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Abstract

This thesis considers the problem of angle-of-arrival (AOA) estimation in the context of
its application to electronic surveillance systems. Due to the operational requirements
of such systems, the AOA estimation algorithm must be computationally fast, accurate
and will need to be implemented using sparse, large aperture arrays.

Interferometry is proposed as a suitable algorithm that meets the operational require-
ments of electronic surveillance systems. However, for sparse array geometries, phase
wrapping effects introduce ambiguities to the phase measurements and so unambiguous
AOA estimation requires the use of computationally intensive ambiguity resolution al-
gorithms using three or more antennas.

Beamforming and array processing techniques are another class of AOA estimation algo-
rithms that can unambiguously estimate the AOA using sparse, large aperture arrays.
While these techniques generally offer better AOA estimation performance than in-
terferometric techniques, they are also comparatively more computationally intensive
algorithms. Furthermore, by virtue of using very sparse arrays, high sidelobes in the
array beampattern may cause incorrect AOA estimation.

This thesis will introduce the concept of using second-order difference array (SODA)
geometries which allow unambiguous AOA estimation to be performed in a computa-
tionally efficient manner. In the context of interferometry, the so-called “SODA interfer-
ometer” will be shown to synthesise the equivalent output of a smaller virtual aperture to
allow unambiguous AOA estimation to be performed at the expense of a coarser estima-
tion performance compared to the physical aperture of the array. It will also be shown
that the coarse SODA AOA estimate can be used to cue the conventional ambiguity
resolution algorithms to provide higher accuracy in a computationally efficient manner.
This thesis will also show that the creation of virtual arrays from SODA geometries can
be generalised to a larger number of antennas to allow conventional array processing
techniques to perform unambiguous AOA estimation in a computationally fast manner.

The AOA estimation performance of each algorithm is compared through simulations
and also verified using experimental data. This thesis will show that the SODA interfer-
ometer, SODA-cued ambiguity resolution algorithms and so-called “second-order array
processors” can be used to obtain high accuracy AOA estimates in a more computation-
ally efficient manner than the conventional algorithms.
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Notation

Symbols

The following symbols will be used throughout this thesis:

Symbol Description

η Signal to Noise Ratio
A Peak Amplitude of the Signal
f Carrier Frequency of the Signal
λ Wavelength of the Signal’s Carrier Frequency
ϕ Initial Phase of the Signal
θ Azimuth Component of the Signal’s Angle of Arrival
φ Elevation Component of the Signal’s Angle of Arrival
ts Sample Interval
fs Sampling Rate (or Sampling Frequency)
τ Propagation Time Delay Between Two Antennas
ψ Propagation Phase Delay Between Two Antennas
d Distance Between Two Antennas (or Interferometer Baseline)
t Time Instance
s(t) Continuous Time-Varying Signal Without Noise
x(t) Continuous Time-Varying Signal With Noise
ε(t) Continuous Time Additive Gaussian Noise
s[n] Discrete Time-Varying Signal Without Noise
x[n] Discrete Time-Varying Signal With Noise
ε[n] Discrete Time Additive Gaussian Noise
β(θ) Phase Error due to Channel Imbalance
N Number of Samples
K Number of Antennas
M Number of Interferometer Baselines
D Set of Interferometer Baselines
Υ Set of Potential Ambiguity Numbers for a Single Baseline
Ω Set of Ambiguity Number Combinations from all Baselines
σ Standard Deviation of Noise
v(θ) Propagation Delay for a Single Baseline
v (θ) Propagation Delay Vector for all Baselines
∆θ Azimuth Grid Search Resolution

BWNN Null-to-Null Beamwidth
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Scripts and Accents

Scripts and accents will be used to confer additional meaning to the above symbols.

• A single letter subscript specifies that the associated parameter belongs to a spe-
cific hardware channel. For example, Ak and fk refers to the peak amplitude and
carrier frequency of the k-th receiver channel. A single letter subscript can also
specify that the parameter belongs to a particular interferometric baseline. For
example, ψm and dm refers to the phase delay and baseline of the m-th interfer-
ometer baseline. When only a single letter subscript is used, it is generally implied
that the specified parameter refers to an arbitrary interferometer baseline.

• A double letter subscript specifies the parameter of a particular channel with
respect to another channel. For example, ψkl and dkl refers to the phase delay and
interferometer baseline of the k-th antenna relative to the l-th antenna. When a
double letter subscript is used, it is generally implied that the specified parameter
refers to a specific interferometer baseline.

• The subscript s specifies a steered parameter that is under the control of the radar
intercept receiver. For example, θs refers to the steered AOA of a grid search
algorithm for AOA estimation.

• The superscript u specifies an uncalibrated parameter that is subject to channel
imbalances.

• The superscript c specifies a calibrated parameter free of channel imbalances.

• The tilde accent˜specifies a measured parameter. In particular, when specifying
the phase delay measurement, ψ refers to the unwrapped, unambiguous phase de-
lay, however, ψ̃ refers to the measured, ambiguous phase delay that is constrained
to the interval [−π, π].

• The hat accentˆspecifies an estimated parameter.

• Plain typeface symbols, e.g. v(θ), are used to denote scalar variables.

• Bold typeface symbols in lower case characters, e.g. v (θ), are used to denote
vector variables.

• Bold typeface symbols in upper case characters, e.g. R , are used to denote matrix
variables.

Mathematical Operators

Operator Description

round [a] Rounds the scalar a to the nearest integer.
dae Rounds the scalar a upwards to the next integer.
bac Rounds the scalar a downwards to the next integer.
� Cartesian product.

a T or A T Transpose of the vector, a , or matrix, A .

aH or AH Hermitian (complex conjugate) transpose of the vector, a , or matrix, A .
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Units

All parameters are assumed to adhere to the International System of Units (or SI units).

The units of phase-related values, such as the phase delay and angle-of-arrival, are
assumed to be expressed in radians for all mathematical expressions. However, for
readability, the phase-related values will often be expressed in degrees in the text and
figures.
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Chapter 1

Introduction

1.1 Introduction

This thesis aims to investigate computationally fast and highly accurate angle-of-arrival
(AOA) estimation algorithms that can be implemented in digital microwave radar inter-
cept receivers for real-time electronic surveillance. While the problem of AOA estima-
tion, or direction finding (DF), has been studied extensively in many different fields, such
as radar [1], sonar [2], astronomy [2], meteorology [3] and communications [2, 4], the spe-
cific application of AOA estimation to the electronic support (or electronic surveillance)
environment warrants some additional attention due to the unique and demanding op-
erational requirements of radar intercept systems.

