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Abstract 19 

The transformation of organic amendments (OA) in soil is in large part performed by soil 20 

microbial communities. These processes are strongly affected by the carbon composition of 21 

the OAs. We examined microbial community responses to three types of OA: green waste, 22 

composted green waste and pyrolysed green waste added to two contrasting agricultural soils. 23 

mailto:tony.patti@monash.edu
mailto:mick.rose@monash.edu
mailto:cassandra.schefe@depi.vic.gov.au
mailto:kevin.wilkinson@depi.vic.gov.au
mailto:timothy.cavagnaro@monash.edu


2 
 

We investigated the relationship between the soil carbon composition (as determined by 
13

C-1 

solid state NMR), microbial community composition (as determined by phospholipid fatty 2 

acid analysis) and microbial activity (as determined by soil enzyme assays). We found that 3 

alkyl-C, O-aryl-C, aryl-C and carbonyl-C were able to explain most of the variations (≥ 50 4 

%) in soil microbial community composition and activity.. Aryl-C content (reflecting 5 

relatively stable carbon forms) strongly influenced microbial composition, while carbonyl-C 6 

content (reflecting relatively labile carbon forms) strongly influenced the microbial activity. 7 

Our results confirm that there is a tight relationship between carbon composition and soil 8 

microbial community composition and function. Results are discussed in the context of 9 

examining the relationship between carbon forms, microbial community composition and 10 

activity following the addition of different OAs to the soil. 11 

 12 

1. Introduction 13 

There is more carbon in the soil than in all terrestrial plants and the atmosphere 14 

combined. Thus soils play a major role in regulating the global carbon cycle (Kleber, 2010; 15 

Lal, 2010). Carbon is present in the soil in many different forms and compounds that vary 16 

greatly in their chemical nature (Baldock et al., 2004). These differences in carbon 17 

composition play a major role in microbial-mediated soil carbon cycling. If we are to increase 18 

soil carbon stocks as a means of mitigating climate change, we must not only consider the 19 

amount of carbon present in the soil, but also the forms in which it is present, and the impact 20 

this has upon soil microbes involved in soil carbon cycling. With the great diversity of 21 

microbes and complexity of carbon forms present in soil, this is a challenging issue that is yet 22 

to be fully resolved. 23 
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The conversion of natural lands to agricultural production has led to a significant 1 

reduction in soil carbon levels (Lal, 2011). With 38% of the earth’s terrestrial surface being 2 

used for agricultural production (FAOSTAT, 2010), the potential to mitigate rising 3 

atmospheric CO2 levels through soil carbon sequestration in agroecosystems is large; the 4 

global soil carbon sequestration potential of agricultural lands has been estimated at 2.1 5 

billion tons C/yr (Lal, 2010). The addition of organic amendments (OA) to soil has been 6 

suggested as an option for supplying nutrients to support agricutural production, while 7 

increasing soil carbon levels (Quilty and Cattle, 2011). Furthermore, where OA are derived 8 

from waste streams, such as municipal green waste or animal manure, there is the added 9 

benefit of recycling of nutrients and carbon that would otherwise be ‘lost’. Despite being rich 10 

in carbon and nutrients, where the addition of OA to the soil yields an increase in soil carbon, 11 

usually only a small percentage (< 20%) of this carbon is incorporated into the stable soil 12 

organic matter (SOM) pool (Sanderman et al., 2010). In some cases, the addition of OA to the 13 

soil has actually resulted in a reduction in soil carbon levels due to priming effects (Fontaine 14 

et al., 2004). If we are to realize the full potential of OA to increase soil carbon levels while 15 

providing nutrients to plants, we must understand the processes that drive OA 16 

transformations in soil. 17 

Soil organic matter transformation is primarily carried out by soil microbes, via 18 

processes including decomposition, polymerisation, protection and immobilisation (Jastrow 19 

et al., 2007; King, 2011; Sinsabaugh, 2010). These processes are mediated via the production 20 

of enzymes by soil microbes. Consequently, soil microbes are considered proximate 21 

controllers of soil organic matter (SOM) transformations. Given the chemical complexity of 22 

SOM, a wide range of soil enzymes are involved in organic matter transformation. For 23 

example, hydrolytic enzymes, such as β-glucosidase and phosphatases, catalyse specific steps 24 

in mineralisation of carbon and phosphorus (Shi, 2010), whereas oxidative enzymes, such as 25 
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phenol oxidases, act more generally on phenolic-containing compounds including lignin, 1 

humus and polyphenols (Sinsabaugh, 2010). Thus, quantification of soil enzyme activities 2 

provides important mechanistic and functional knowledge of SOM transformation processes. 3 

