously 

generated ROS produced by human spermatozoa.  This particular probe should 

therefore have a significant role to play in the diagnosis of oxidative stress in 

spermatozoa in the context of a variety of circumstances including spontaneous male 

infertility, cryopreservation, age, lifestyle and exposure to environmental toxicants. 
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