The AOA of a radar signal is an important parameter to be estimated by the radar
intercept receiver as it can be exploited in a number of strategic and operationally
useful ways. However, due to the trade-off that generally exists between the accuracy
and computation time of an algorithm, the choice of the AOA estimation algorithm
must strike the right balance between accuracy and computational speed. This thesis
aims to investigate high accuracy, but possibly sub-optimal, AOA estimation algorithms
that are computationally fast and are suited for real-time operation in radar intercept
receivers.

1.2 Electronic Support

The interception and exploitation of radar signals has been an important objective of
military reconnaissance since the development of the radar [5–7]. In a field known as
electronic support (ES), information gathered from so-called radar intercept receivers
is used by military platforms to enhance situational awareness of the operating en-
vironment, provide self-protection and contribute to electronic intelligence (ELINT)
databases [1, 5, 6].

Radar intercept receivers classify and identify radars by analysing their signal wave-
forms. This is achieved by using hardware that can reliably detect and measure the
characteristics of all radar signals in the environment. The characteristics of the inter-
cepted radar signal that are generally estimated include the signal’s

• amplitude,

1
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Figure 1.1: Block diagram of the typical functions performed by a radar intercept receiver.

• frequency,

• duration,

• time-of-arrival (TOA),

• angle-of-arrival (AOA),

• intra-pulse modulation characteristics (e.g. modulation type and characteristics),
and

• inter-pulse characteristics (e.g. pulse repetition interval (PRI) and PRI stagger
patterns) [5, 8].

Once the characteristics of all radar signals have been estimated, radar intercept receivers
use the estimated parameters to sort the collection of intercepted signals to identify all
of the intercepts that belong to a single radar emitter. An ELINT database of known
radar emitters is then consulted to find the radar emitter that exhibits parameters that
best match the estimated characteristics of the observed intercepts [1, 5].

Traditionally, there have been two types of radar intercept receivers, namely ELINT
systems and tactical ES systems. ELINT systems are designed to gather high fidelity
data to generate high quality representations of the radar signals. These signals are
then used to contribute to ELINT databases which are used by tactical ES systems to
identify the radars observed in the field [5]. For ELINT systems, the accuracy of the
estimation algorithms is generally more important than the computation time as the
analysis can often be performed offline.

On the other hand, tactical ES systems are designed to provide the operators of mili-
tary platforms with real-time, early warning of radar emitters that are operating in the
vicinity of the platform [9]. For this reason, tactical ES systems are sometimes called
early warning receivers. Tactical ES systems are traditionally distinguished as either
electronic support measures (ESM) systems or radar warning receivers (RWRs). ESM
systems are typically operated by a human operator in an interactive manner while
RWRs are typically fully automated systems. In extreme operating environments, a
tactical ES system may receive in excess of hundreds of thousands of radar intercepts
per second [1, 6]. While the accuracy of the estimation algorithms is important, the data
throughput that can be continuously sustained by the system is also an important con-
sideration. As a result, tactical ES systems may need to trade-off some accuracy in the
parameter estimation algorithms for the sake of improvements in the data throughput.
The development of computationally fast algorithms is a major driver of the research
presented in this thesis.
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With the advent of high fidelity digital receivers, the traditional roles of ELINT and
tactical ES systems have become increasingly blurred. It is not uncommon for modern
radar intercept receivers to undertake both roles.

1.3 The Importance of Direction Finding

The AOA of a radar intercept is a particularly important parameter to estimate because
it can be exploited in a number of operationally useful ways, including

• enhance situational awareness [5, 6, 9, 10],

• enhance signal sorting (or deinterleaving) algorithms [5],

• cue electronic attack measures (such as jammers) or electronic protection measures
(such as chaff) [1, 9, 10],

• improve the signal collection [2], and

• perform the beaming manoeuvre as discussed below.

1.3.1 Situational Awareness

Situational awareness of the operating environment is critically important to help de-
termine the engagement priorities, tactics and the electronic order of battle [6, 9, 10].
Accurate AOA estimates can help to improve the situational awareness by associating
lines of bearings to each detected platform. When the AOA from multiple radar in-
tercept receivers are used in conjunction with geolocation algorithms, it is possible to
further localise detected platforms to geographical coordinates [4–6, 11].

1.3.2 Signal Deinterleaving

Radar intercept receivers typically receive anywhere from hundreds to hundreds of thou-
sands of radar intercepts per second from multiple emitters [1, 6]. As part of its typical
processing, radar intercept receivers must sort through the collected data and associate
all of the intercepts to their respective emitters. This process is known as signal dein-
terleaving.

Parameters such as the signal’s carrier frequency, pulse duration, modulation charac-
teristics, and pulse train parameters such as the PRI and PRI stagger patterns, are
traditionally effective deinterleaving parameters [5, 8]. However, the traditional deinter-
leaving parameters are not effective against radars with similar transmission character-
istics or modern parameter-agile radars that are capable of changing their transmission
parameters on a pulse-by-pulse basis [12]. On the other hand, since the AOA of a signal
cannot be disguised in a practical manner, high precision AOA estimates can be used to
effectively deinterleave the signal from these types of radars, provided that the radars
are sufficiently separated in angle [1, 5, 6, 8, 13, 14].
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1.3.3 Electronic Attack and Electronic Protection Measures

Knowledge of an adversary’s bearing can assist the platform’s electronic attack systems
(such as jammers) and electronic counter measures systems (such as chaff) by more
efficiently directing the platform’s resources to deal with a threat from a given bearing
[1, 9, 10].

1.3.4 Signal Enhancement

By exploiting the multi-channel output of an antenna array with the signal’s AOA, co-
herent processing can be performed using beamforming methods to improve the signal-
to-noise ratio (SNR) of the intercepted signal [2]. With a higher quality signal repre-
sentation, the accuracy of the parameter estimation algorithms will also be improved
[15–17].

1.3.5 Beaming Manoeuvre

Accurate AOA information can provide operators of highly manoeuvrable platforms
with the ability to temporarily “disappear” from the view of Doppler radars with moving
target indicator (MTI) displays. Many contemporary radars exploit the Doppler effect
to detect and track moving platforms. The Doppler frequency shift, fd, of a moving
platform is given by

fd = 2
vr
c
f, (1.1)

where vr is the radial velocity of the platform, c is the speed of light and f is the carrier
frequency of the radar signal [1, 18]. Since the Doppler radar specifies the frequency of
the signal, these radars are able to estimate the platform’s radial velocity by measuring
the Doppler frequency of the return signal. Radar targets that are determined to have
a non-zero velocity are typically displayed on a MTI display, however, targets with little
to no velocity are generally considered as background clutter and so are hidden from
the MTI display [1, 18].

From a self-protection perspective, a moving platform can minimise its Doppler returns
to the radar by changing its trajectory to be perpendicular to the direction of the radar.
In this trajectory, the velocity of the platform (relative to the radar) will be mostly
tangential. With little to no radial velocity, the radar will measure a Doppler frequency
close to zero, i.e. fd ≈ 0 Hz, and so the Doppler returns from the moving platform will
likely fall into the background clutter of the radar’s processor. As a result, the MTI
display will likely disregard the moving platform as a stationary object. This tactical
manoeuvre is known as the beaming manoeuvre.