Due to the heterogeneity in the sources of organic inputs from one ecosystem to 4 

another, SOM composition can be highly variable. The composition of SOM affects its 5 

residence time as it influences biological stabilisation, physical protection and the energy 6 

required for SOM breakdown (Ekschmitt et al., 2005; King, 2011; Kögel-Knabner et al., 7 

2008; Schmidt et al., 2011). For example, as the decomposition of SOM progresses, the 8 

relative proportion of aromatic structures in SOM has been reported to increase (Gressel et 9 

al., 1996; Pedersen et al., 2011), as less stable structures are degraded. Phenolic compounds 10 

have been correlated with the antioxidant capacity soils that neutralises free radicals, and 11 

therefore, protects organic matter from oxidation (Rimmer and Abbott, 2011). Aromatic 12 

compounds have also been implicated in hydrophobic protection of SOM (Spaccini and 13 

Picollo, 2012). The complexity of SOM composition is especially relevant in the context of 14 

OA transformations given the tremendous chemical heterogeneity and complexity of OA. 15 

This in turn can also strongly affect the fate of the OA in the soil. 16 

Many OA undergo some form of ‘pre-prosessing’ prior to application to the soil; for 17 

example, organic matter is often composted to eliminate viable propagules of pests and 18 

pathogens, and further stabilise the organic matter it contains. Similarly, pyroloysis, that is 19 

the elevated thermal decomposition of organic matter in the absence of oxygen, is also 20 

increasingly being used as a means of stabilising OA prior to their addition to the soil. Given 21 

the differences in the nature of these different processes, they are expected to affect the 22 

chemical nature of the resulting OA. For example, we would expect that OA derived from 23 

pyrolysis processes to have a greater proportions of aromatics than their parent material 24 

(Lehmann et al., 2011). In turn, such changes in the properties of the OA are likely to have 25 
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direct effects on the soil microbial community composition and activity, and indirect effects 1 

through changes in the interaction of the OA with the abiotic environment (Bastida et al., 2 

2008; Cross and Sohi, 2011; Pérez-Piqueres et al., 2006; Singh et al., 2012). Therefore, we 3 

contend that if we are to understand the fate of OA in the soil, we need to take into 4 

consideration OA , how it changes SOM chemistry and how this affects microbial 5 

metabolism (Cebrian, 1999; Manzoni et al., 2008; Moorhead and Sinsabaugh, 2006; Schimel 6 

and Weintraub, 2003).  7 

One approach to studying the relationship between organic matter chemistry and 8 

microbial metabolism is to amend soil with known or labelled substrates, alone or in 9 

combination (e.g. Orwin et al., 2006). While this approach can yield detailed information 10 

about the turnover of specific compounds or groups of compounds, it can be difficult to use 11 

such results to make inferences about the behaviour of complex SOM pools. An alternative 12 

approach is to describe the chemical nature of soil carbon pools and OA inputs in the soil 13 

environment, e.g. by using solid-state 
13

C-nuclear magnetic resonance spectroscopy (
13

C-14 

NMR). As 
13

C-NMR provides overall carbon  characterisation of the SOM, it is a powerful 15 

tool to link changes in the nature of SOM to soil microbial community composition and/ or 16 

functions. A number of studies have linked carbon forms to microbial community 17 

composition (e.g. Pascault et al., 2010), or carbon forms and microbial activity (e.g. Alarcón-18 

Gutiérrez et al., 2008; Flavel and Murphy, 2006; Pane et al., 2013). However, to our 19 

knowledge,there have been few studies of OA transformation, where changes in the chemical 20 

nature of carbon contaning compounds in the soil, brought about by adding organic 21 

amendment and soil microbial community composition and activity, were simultaneously 22 

quantifed (e.g. Moorhead and Sinsabaugh, 2006; Šnajdr et al., 2011; Wickings et al., 2012).. 23 

If OA are to become a reliable soil carbon input, such knowledge will be essential. 24 
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Here, we report findings of an experiment in which we added three OA sourced from 1 

the same municipal greenwaste but treated to produce three materials of different chemical 2 

stability – raw green waste, composted green waste and pyrolysed green waste (biochar) – to 3 

two contrasting soils. We then measured differences in the soil carbon composition, the soil 4 

microbial community composition and activity after 12 weeks of incubation. Specifically, we 5 

hypothesise that the changes in chemical nature of soil carbon as a result of the addition of 6 