The beaming manoeuvre is typically only useful for highly manoeuvrable platforms, such
as fast jets, which can rapidly change their trajectory. Very fast and very accurate AOA
estimates are required to successfully perform the beaming manoeuvre. In practice, it
would be difficult for moving platforms to maintain an operationally useful trajectory
while perpendicular to the Doppler radar for an extended period of time. However, each
time the beaming manoeuvre is performed, the Doppler radar must restart its tracking
process. The platform may then exploit this small time interval to either move closer



CHAPTER 1. INTRODUCTION 5

to, or further away from, the Doppler radar.

Finally, it should be noted that the beaming manoeuvre is only effective against Doppler
radars. Radars that do not exploit the Doppler effect will not be affected by this
manoeuvre.

1.4 Problem Statement

This thesis is concerned with investigating and experimentally validating computation-
ally fast and highly accurate AOA estimation algorithms for real-time operation with
a focus on their implementation in digital microwave radar intercept receivers, and in
particular, tactical ES systems. This application imposes additional constraints on the
AOA estimation algorithms and will be discussed in more detail below.

1.4.1 Design Constraints of a Radar Intercept Receiver

As a real-time surveillance system, radar intercept receivers are designed to exploit
emissions from non-cooperative radars with unknown signal characteristics. Due to the
diverse range of radars in operation, radar intercept receivers must be able to detect
and measure the parameters of radar signals with unknown bandwidths over a very wide
frequency range. Microwave radar intercept receivers are traditionally concerned with
radars operating between 2−18 GHz [8]. Furthermore, since many radars may be oper-
ating simultaneously, the hardware and signal processing of the radar intercept receiver
must be sufficiently fast to provide near real-time surveillance of the environment and
to maintain a high probability of intercept (POI) for all radar emissions. Finally, the
monetary cost of the radar intercept receiver must be affordable to allow the deployment
of such systems across a large fleet of military platforms.

The operational requirements of a typical microwave radar intercept receiver can be
summarised as follows [8]:

• be able to intercept signals between 2− 18 GHz,

• be able to simultaneously monitor a wide frequency range (typically 500 MHz or
more),

• be able to intercept narrowband and wideband signals (typically up to 500 MHz
or more),

• be able to exploit multiple, simultaneously illuminating signals,

• maintain near real-time operation in a high signal density environment,

• maintain a high POI at all times, and

• be cost effective.

The above requirements impose a number of hardware and signal processing constraints
on the radar intercept receiver. Firstly, in order to maintain a high POI at all times, a
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multi-antenna, multi-channel digital receiver is required to provide instantaneous cover-
age of the entire field-of-view.

Secondly, in order to operate over a wide frequency range, the multi-channel digital
receiver must be able to receive signals over the entire frequency range, i.e. 2− 18 GHz.
This requires hardware components, such as antennas, tuners, filters, amplifiers and
power dividers, to be capable of operating over the entire frequency range. The cost
of these wideband components is generally quite high, particularly for multiple, phase-
coherent, wideband microwave tuners. At current prices, the cost of such a system can
range from tens to hundreds of thousands of dollars per channel. Hence, contemporary
radar intercept receivers often only utilise a small number of channels, typically 4− 16
channels, for a single platform.

Furthermore, wideband antennas that are capable of receiving signals between 2 − 18
GHz are typically physically large devices as they must have an aperture large enough to
receive the lowest frequency of interest. Examples of wideband antennas include cavity-
backed spirals, bi-conical and horn antennas. The use of physically large antennas in a
multi-antenna system imposes a lower limit on the minimum antenna spacings that can
be physically achieved.

Thirdly, in order to digitally capture a signal with minimal distortion, the Nyquist cri-
terion requires the sampling rate of the multi-channel digital receiver to be twice the
bandwidth of the (real) signal. While many conventional radar signals have relatively
low bandwidths (relative to the carrier frequency), i.e. up to about 100 MHz, some
modern radar signals have been known to have very high bandwidths, i.e. greater than
1 GHz. Thus, radar intercept receivers must have a high sample rate (and hence high
speed digitiser) to correctly receive wideband radar signals. The use of high speed digi-
tisers translates to high data rates and so has implications on the computation time
available for the signal processing.

Finally, radar intercept receivers may need to operate in dense signal environments,
such as commercial ports and harbours, where hundreds of radars may be operating
simultaneously. In these situations, it is not uncommon for the radar intercept receiver
to see tens to hundreds of thousands of radar signals per second. The throughput of
such a large volume of signals, especially at a high sample rate, has further implications
on the computation time available for the signal processing.

1.4.2 One-Way Propagation Advantage

Radar systems suffer a two-way propagation loss as a transmitted signal must travel
to a target and then be reflected back in order to be observed by the radar. The
radar must therefore transmit its signal with enough power to ensure that sufficient
energy is received upon the signal’s return. On the other hand, the radar intercept
receiver residing on the target can intercept the radar signal as soon as the signal hits
the platform. At this point, the radar signal has only suffered a one-way propagation
loss [1, 5, 6]. Thus, while radar intercept receivers face rather challenging hardware
requirements, one advantage that these systems have is that the intercepted signals
generally have high signal-to-noise ratios due to the one-way propagation of the signal.
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This is often termed the range advantage of the radar intercept receiver.
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Figure 1.2: Radar intercept receivers have a range advantage over the radar.

1.4.3 Implications for AOA Estimation

In light of the operational objectives of radar intercept receivers and the intended ap-
plications for the AOA estimates, the performance requirements of the AOA estimation
algorithm can be summarised as follows:

• Estimate the AOA of any signal between 2− 18 GHz,

• Estimate the AOA of narrowband and wideband signals (up to 500 MHz or more),

• Estimate the AOA of pulsed and continuous wave (CW) radar signals, and

• Estimate the AOA of multiple, simultaneously illuminating signals.

Furthermore, given the hardware requirements of radar intercept receivers, implemen-
tation of the AOA estimation algorithms are subject to the following constraints:

• The number of independent channels available to perform AOA estimation is small,
typically 4− 16 antennas for the entire platform (or 2− 4 antennas per quadrant).

• The AOA estimation algorithm must be sufficiently fast to facilitate near real-time
operation.

• There is a lower limit to the minimum spacing that can be achieved for the antenna
array due to the use of physically large, wideband antennas.

In the following chapter, this thesis will propose that interferometry is a suitable AOA es-
timation technique that meets all of the above performance and hardware requirements.
However, since interferometry requires a short antenna spacing to perform unambigu-
ous AOA estimation, the use of physically large, wideband antennas will cause the AOA
estimation to be highly ambiguous. The primary focus of this thesis will therefore be to
obtain unambiguous, high accuracy AOA estimates using sparse large aperture arrays
in a computationally efficient manner. A significant part of this thesis is that the results
of the theoretical analysis will be verified experimentally.
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1.4.4 Assumptions

For the sake of brevity, this thesis will make a few simplifying assumptions about the
intercepted radar signal. Unless otherwise stated, it will generally be assumed that

• the signal has been correctly detected and captured,

• the signal has a high SNR (typically about 5 dB to 15 dB),

• the signal is a burst of continuous wave (CW),

• the signal is narrowband (i.e. unmodulated),

• the signal lies in the same plane as the intercept receiver,

• only one signal is received at a time,

• the intercept receiver uses a uniform sampling rate that satisfies the Nyquist cri-
terion, and

• the frequency estimation has negligible error.

This thesis is concerned with the AOA estimation of post-detected signals. It is assumed
that the radar intercept receiver has appropriate detection logic to determine the pres-
ence of a radar signal and appropriate digital recording logic to ensure that the radar
signal has been correctly digitised in its entirety.

Due to the one-way propagation advantage, it is generally reasonable to assume that con-
ventional pulsed radar signals are intercepted with a typical SNR of 5−15 dB [5, 6, 12].

Radar signals are traditionally pulses, i.e. short bursts of energy. Unlike CW signals
which are continuously transmitted, pulsed signals are only transmitted for short dura-
tions (typically nanoseconds to microseconds). As a consequence, the signal waveform
has a well defined leading and trailing edge which are characteristic of the start and
end of the transmission as illustrated in Figure 1.3. However, during the parameteri-
sation of the radar signal, the leading and trailing edges are usually removed prior to
parameter estimation and so the signal may be considered as a short duration CW signal.

While radars have traditionally used narrowband (unmodulated) signals, modern radars
have been known to include frequency or phase modulation on the signal waveform to
improve the performance of the radar [1, 12]. However, for many modern radars, the
bandwidth of the modulated radar signal is below 50 MHz and so can effectively be
considered a narrowband signal at the microwave carrier frequencies. Furthermore, a
number of so-called low probability of intercept (LPI) radars transmit a relatively nar-
rowband signal over a long duration [12, 19, 20], such as the PILOT radar which can
transmit a signal with a 55 MHz bandwidth over a 1 millisecond interval [12]. Over a
short observation interval, say 1 microsecond, the change in frequency is relatively small
and may be considered as effectively constant. Hence, these type of LPI signals can
often be considered as a sequence of short narrowband signals and so the assumption
that the radar signal is narrowband applies. While truly wideband waveforms, with in-
stantaneous bandwidths of 500 MHz or higher, do exist [12], the consideration of these
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Figure 1.3: A typical pulsed radar signal has a well-defined leading and trailing edge.

waveforms is considered to be beyond the scope of this thesis.

The assumption that the intercepted radar signal lies in the same plane as the radar
intercept receiver is made so that the elevation component of the AOA can be ignored
for mathematical brevity. Due to their intended use to provide early warning of radar
emitters, ES and ELINT systems are typically operated at large distances from the
radar and so the co-plane assumption is usually justified. In practice, the elevation of
the AOA can be estimated using the same azimuth-only AOA estimation algorithms for
an antenna array placed physically orthogonal to the azimuth antenna array [4, 11, 16].
However, it should be noted that independently estimating the azimuth and elevation
components of the AOA is subject to coning errors and must be appropriately compen-
sated [6, 11].

In a given operating environment, it is possible for multiple radars to be simultaneously
illuminating the radar intercept receiver. Traditionally, the combination of a low number
of radars and low duty cycle signals meant that so-called pulse-on-pulse or signal-on-
signal situations, where the radar signals from multiple emitters overlap during a single
interception, were extremely rare. However, with the proliferation of radars in mili-
tary and commercial applications, and with the current trend of using longer duty cycle
signals, the modern electronic surveillance signal environment is becoming increasingly
crowded. The likelihood of signal-on-signal situations is therefore much more likely to
occur. However, for phase-based AOA estimation methods, such as interferometry, the
phase of the signal can be accurately measured in the frequency domain. For signal-
on-signal scenarios, provided that the signals are sufficiently separated in frequency, the
phases of each signal can be independently estimated and so the corresponding AOA
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of each signal can also be estimated. Thus, while signal-on-signal scenarios can occur,
it is reasonable for phase-based methods to assume that the signal environment only
contains one signal provided that the signals have different frequencies. However, note
that this assumption is not valid when two or more signals have the same frequency or
when the phases are estimated in the time domain.

Conventional digital receiver design theory requires that the sampling rate of a digital
receiver to be at least twice the bandwidth of the (real) signal. In recent years, there
has been growing interest in a field known as compressive sensing which aims to sample
so-called “sparse signals” below the Nyquist rate [21–24]. The advantage of compressive
sensing techniques is that the the amount of data required to correctly represent the
signal can be significantly reduced and therefore can help to alleviate hardware design
issues associated with the transfer, storage and processing of data. However, to the
knowledge of the author, digital radar intercept receivers which implement compressive
sensing techniques are not yet commonly used in practice. This thesis shall therefore
assume that contemporary digital radar intercept receivers use conventional sampling
techniques, i.e. a uniform sampling rate that satisfies the Nyquist criterion.

Finally, the use of interferometry to estimate the AOA of the signal requires knowledge
of the carrier frequency of the signal. For electronic surveillance problems, the carrier
frequency of the signal is generally not known and so must also be estimated from
the intercepted signal. However, since the frequency estimation problem has been well
studied in the literature [15, 25–31], the topic of frequency estimation is considered to
be beyond the scope of this thesis. Furthermore, in Section 6.2.1, it will be shown
that small frequency errors, of say 1 MHz, have little effect on the AOA estimation at
microwave frequencies. Since a number of well-known frequency estimators are able to
achieve better than 1 MHz RMS error at the SNRs and signal durations that are of
interest in this thesis [15, 25–31], this thesis shall assume that the frequency estimation
errors are negligible.

1.5 Organisation of this Thesis

The research undertaken in this thesis is divided into two parts. The first part (Chapter
2 - Chapter 5) is concerned with the theory of contemporary AOA estimation techniques.
The second part (Chapter 6 - Chapter 8) is concerned with the practical implementation
and experimental verification of the theoretical algorithms.

In Chapter 2, a summary of contemporary direction finding techniques that are suitable
for implementation in radar intercept receivers is provided. The general performance of
each technique and its advantages and disadvantages are discussed. At the conclusion
of this chapter, an argument will be presented which nominates interferometry as the
most suitable AOA estimation algorithm for both modern ES and ELINT systems, while
array processing methods may be preferred for ELINT systems.