OA would be reflected in the soil microbial structure and activity.  7 

 8 

2. Materials and Methods 9 

Site, Experimental Design and Sampling 10 

We set up a microcosm-based incubation experiment using two soils. The Cranbourne 11 

soil (Cr) was collected from a horticultural farm in Cranbourne, Australia (38°11’ S 149°19’ 12 

E). It is a semiaquic Podosol of loamy sand texture with a pH of 7.79 (H2O), a C:N ratio of 13 

13 and contains 1.3 % organic matter. The Werribee soil (We) was collected from a 14 

horticultural farm at Werribee, Australia (37°53’ S, 144°40’ E). It is strongly dispersive 15 

(basaltic) red Sodosol of a slightly sodic light clay texture with a pH 7.79 (H2O), a C/N ratio 16 

of 9.1 and contains 3.9 % organic matter. Both soils were collected from 0-10 cm depths, air 17 

dried and sieved to 2 mm. To 300 g of each soil, OA were added separately as raw green 18 

waste (Gw), composted green waste (Co) and green waste biochar (Ch) and thoroughly 19 

mixed in at rates that aimed to increase total soil C by 1%. This series of OA were selected as 20 

they were expected to have increasingly more stabilised carbon and nutrient pools. For details 21 

on the composting and pyrolysis, see supplementary information. Soils without OA were 22 

used as controls in the experiment. The soil microcosms were maintained at moisture 23 

between -30 and -40 kPa, and incubated at 25 °C in the dark. Each treatment was replicated 24 
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four times, and sampled at 12 weeks. The soil from each replicate was then divided into three 1 

sub-samples to be stored at 4 °C for microbial activity assays, at –20 °C for phospholipid 2 

fatty acid (PLFA) analysis, and air-dried for chemical analysis.  3 

 4 

Carbon characterisation by 
13

C-NMR 5 

Sub-samples from the four replicates of each treatment were combined for 
13

C-NMR 6 

analysis. Solid-state 
13

C cross polarization (CP) NMR spectra were acquired with magic 7 

angle spinning (MAS) at a 
13

C frequency of of 50.33 MHz on a Bruker 200 Avance 8 

spectrometer. Samples were packed in a 7 mm diameter cylindrical zirconia rotor with Kel-F 9 

end-caps, and spun at 5 kHz. Spectra were acquired using a ramped-amplitude cross 10 

polarization (CP-ramp) pulse sequence, in which the 
1
H spin lock power was varied linearly 11 

during the contact time. A 1-ms contact time and a 1-s recycle delay were used and 30,000 12 

transients were collected for each spectrum. All spectra were processed with a 50 Hz 13 

Lorentzian line broadening. Chemical shifts were externally referenced to the methyl 14 

resonance of hexamethylbenzene at 17.36 ppm. 15 

All spectral processing was completed using Bruker TopSpin 3 software. Empty rotor 16 

background signals were subtracted and the resultant spectra were integrated across the 17 

following chemical shift limits to provide estimates of broad carbon types: 0-45 ppm (alkyl 18 

C), 45-60 ppm (N-alkyl C), 60-110 ppm (O-alkyl C), 110-145 ppm (Aryl C), 145-165 ppm 19 

(O-aryl-C),and  165-215 ppm (Carbonyl C). Signal intensity found in spinning side bands 20 

was allocated back to their parent resonances according to the calculations presented 21 

by(Baldock and Smernik, 2002)  22 

 23 
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Microbial activity 1 

We assayed the potential activity of four enzymes in the soil samples, here-on referred to as 2 

microbial activity. β-glucosidase (BGL), phosphatase (PHOS) and polyphenol oxidase (PPO) 3 

activity were determined according to methods modified from Allison and Jastrow (2006). 4 

Peroxidase (POX) activity was assayed using a method modified from Frey et al. (2000) and 5 

Johnsen and Jacobsen (2008). We incubated 0.5 ml of homogenised soil slurry (1 g soil in 50 6 

ml sterile H2O) with 0.5 ml of substrate solution (see Table 1 for substrates and incubation 7 

times). 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (100 mM, pH 7) was used to 8 

make up substrate solutions for all assays except for the POX assay, for which acetate buffer 9 

was used (100 mM, pH 5). We used buffer of pH 7 where possible to match our soil pH. All 10 

assays included a background soil control and a substrate control. A background soil control 11 

contained soil slurry and buffer. A substrate blank contained substrate solution and sterile 12 

H2O. Absorbance was measured at 405 nm except for the POX assay, which was measured at 13 

450 nm. Microbial N activity was measured using potentially mineralisable nitrogen (PMN) 14 

as a proxy measure in 5 g aliquots of soil using anaerobic incubation (Waring and Bremner, 15 