In Chapter 3, the theory of contemporary interferometers is presented. This chapter
will show that short baseline interferometers provide unambiguous AOA estimates but
have relatively poor AOA estimation accuracy. On the other hand, long baseline in-
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terferometers provide high accuracy AOA estimates but are ambiguous. A number of
contemporary ambiguity resolution algorithms are presented and the estimation per-
formance and computational complexity of each algorithm is compared in a consistent
manner. At the conclusion of this chapter, some practical considerations will be dis-
cussed, including how to apply interferometry to estimate the AOA of multiple signals
that are simultaneously illuminating the antenna array and how to obtain a 360◦ field-
of-view.

In Chapter 4, an alternative implementation of an interferometer using a second-order
difference array (SODA) is presented. It will be shown that the SODA interferometer
allows unambiguous AOA estimation to be performed using a sparse array geometry
in a computationally efficient manner. This chapter will also show that the SODA in-
terferometer can be used to cue the conventional ambiguity resolution algorithms to
reduce the computational time of the conventional algorithms while maintaining high
accuracy performance. The SODA interferometer, and SODA-cued algorithms such as
the SODA-Based Inference (SBI) interferometer, are considered ideal candidates for im-
plementation in ES and ELINT systems.

In Chapter 5, the concept of second-order processing is extended to traditional (first-
order) beamforming and array processing methods. This chapter will show that the
second-order processing enabled by the SODA geometry can reduce the number of com-
putations required to unambiguously estimate the AOA compared to the conventional
first-order array processors. The second-order array processing methods will also be
shown to provide comparable AOA estimation performance to the equivalent first-order
methods for very sparse SODA geometries.

In Chapter 6, the necessity for hardware calibration will be discussed. The calibration
process is complicated by the fact that the channel imbalances may be dependent on
the signal’s AOA (which is the parameter to be estimated after calibration). The cal-
ibration process is further complicated by the phase ambiguity problem introduced by
the necessity to use physically large antennas. This chapter will discuss two calibration
methods that can be applied to remove the channel imbalances. Finally, this chapter will
also show that when channel imbalances are present, some of the theoretically efficient
ambiguity resolution algorithms discussed in Chapter 3 can become impractically slow.

In Chapter 7, the Electronic Support (ES) Testbed will be presented. The ES Testbed
is a multi-channel digital receiver system developed to experimentally validate ES al-
gorithms, including AOA estimation. In this chapter, the hardware architecture, data
encoding and basic data processing is presented.

In Chapter 8, the experiments conducted using the ES Testbed (Chapter 7) to collect
real-world data will be discussed. The AOA estimation algorithms (Chapter 3 - Chap-
ter 5) and calibration algorithms (Chapter 6) will be applied to the collected data to
experimentally validate their performance.

Finally, this thesis will be concluded in Chapter 9. The key findings of this thesis and the
major contributions of this research will be summarised. This chapter will also identify
areas that may warrant further research.
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1.6 Original Contributions

There are a number of areas which the author believes this thesis makes an original
contribution:

1. In Chapter 3, a number of contemporary ambiguity resolution algorithms for long
baseline interferometry are collated and described in a consistent notation. The
AOA estimation performance of each algorithm is compared against the Cramér-
Rao Lower Bound using a consistent set of simulation parameters. To the knowl-
edge of the author, such a comparison has not been published in any other work.

2. A significant portion of this thesis is dedicated to the application of second-order
analysis to derive an interpolated virtual array for unambiguous AOA estimation.
While the use of second-order array geometries has been considered before, the
application of the so-called SODA interferometer in the ES context to resolve
phase ambiguities resulting from physically large wideband antennas has not been
considered before. Furthermore, in Section 4.5.2, the adaptation of the SODA in-
terferometer to slightly non-linear array geometries, and the extent of non-linearity
that can be tolerated, has not yet been studied. This analysis is particularly useful
for practical installations where conformal mounting may be required.

3. In Chapter 5, second-order array processing methods are considered. While similar
virtual arrays have been previously considered in the array processing literature,
to the knowledge of the author, the generation of the virtual array using a SODA
geometry and its practical application for radar intercept receivers in a computa-
tionally fast manner has not been considered before.

4. In Chapter 6, the application of second-order analysis to derive a simple unam-
biguous calibration method for SODA interferometry and other SODA-related
algorithms is also an original contribution. This contribution is particularly im-
portant as it allows the SODA-based algorithms to be implemented in hardware
in a practical manner while retaining a computationally fast performance.

5. Finally, in Chapter 8, the results of field experiments are presented to experi-
mentally validate all of the theoretical AOA estimation algorithms and calibration
methods discussed in this thesis. In particular, the experimental verification of the
SODA interferometer, SBI interferometer and second-order array processors and
their comparison against the conventional methods is another original contribu-
tion. This contribution consists of conducting the field experiments, analysing the
collected data and applying the theoretical algorithms to the experimental data.



Chapter 2

Contemporary Direction Finding
Techniques

Direction finding systems have been in development since David Edward Hughes and
Heinrich Hertz first conducted tests on radio transmissions in the late 1800s [4, 5]. In
this chapter, some of the contemporary direction finding methods that are suitable for
implementation in microwave radar intercept receivers are discussed.

2.1 Spinning Antenna

One of the first direction finders is a mechanically spinning antenna system where a
highly directional antenna is physically rotated in azimuth (and elevation) to search for
radar signals. The AOA of a radar intercept is simply the angle at which the spinning
antenna is physically directed when the intercept is detected [5, 6, 9]. Modern spinning
antenna systems have been able to achieve AOA estimation accuracies to about one-
tenth of the antenna beamwidth [10] (typically of the order of 1◦ − 5◦ RMS).

Platform 
with Radar

Platform with 
Radar Intercept 

Receiver

Spinning
Radar 
Signal

Figure 2.1: A mechanical spinning antenna direction finding system.

Spinning antenna systems are simple to understand, cheap to implement, and remain
highly prevalent in modern electronic surveillance systems. Spinning antennas have an
advantage in that their directional antennas inherently provide some directional isolation
and hence are able to obtain good quality collections of a single signal when multiple
radars are simultaneously transmitting from different azimuths. However, this is also

13
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a disadvantage since multiple radar signals from different azimuths cannot be received
simultaneously.

In order to successfully intercept a radar signal, the radar intercept receiver’s spinning
antenna and the radar’s transmitting antenna (which may also be spinning) must be
directly facing each other as illustrated in Figure 2.1. Since the radar is an uncoopera-
tive emitter, this condition may or may not be met. In the jargon of electronic warfare,
the probability of this happening is known as the probability of intercept (POI). Since
the spinning antenna must be physically rotated, some time is required to mechanically
steer the antenna. Contemporary spinning antenna systems typically take a few hun-
dred milliseconds to a few seconds to complete a full 360◦ rotation in azimuth [5]. Since
conventional pulsed radars typically have signal durations and pulse repetition intervals
in the order of microseconds and milliseconds, the relatively slow scan times of the spin-
ning antenna can severely hinder the surveillance performance of these systems. In other
words, there is a high probability that a spinning antenna will not “see” an illuminating
radar because it happens to be “looking away” while the radar is transmitting in the
direction of the intercept receiver as illustrated in Figure 2.2.