1964). The ammonium (NH4
+
) was extracted with 2 M KCl and measured colorimetrically 16 

following Forster (1995). 17 

 18 

PLFA Analysis 19 

We extracted PLFA following the procedures of Bossio and Scow (1998) with slight 20 

modification. Lipids were extracted from 4 g of lyophilised soil using 15.6 ml citrate buffer 21 

(0.15 M, pH 4.0): CHCl3: methanol (0.8:1:2 v/v/v) mixture. Samples were shaken for 1 h at 22 

room temperature then centrifuged for 10 mins at 1900 × g. The supernatant was transferred 23 

into a clean glass tube. A further 11.7 ml citrate: CHCl3: methanol (0.9:1:2 v/v/v) mixture 24 
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was added to the soil pellet. The samples were shaken and centrifuged, and the supernatant 1 

was isolated and combined with the first supernatant. A further 13.3 ml of citrate: CHCl3 2 

(0.9:1 v/v) mixture was added to the pooled supernatant. Samples were left overnight for 3 

phase separation, after which the aqueous layer was removed and the CHCl3 layer evaporated 4 

under a stream of N2. Each sample was redissolved in 2 ml of CHCl3 and transferred to solid 5 

phase extraction cartridges for separation of lipid classes. An aliquot of 3 ml of CHCl3 was 6 

added followed by 2 aliquots of 5 ml of acetone. These extracts were discarded. The 7 

phospholipid fraction was collected by extracting the cartridges with 5 ml of methanol; the 8 

methanol was then evaporated under N2. For methanolysis, the phospholipid fraction was 9 

incubated at 37 °C for 20 mins with 1 ml of a 1:1 mixture of methanol and toluene and 1 ml 10 

of methanolic KOH (0.2 M). The samples were neutralised with 0.3 ml acetic acid (1 M) and 11 

2 ml of ultrapure H2O. Two extractions were carried out with a mixture of 2 ml hexane: 12 

CHCl3 (4:1 v/v) and the organic phases combined. The organic layer was collected and 13 

evaporated again under a stream of N2. Each sample was resuspended in 200 μl of hexane 14 

containing methyl decanoate (0.005 mg/ ml) and analysed using gas chromatography. The 15 

chromatography was conducted with a 30 m (5%-phenyl)-methylpolysiloxane column 16 

(Varian CP 3800), using He as acarrier gas, an FID detector, and a temperature program of 17 

120 °C initial temperature, ramped to 220 °C at 4 °C/min, ramped to 325 °C at 20 °C/min, 18 

and held 325 °C for 8 mins. Bacterial phospholipid markers of interest were i15:0, a15:0, 19 

15:0, i16:0, 16:1ω7, i17:0, a17:0, 17:0cy, 17:0, and 19:0cy (cf with Frostegard and Baath 20 

1996, and references therein). Linoleic acid (18:2ω6,9) was used as an indicator of fungal 21 

biomass (Frostegard and Baath 1996). Concentrations of fatty acid less than 0.1 ppm were 22 

treated as 0 and only fatty acids detected in > 4% of treatment were included in the analysis; 23 

as a result a total of 21 PLFAs were included.  24 

 25 



10 
 

Calculations and Statistical Analysis 1 

Standardised data were used for multivariate regression tree (MRT), non-metric 2 

multidimensional scaling (NMDS), redundancy analysis (RDA) and cluster analysis. The 3 

PLFA was standardised by dividing values of each individual fatty acid by the total PLFA. 4 

Microbial activities were standardised by chi-square transformation using decostand() 5 

function in vegan package. The MRT was carried out to examine the relationship between C 6 

forms and soil microbial community composition or microbial activities. This analysis 7 

involves a response (i.e. the composition or activity data set) and an explanatory data set as 8 

detailed in Legendre and Legendre (2005). It forms clusters of sites by repeated splitting of 9 

the response data set based on minimising dissimilarity of sites within each cluster. Selection 10 

of the best tree was based on cross validation and selecting the smallest tree within one 11 

standard error of the best following the method described by De’ath (2002). Unconstrained 12 

cluster analysis was comparable to MRT analysis and indicated that the explanatory variables 13 

accounted for most of the observed variations. NMDS analysis is an ordination method that 14 

plots dissimilar objects far apart in ordination space and similar objects close to one another. 15 

The NMDS was carried out to examine unconstrained patterns in microbial activity. For 16 

microbial community PLFA composition, cluster analysis was performed. A Bray-Curtis 17 

dissimilarity index was calculated using transformed PLFA data followed by Ward’s 18 

minimum variance clustering. The PLFA clustering was then overlaid onto the ordination 19 

plot of the microbial activity as a minimum spanning tree. RDA was then carried out by 20 

constraining the microbial community composition or activity to 
13

C-NMR data as 21 

explanatory variables. Where the MRT and RDA analyses disagreed (in terms of variations 22 

explained), this informed us of (i) the presence of interactions between the C forms which 23 

was not captured in RDA analysis since interactions were not included in the RDA analysis, 24 

and/ or (ii) that the relationship between the C forms and microbial activity or composition 25 
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was not linear as RDA solution lies in linear space. All analyses were carried out in R 2.15.2 1 

(R Core Team 2012) using vegan (Oksanen et al., 2012) for RDA and NMDS, mvpart 2 

(Therneau et al., 2012) and MVPARTwrap (Ouellette and Legendre, 2013) for MRT. 3 

 4 

3. Results 5 

3.1 Linking microbial activity to microbial community composition 6 

Patterns in soil microbial community composition and microbial activity could be 7 

explained by the type of OA added to the soil (Fig. 1). Specifically, the community 8 

composition was more similar between the two soils amended with the same OA than to their 9 

respective unamended soils; this is illustrated in the plot where a line connects the treatments 10 

based on the similarity in microbial community composition. For example, microbial 11 

composition in CrGw and WeGw were very similar, and microbial composition in Co or Ch 12 

amended soils were similarly strongly influenced by the OA. As for microbial activity, the 13 

type of amendment also separates the amended from the unamended soils; this is reflected in 14 

the relative location of the points in the ordination space, with those treatments closer to one 15 

another on the plot being more similar than to those further away in the plot. For example, 16 

microbial activity in CrGw and WeGw were more similar to each other than to their 17 

respective unamended soils. On the other hand, microbial activity in CrCo was more similar 18 

to that of CrCh, while microbial activity in WeCo was more similar to that of WeCh.  19 

 20 

3.2 Linking microbial activity and microbial community composition to soil carbon forms 21 

To further explore the relationship of carbon composition with soil microbial 22 

community composition and activity, we analysed our data using multivariate regression trees 23 
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(MRT) and redundancy analysis (RDA). These analyses indicated that the relative content of 1 

alkyl-C, O-aryl-C, aryl-C and carbonyl-C explained most of the variation in soil microbial 2 

community composition and activity (Fig. 2). Furthermore, the differences in soil microbial 3 

community composition and activity due to the application of OA are associated with the 4 

relative importance of different C forms and the interaction and/or association among the C 5 

forms (Figs. 2A, 2C, see Supplementary table S1 for C composition).  6 

MRT analysis revealed that microbial activity could be separated into two main 7 

groups based on the relative abundance of carbonyl-C in the soil (46 % of variation in 8 

microbial activities was explained by this split, Fig. 2A). Specifically, the microbial activities 9 

in WeCo and WeGw were associated with higher relative carbonyl-C content (> 15.14 %), 10 

compared to all other treatments. Further splitting of the remaining groups with lower relative 11 

carbonyl content (< 15.14 %) was delineated by aryl-C and alkyl-C. The MRT explained 79 12 

% of the total variation in microbial activity, of which 61 % was explained by the first two 13 

splits in the tree. Thus, relative carbonyl-C content was the best predictor of soil microbial 14 

activity. Analysis of the data by MRT also allowed us to determine what and how much 15 

difference in the microbial activity was explained by the C forms. For example, PMN 16 

accounted for 58 % of the variance in microbial activities, and 46 % of this variance was 17 

explained by the tree, and 36 % of this variance was explained by the first split (Table 2). 18 

POX and PPO largely determine the second split (aryl >/< 16.65), which explained 15 % of 19 

the variance in microbial activity. Interestingly, total variance in BGL (4 %) and PHOS (7 %) 20 

was low and the tree managed to explain most of it (2 % and 6 %, respectively). Additionally, 21 

the MRT identifies potential interactions and/or associations among the C forms that result in 22 

the patterns observed for microbial activity. This is because each split of the MRT partitions 23 

data into independent subsets that are then further analysed independently (De'ath, 2002). For 24 
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example, the interaction between carbonyl-C with aryl-C and alkyl-C produces differences in 1 

microbial activities.    2 

RDA analysis of C forms and microbial activity largely showed similar patterns to 3 

those found in MRT analysis. For example, as in the MRT analysis, the microbial activity in 4 

the WeGw and WeCo treatments were closely, and positively associated with relative 5 

carbonyl content. We found that the relative content of carbonyl-C, aryl-C, O-aryl-C, alkyl-C 6 

explained 57 % of total variation in microbial activity, of which 55.6 % was explained by 7 

axis 1 and 2 (Fig. 2B). PPO activity was closely associated with O-aryl-C and aryl-C while 8 