Platform 
with Radar

Platform with 
Radar Intercept 

Receiver

Spinning

Radar 
Signal

Figure 2.2: The radar intercept receiver may not “see” an illuminating radar signal if it
happens to be “looking away” from the radar.

The inherently poor POI performance of this technique is one of the main drawbacks
of using spinning antennas for surveillance purposes. Ongoing maintenance associated
with the physical wear-and-tear of mechanical parts also make the spinning antenna
system unattractive.

2.2 Amplitude Comparison

The need to mechanically scan for radar signals can be eliminated by the use of multi-
antenna systems. By simultaneously intercepting the same signal through different
antennas, the AOA of the signal can be determined by exploiting the characteristics
of the antenna beampattern and antenna array geometry. In amplitude comparison
systems, directional antenna beampatterns are exploited such that the ratio of the mea-
sured power levels of each channel are designed to be unique for each AOA over the
entire surveillance range of the system, i.e. the field of view (FOV). By eliminating the
need to mechanically scan for radar signals, the POI performance of these multi-antenna
systems is a significant improvement over spinning antenna systems [1].
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2.2.1 Loop Antennas

The earliest amplitude comparison direction finding system used two orthogonal loop
antennas to provide overlapping sinusoidal beampatterns. In this arrangement, the ratio
of the measured power levels of each channel forms an unique tangential relationship with
the AOA which can be used to estimate the AOA of the signal. An independent “sense”
antenna is required to resolve the 180◦ ambiguity that arises due to the symmetry of the
beampatterns [4]. These systems are also commonly known as Watson-Watt direction
finders and generally have AOA estimation accuracies of a few degrees RMS [4].
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Figure 2.3: Beampattern of two orthogonal loop antennas. The orthogonal sinusoidal beam-
patterns ensure a unique ratio between the measured power levels of each channel for each
AOA.

2.2.2 Adcock Arrays

The early Watson-Watt direction finders were designed to operate in the high frequency
(HF) ranges and so were susceptible to interference from horizontally-polarised skywave
propagations through the ionosphere. To overcome this problem, Adcock arrays us-
ing vertically-polarised, omnidirectional dipole or monopole antennas were later used in
place of loop antennas [4, 6, 9, 32]. Adcock arrays approximate two orthogonal sinu-
soidal beampatterns through a linear combination of the antenna outputs. Furthermore,
the output of all antennas can be combined in a manner to resolve the 180◦ ambiguity
without the need for an independent sense antenna [4]. Adcock arrays are typically
constructed using 4 or 8 antennas and have been known to achieve AOA estimation
accuracies of about 2.5◦ RMS [10].
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Figure 2.4: Beampattern of an Adcock array comprising of 4 dipole antennas with a radius
of λ/5, where λ is the wavelength of the signal of interest. A linear combination of the
omnidirectional beampatterns can produce two orthogonal, near-sinusoidal beampatterns
that are comparable to the beampatterns of two loop antennas.

Watson-Watt direction finding systems using loop antennas and Adcock arrays have
been in use for nearly a hundred years and are still popular today for fixed frequency
applications, such as communications [4]. However, from an electronic surveillance per-
spective, a significant drawback of these systems is that the loop, dipole and monopole
antennas are inherently narrowband devices. Since microwave radar intercept receivers
are intended to operate over a wide frequency range, typically 2− 18 GHz, a single Ad-
cock array will not be sufficient to cover the entire frequency range. While it is possible
to have separate antenna arrays for each frequency, such a solution would not be cost
effective. Furthermore, modern radar signals may have bandwidths greater than the
frequency range that loop, dipole and monopole antennas are capable of receiving.

While other types of omnidirectional antennas exist with wideband characteristics, such
as bi-conical antennas, these antennas tend to be physically large and cannot be mounted
in a fashion that will satisfy the antenna spacing requirements of Adcock arrays. Thus,
while the Watson-Watt technique remains popular for fixed frequency applications, its
use in electronic surveillance is limited.

2.2.3 Cavity-Backed Spiral Antennas

In order to cope with the wide frequency range requirements of radar intercept receivers,
wideband, cavity-backed spiral antennas were later used in amplitude comparison sys-
tems [5, 6, 9, 14]. These antennas have near-sinusoidal, or Gaussian-like, beampatterns
that can be directly exploited in an amplitude comparison system as depicted in Figure
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Figure 2.5: Beampatterns of four cavity-backed spiral antennas with a squint angle of 90◦

between the antennas.

2.5.

Unlike Adcock arrays, where the sinusoidal beampattern is derived from multiple care-
fully placed omnidirectional antennas, cavity-back spiral antennas inherently exhibit a
near sinusoidal, or Gaussian-like, beampattern. As a consequence, these amplitude com-
parison systems do not impose a specific antenna spacing requirement. In other words,
the physical size of the antennas and their exact positions do not affect the AOA estima-
tion performance provided that there is a sufficient physical angular rotation between
the antenna boresights (i.e. squint angles). These systems can often tolerate conformal
mounting on a platform (such as on the wings of an aircraft or around the mast of a
ship) with little impact on the AOA estimation performance. Furthermore, since the
Gaussian-like beampatterns are not symmetric about 180◦, different pairs of antennas
will be used to estimate the AOA at the geometric ambiguities observed in the loop
antenna and Adcock array configurations. Thus, these amplitude comparison systems
do not require an additional sense antenna.

Since amplitude comparison systems rely on comparing power measurements from mul-
tiple antennas, these systems are agnostic to the signal frequency and any phase or
frequency modulation in the radar signal’s waveform and so the amplitude compari-
son technique is inherently a wideband direction finding technique. Furthermore, since
power measuring circuitry are simple and cheap to implement in analogue hardware, the
implementation costs of amplitude comparison systems are relatively low [33, 34]. Due to
their effectiveness against both narrowband and wideband signals, low implementation
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cost and high POI performance, amplitude comparison systems using cavity-backed spi-
ral antennas have been a popular DF technique for microwave radar intercept receivers
for many decades.

Despite their advantages, amplitude comparison systems have two significant disadvan-
tages. Firstly, the power of the intercepted signal is one of the least reliable parameters
that can be estimated when the signal is corrupted by receiver noise and so the angular
accuracy of these systems is relatively poor. A typical amplitude comparison system
can achieve an AOA estimation accuracy of about 5◦−15◦ RMS [8, 10, 35]. In contrast,
modern phase-based direction finding techniques, such as interferometry, can typically
achieve sub-degree accuracies using the same number of antennas against the same types
of signals [5, 8–10, 16, 36].