BGL, PHOS, POX and PMN were more closely associated with carbonyl-C. Additionally, 9 

POX activity was also closely associated with alkyl-C. 10 

The soil microbial composition was separated into two main groups by MRT analysis 11 

according to the aryl-C content, with higher relative content of aryl-C associated with the Ch 12 

and Co amended samples (Fig. 2C).  Further splitting of the Ch and Co amended soil was 13 

determined by the relative contents of carbonyl-C, whereas unamended and Gw amended 14 

soils were further separated by O-aryl content. MRT explained 86 % of the total variation in 15 

soil microbial community composition, of which 76 % was explained by the first four splits. 16 

The variances of bacterial cy19:0 and fungi 18:2ω6 together comprise 60 % of the total 17 

variance in microbial community composition; 50 % of this variance was explained by the 18 

tree (Table 3). Bacterial cy19:0 dominated the first split (aryl >/< 17.0) while fungi 18:2ω6 19 

dominated the fourth split (aryl >/< 16.6). The MRT also identifies potential interactions 20 

between the C forms that result in the patterns observed for microbial composition. For 21 

example, the interaction between aryl-C with carbonyl-C were most important for 22 

distinguishing microbial composition in Co and Ch amended soils while the interaction 23 

between aryl and O-aryl were more important for distinguishing microbial composition in 24 

Gw amended soils from unamended soils.    25 
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RDA indicated that similar to microbial activity, carbonyl-C, aryl-C, O-aryl-C, alkyl-1 

C explained a large portion (46 %) of the total variation in the soil microbial composition 2 

(Fig. 2D). The microbial composition of Ch amended soils was associated with higher O-3 

aryl-C and aryl-C compared to other treatments. While the soil microbial community 4 

composition of CrCo was similar to Ch amended soils in its association with higher O-aryl-C 5 

and aryl-C compared to other treatments, the microbial composition of WeCo was more 6 

similar to its unamended soil and both were associated with higher carbonyl-C and alkyl-C 7 

compositions.  8 

 9 

4. Discussion 10 

The patterns in soil microbial community composition and microbial activity 11 

observed here could be explained by the type of amendment added to the soil. Both RDA and 12 

MRT analysis of the data agree that soil carbon forms explain a large amount of the variation 13 

in the soil microbial activity and composition (46 – 86 %). Based on the MRT, soil carbon 14 

forms had a larger influence on the microbial composition than the activity, as observed in 15 

the differences in variations explained. These results reinforce the important link between the 16 

nature of carbon in the soil, and the structure and function of soil microbial communities, in 17 

support of our hypothesis. Importantly, the patterns of the soil microbial community 18 

composition and activity responded differently to the soil carbon composition, highlighting 19 

the importance of the need to consider microbial community structure and function 20 

simultaneously rather than in isolation. Taken together, these results highlight the complexity 21 

of the relationship between SOM composition, soil microbial community composition, and 22 

soil functions, while providing new insights into the factors governing the fate of OA in 23 

agricultural soils.  24 
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Analysis of the data using MRT allowed us to use data on soil carbon composition to 1 

split the complex microbial compositional data in a manner that explained the majority of 2 

variation. For example, the first split in the soil microbial composition was driven by aryl-C 3 

and was largely due to the bacterial cy19:0 PLFA marker. Bacterial cy19:0 is associated 4 

mainly with Gram-negative bacteria (Zelles, 1997). These bacteria are generally known to 5 

utilise mainly simple C forms (Holding, 1960) yet they were found in this study to be more 6 

abundant in soils with higher relative aryl-C content. Aryl-C and O-aryl-C are aromatic 7 

compounds that are found in lignin, humic substances and biochars. They are associated with 8 

stabilised OM (Lehmann et al., 2011). But if we consider these results in the context of the 9 

observed microbial activities, then it appeared that these bacteria are present under conditions 10 

of higher PPO activity. Either these bacteria produce PPO to access the required carbon and 11 

nutrients, or they are riding very successfully on other microbes that do produce PPO.  12 

In contrast, the fourth split in the tree for microbial composition was driven by aryl-C 13 

and was dominated by the fungal PLFA marker 18:2ω6,9. At this split, CrGw was 14 

distinguished from WeGw. The CrGw sample, which contained only marginally more aryl-C 15 

than WeGw, also had a greater proportion of fungal PLFA marker 18:2ω6,9. Given that 
13

C-16 

NMR typically underestimates aryl-C and O-aryl-C (Smernik and Oades, 2000a, b), the 17 

differences in aryl-C content of the two may be greater than observed and this may explain 18 

why such marginal differences in aryl-C content leads to very different fungal PLFA marker 19 

18:2ω6,9 composition. This is still surprising given the previously established relationship 20 

between fungi and recalcitrant SOM (De Boer et al., 2005; Garrett, 1951). Fungi are 21 

important producers of PPO and POX enzymes which degrade more recalcitrant aromatic 22 

compounds (Kirk and Farrell, 1987; Sinsabaugh, 2010). We had expected Co and Ch 23 

amended soils to have greater amounts of the fungal PLFA marker 18:2ω6,9; however, this 24 

was not the case, and is worthy of further investigation. Additionally, both Gw amended soils 25 
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have relatively similar microbial activities. They are positively correlated with hydrolytic 1 

enzyme activities (BGL, PHOS) and carbonyl-C contents. Carbonyl-C is found in proteins 2 

and organic acids and they are important labile carbon forms. By combining these 3 

observations, we hypothesise that (i) bacteria may be playing a more important role in the 4 

degradation of recalcitrant C forms in these soils, and (ii) the dominant fungi composition in 5 

these Gw amended soils are copiotrophs. 6 

Our results also indicated that presence of aryl-C favours the production of PPO (i.e. 7 

positive correlation), resulting in production of O-aryl-C. Such a combination of increasing 8 

PPO with aryl-C or O-aryl-C is expected of Co and Ch amended soils, and indeed our 9 

observations agreed with it. This is corroborated by our observations that soils amended with 10 

Co and Ch had higher metabolic quotient and therefore greater respiration per unit biomass 11 

compared to soils amended with Gw (supplementary Fig. S2). In contrast, soil amended with 12 

Gw had high initial respiration rates and low metabolic quotient (supplementary Fig. S2). 13 

Raw green waste, consisting mainly of O-alkyl-C, N-alkyl-C and alkyl-C contains a large 14 

pool of labile C. O-alkyl-C is found mainly in carbohydrates and lignin with smaller 15 

quantities in proteins and lipids (Baldock et al., 2004; Baumann et al., 2009). N-alkyl-C is 16 

found in proteins and lignin (Baldock et al., 2004). Alkyl-C is mainly found in lipids, waxes, 17 

cutins, suberins and lignin but is also found in proteins (Baldock et al., 2004; Baumann et al., 18 

2009). The initial high respiration rates and low metabolic quotient provide support for the 19 

rapid consumption of labile C forms in the Gw amended soils by copiotrophs, which may 20 

explain the similarity of the microbial community composition of the Gw amended soils to 21 

the unamended soils 12 weeks after the addition of the OA. The subsequent succession of 22 

microbial community upon exhaustion of the easily assimilable C reflects the biotic legacy of 23 

the unamended soils.  24 
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As discussed above, the patterns of soil microbial community composition and 1 

activity clearly responded differently to the soil carbon forms. There are several possible 2 

explanations for these observed differences in the relationship between soil microbial 3 

composition and function to soil C forms. First, it may indicate that similar communities may 4 

not necessarily have similar functions. Strickland et al. (2009) found that harsher 5 

environment filters generate communities with more similar composition but dissimilar 6 

functional capabilities. Second, the weak relationship between composition and function may 7 

well reflect the temporal differences in both responses. Third, 
13

C-NMR captures the bulk 8 

soil C forms and is not able to capture the subtle changes in C form in a small fraction of the 9 

soil organic matter that matters the most to microbial function. Moreover, not all drivers of 10 

microbial community structure and function are related to carbon. For example, we found 11 

that other macronutrients, N and P, were also very important in shaping the microbial 12 

communities (Ng et al., in review). Cusack et al (2011) also found an interaction between 13 

mineral N deposition and the indigenous carbon reserves of two different soils, which caused 14 

a divergence in the microbial community structure and function after the N addition. In that 15 

case, N-addition to lowland forest soil with more labile carbon caused increases in bacterial 16 

dominance and hydrolytic enzyme activities, whilst N addition to highland forest soil with 17 

more stable C favoured fungal communities and oxidative enzyme activities (Cusack et al., 18 

2011). Finally, the differences in the RDA and MRT results highlight the importance of 19 

interactions and/or associations among C forms leading to the observed patterns in soil 20 

microbial community composition and function; this further justifies the use of RDA and 21 