Furthermore, amplitude comparison techniques typically measure the signal power in the
time-domain and so are only effective when one signal is illuminating the antenna array.
Traditionally, single-signal scenarios have been a reasonable assumption. However, as
the modern electronic surveillance signal environment becomes increasingly crowded,
the possibility of signal-on-signal environments also becomes increasingly higher. The
effectiveness and reliability of amplitude comparison systems in the modern signal en-
vironment is therefore reduced.

2.3 Frequency-Difference-of-Arrival

Frequency-difference-of-arrival (FDOA) techniques exploit the Doppler effect to esti-
mate the AOA of the intercepted signal. In these systems, one antenna is physically
rotated around a reference antenna. The circular motion of the moving antenna causes
a sinusoidal Doppler shift relative to the frequency measured by the reference antenna.
The angle at which the Doppler shift goes from positive to negative is the AOA of the
signal. In practical systems, the rotating antenna can be replaced by a circular array of
antennas that are sequentially switched into the receiver [4, 6]. FDOA direction finding
systems have been known to achieve angular accuracies of about 3◦ RMS [10].
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Figure 2.6: A FDOA direction finding array comprising of K antennas.

A significant disadvantage of the FDOA technique is that these systems require the signal
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to illuminate the antenna array over a long interval (typically in the order of milliseconds)
to allow the Doppler frequency shift to be measured. Since many conventional radars
transmit short duration pulses (in the order of microseconds), the FDOA technique will
not be effective against these radar signals.

2.4 Time-Difference-of-Arrival

Time-difference-of-arrival (TDOA) techniques exploit the propagation delay between
two spatially separated antennas to estimate the AOA of the signal. Since the separa-
tion between the antennas is known and the propagation speed of electromagnetic waves
is constant, the delay between the times that each channel receives the signal can be
used to estimate the AOA of the intercept [4, 5].
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Figure 2.7: A signal incident upon a pair of spatially separated antennas must travel a
further distance to reach the second antenna after arriving at the first antenna.

There are two common methods for measuring the propagation delay. The first is to
measure the difference between the time-of-arrival (TOA) of the pulses measured by each
channel. The TOA measurement may be obtained directly in hardware using time-to-
digital converter (TDC) devices [37, 38] or alternatively calculated from digital samples
representing the signal using parameter estimation methods. The second method is to
correlate the outputs of the two channels in the time-domain [39]. This method generally
performs better than the TOA method since it makes use of the entire signal duration
as opposed to a single instant in time. However, this performance improvement comes
at the expense of increased computation.

The accuracy of TDOA systems generally depends on the accuracy and precision of the
propagation delay estimation and the length of the antenna separation. The accuracy
of the propagation delay estimation depends on the time delay estimation algorithm
and the signal and receiver characteristics, such as the signal duration and signal-to-
noise ratio (SNR), while the precision of the propagation delay estimate depends on the
timing resolution of the digital samples. In general, for an antenna separation of tens
of metres, good AOA accuracy, say less than 1◦ RMS, will require the accuracy and
precision of the propagation delay estimates to be in the order hundreds of picoseconds.
Shorter baselines will further reduce the accuracy and precision requirement to tens of
picoseconds.

The precision requirement of TDOA systems can be achieved through the use of modern
high precision TDCs which can offer timing resolutions below 100 ps [38]. Alternatively,
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high sample rate analogue-to-digital converter (ADC) devices capable of digitising 12.5
GSPS or more have also become available [40]. This sample rate corresponds to a timing
resolution of 80 ps, which may be further improved with interpolation.

TDOA direction finders are agnostic to the signal waveform and so work effectively on
both narrowband and wideband signals. However, these systems are only capable of
processing one signal at a time and so are prone to errors when multiple signals are
simultaneously illuminating the radar intercept receiver. Furthermore, while TDOA
direction finders work well against conventional, pulsed radar signals they do not work
effectively against continuous-wave (CW) signals. Since CW signals do not have a well-
defined start time, TOA estimation cannot be performed. Furthermore, CW signals
are generally periodic and so correlation-based time delay estimation methods may be
ambiguous.

2.5 Interferometry

An alternative approach to measuring the propagation time delay between two receivers
is to measure the equivalent propagation phase delay between the measured signals of
each channel. For narrowband signals, the measured phase delay can be directly trans-
lated to the equivalent propagation time delay, which can then be used to estimate the
AOA of the signal. This technique is sometimes known as phase-difference-of-arrival
(PDOA), but is more commonly known as interferometry [5, 9].

One advantage of interferometry is that very accurate phase measurements can be ob-
tained with digital hardware at moderate sampling rates and so high accuracy AOA
estimates can be obtained with shorter baselines and without the demanding timing
constraints required by TDOA systems. Modern digital interferometers can typically
achieve sub-degree accuracies [5, 8–10, 16, 36]. Furthermore, with some preprocessing,
interferometers are able to accurately estimate the AOA of multiple signals provided
that the signals are sufficiently separated in frequency.

The performance of interferometers can be improved by using longer baselines. How-
ever, due to the circular nature of phase measurements, the AOA estimation is only
unambiguous for antenna separations which are less than one-half of the wavelength of
the highest frequency of interest. This ambiguity problem has been extensively studied
in the literature and can be overcome by combining interferometers with other indepen-
dent AOA estimation methods [35, 41, 42] or by using multiple long baselines [5, 6, 8, 9].

Conventional interferometers often assume a narrowband signal and so are generally
narrowband techniques. However, it is also possible to estimate the AOA of certain
wideband signals using interferometry through some additional processing to reduce the
bandwidth of the signal [43, 44].

2.6 Beamforming and Array Processing

Beamforming and array processing techniques coherently exploit the propagation delays
between the elements of an antenna array to estimate the AOA of the signal. Since the
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propagation delays are a function of the AOA, array processors attempt to estimate the
AOA by performing an exhaustive search to find the AOA with corresponding propa-
gation delays that best match the measured propagation delays. In principle, when the
propagation delays corresponding to the signal’s AOA are used, the receiver outputs can
be brought “in phase” with each other so that the signal components will coherently
sum (while the uncorrelated noise components cancel) to produce a strong array output.
On the other hand, when the propagation delays corresponding to an incorrect AOA is
used, the receiver outputs will not coherently sum and so will produce a weaker array
output [2, 45].
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Figure 2.8: Array processors use AOA-dependent propagation time or phase delays to co-
herently sum the array output.