MRT together. Other studies on litter decomposition have found that there is a non-additive, 22 

synergistic mixture effect to decomposition rates when distinct litters decompose in a mix as 23 

opposed to in isolation (Hättenschwiler et al., 2011). One possible explanation for this is that 24 
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greater heterogeneity of C forms also leads to greater interaction among the C forms. This 1 

warrants further investigation.  2 

As the Cranbourne and Werribee soils have very different physicochemical 3 

properties, the patterns in microbial community composition and microbial activities here 4 

indicate a strong influence of the carbon composition of the OA. Both soils clearly showed 5 

that with the addition of 1 % carbon to the soils, changes in their carbon composition occurs 6 

with changes in the microbial community composition and function 12 weeks after the 7 

application of OA. However, the magnitude of this effect is mediated by the soil 8 

physicochemical properties. In the sandy Cranbourne soil, Gw amendment resulted in the soil 9 

microbial composition being a lot more similar to its Werribee counterpart amended with the 10 

same OA than to its unamended soil. The same was not true for the amended Werribee soil, 11 

which is a clayey soil. The microbial composition in Gw amended Werribee soil reflects both 12 

the amendment and its unamended soil. However, it is worthy to note that the 1 % carbon 13 

addition represented a bigger proportion increase in soil carbon for Cranbourne soil than 14 

Werribee soil. These differences in physicochemical properties of the soils may explain the 15 

variation in the treatments that were not explained by carbon forms. We would expect that 16 

over time, the relative importance of different environmental factors in determining structure 17 

and function of soil microbial community varies; such temporal factors are likely to be 18 

important, and therefore, deserve further attention.  19 

 20 

5. Conclusions 21 

The results of our study indicate that there is a very strong relationship between 22 

carbon composition, as determined by 
13

C-NMR analysis, soil microbial community 23 

composition and microbial activity. The addition of OA changes the soil C composition and 24 
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alters the soil microbial community composition and its activity. Compost amended soils 1 

were most dissimilar from unamended soils for both microbial community composition and 2 

activity. A large proportion of these variations are explained by the relative content of alkyl-3 

C, O-aryl-C, aryl-C and carbonyl-C. The differences in the patterns of soil microbial 4 

composition and microbial activity were associated with different C forms appearing as the 5 

most influential explanatory variable and the interaction between these C forms.  6 

The results of this study demonstrate the direct relationship between soil carbon 7 

composition with soil microbial community structure and function. Such studies combining 8 

molecular approaches with functional measures will allow us to better assess effects of OA in 9 

agroecosystems and to examine SOM responses to management practices. Building on such a 10 

predictive approach to examine the relationship between carbon forms, microbial community 11 

structure and function will lead us towards not only understanding the relationship between 12 

the soil living and non-living components, but may enable us to predict outcomes for the use 13 

of organic amendments in the future based on the chemical composition of the applied 14 

organic matter.  15 

 16 
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Tables 1 

Table 1. Enzyme substrates and assay time.  2 

Table 2. Variance of soil microbial activity explained by the tree analysis  3 

Table 3. Variance of soil microbial PLFA composition explained by the tree analysis. 4 
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Figures 5 

Fig. 1 NMDS plot (showing mean ± se) of microbial activity overlaid with PLFA 6 

composition, whereby the minimum spanning tree (line) shows the actual connection between 7 

the microbial community composition in one treatment to that in another treatment. We = 8 

Werribee soil, Cr = Cranbourne soil, Gw = green waste, Co = composted green waste, Ch = 9 

charred green waste (e.g. CrGw refers to Cranbourne soil amended with green waste). See 10 

supplementary table S2 for mean ± standard error values of microbial activity. 11 

Fig. 2 Multivariate regression tree and redundancy analysis for the microbial community 12 

based on (A, B) microbial activities and (C, D) PLFA at 12 weeks. (A) The variation 13 

explained at each split of the MRT is shown as a percentage in parentheses in the body of 14 

each branch. Cross-validation error = 0.407, standard error of the tree = 0.098. (B) RDA 15 

correlation plot showing variance in microbial activities explained by C forms (C) The 16 

variation explained at each split of the MRT is shown as a percentage in parentheses in the 17 

body of each branch. Cross-validation error = 0.237, standard error of the tree = 0.069. (D) 18 

RDA correlation plot showing variance in PLFA composition explained by C forms. We = 19 

Werribee soil, Cr = Cranbourne soil, Gw = green waste, Co = composted green waste, Ch = 20 

charred greenwaste (e.g. CrGw refers to Cranbourne soil amended with green waste). BGL = 21 

β – glucosidase, PHOS = phosphatase, PMN = potentially mineralisable nitrogen, PPO = 22 

polyphenol oxidase, POX = peroxidase 23 