The process of searching through all of the possible AOAs is the electronic equivalent
to a mechanically scanning directional antenna. The electronic scanning capabilities of
array processors offer much greater flexibility and higher AOA estimation performance
than their mechanical counterparts. Furthermore, while traditional array processors of-
ten assume a narrowband signal, array processors can also be developed for wideband
signals [43, 45, 46].

Beamforming and array processing techniques have long been considered the epitome of
detection and AOA estimation techniques. These algorithms offer significant processing
gains including:

• Array Gain - The gain of an array processor is achieved by virtue of a coherent
summation of multiple antenna outputs. In general, a K-antenna array will have
have a gain factor of K. This means that an additional 3 dB of signal-to-noise
ratio (SNR) can be obtained each time the number of antennas is doubled.

• Multiple Signals - The signal waveform from multiple spatially separated signals
simultaneously illuminating the antenna array can be individually localised and
characterised. In general, a K-antenna array can estimate the AOA of up to K−1
spatially separated signals.

• Interference Mitigation - Interferences, such as jammers, own-ship emissions,
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or communications signals, can be mitigated to improve the interception of the
signals of interest.

• Flexible Scheduling - Electronic scanning allows sophisticated search patterns
to be implemented that can be dynamically adapted to the operating environment.
Electronic scanning allows the search pattern to focus on particular bearings of
interest or at bearings that have previously intercepted a signal before. This also
allows the intercept receiver to better allocate its resources to perform other tasks.

Despite their many advantages, array processors have a significant disadvantage in that
they are computationally intensive algorithms. For each intercept, an array proces-
sor must search through all the possible AOA that the array geometry allows. For each
AOA, the antenna outputs are weighted and summed to test for the presence of a signal.
Depending on the search resolution, this process can amount to a significant number of
computations.

Furthermore, in order to enhance the signal waveform through coherent summation, the
digital samples from each channel must be made available to a central processor to per-
form coherent processing. For a large number of channels and/or high data rates, this
presents a significant amount of data that needs to be transferred around the system.
While distributed processing and data reduction techniques can be applied at intermedi-
ate stages to reduce the data rate, in general, the final data rate is still significantly high
and the corresponding latency of such data transfers can severely hinder the surveillance
performance of the system. However, note that if the system is only required to per-
form AOA estimation, the data transfer problem can be alleviated by only transferring
a single value representing the estimated propagation time delay or phase delay of each
channel to the central processor instead of the entire sequence of digital samples.

2.7 Summary

In this chapter, a number of contemporary direction finding techniques that are rele-
vant to microwave radar intercept receivers were discussed. The spinning antenna is
the simplest of all direction finding techniques, but has a relatively coarse AOA estima-
tion performance and poor POI performance. However, given their low implementation
costs, spinning antennas are still commonly used today, either in their own right as the
primary direction finding system or as a secondary backup system.

Amplitude comparison systems using cavity-backed spiral antennas have traditionally
been used as a low-cost method to perform reliable, but low accuracy, AOA estimation
with a high POI performance. However, in the modern ES environment, there has been
a trend for modern low probability of intercept (LPI) radar signals to transmit signals
at lower power with longer durations. This trend, combined with a growing number of
radar emitters in a typical operating environment, renders amplitude comparison direc-
tion finders ineffective in the modern and future ES environment.

FDOA systems are effective against narrowband signals that are present for long dura-
tions and are particularly effective against modern LPI radars which exploit long du-
ration signals. However, they are not effective against traditional short duration radar
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signals, which are still commonly encountered in the modern ES environment.

TDOA systems can exploit all types of radar signals including narrowband and wide-
band signals, and short and long duration signals. However, TDOA systems require
long antenna baselines and very accurate and precise timing resolutions for good AOA
estimation performance. Due to the physical limitations of a platform (e.g. an aircraft
or ship), the available space for mounting antennas may be limited. Hardware with good
timing resolutions may also be prohibitively expensive. Furthermore, TDOA systems
are not able to estimate the AOA of multiple signals simultaneously illuminating the
array.

On the other hand, interferometers offer high speed and high accuracy AOA estimation
without the drawbacks of TDOA systems. That is, interferometers do not require very
long baselines or very accurate timing resolutions. Furthermore, interferometers are
able to accurately estimate the AOA of multiple signals simultaneously illuminating the
antenna array provided that the signals are at different frequencies. However, a draw-
back is that conventional interferometry assumes a narrowband signal model and so is
not effective against wideband signals. However, as discussed in Section 1.4.4, many of
the modern LPI radar signals can be considered as a sequence of narrowband signals.
Furthermore, it is possible to construct specific interferometers that can directly exploit
wideband signals, such as chirp signals. Since interferometers are able to achieve all of
the design objectives of ES and ELINT systems outlined in Section 1.4.3, this thesis
proposes that interferometry provides the best balance between the AOA estimation
performance and the computation time of the algorithm and so is an ideal candidate for
implementation in ES and ELINT systems.

Finally, array processing techniques are considered the epitome of detection and AOA
estimation techniques since they can offer a number of significant advantages, including
statistically optimal AOA estimation of simultaneous signals and SNR improvement of
very weak signals. Due to these advantages, many applications use array processing
techniques for the joint detection and AOA estimation of signals. However, array pro-
cessing techniques are computationally intensive algorithms and their use to enhance
the signal waveform through coherent summation requires very high data transfer rates.
Since this thesis is only concerned with the AOA estimation of post-detected signals,
the signal enhancement and detection aspects of the array processing is not relevant for
thesis. Furthermore, since interferometry can also provide statistically optimal AOA es-
timation, and slightly sub-optimal implementations are many orders of magnitude faster
than array processing algorithms, interferometry is arguably a more suitable AOA es-
timation algorithm for near-real time tactical ES systems. However, array processing
methods may still be desired for ELINT systems when the AOA accuracy is more im-
portant than the computational speed of the algorithm.
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Chapter 3

Interferometry

3.1 Introduction

Interferometry exploits the propagation phase delay between two spatially separated
antennas to estimate the AOA of a signal. The principles of interferometry have been
well established since the early 1900’s. Early interferometers were analogue systems
designed to operate at high frequency (HF) bands against signals with relatively small
bandwidths. Due to the cost and complexities of implementing phase-coherent, multi-
channel analogue receivers at microwave frequencies, analogue interferometers were pro-
hibitively expensive for wide scale implementation in ES systems on military platforms.
As a result, analogue interferometers were often limited to specialised high-end applica-
tions, such as ELINT systems, where the requirements for high accuracy AOA estimation
justified the implementation cost.

In recent decades, the advent of high speed analogue-to-digital converters (ADCs), field
programmable gate arrays (FPGAs) and digital computing has led to the development of
high fidelity digital receivers. With modern technologies, the implementation of phase-
coherent, multi-channel digital receivers has become increasingly more cost effective.
Furthermore, the flexibility of digital computing has allowed the implementation of
higher performance algorithms compared to the traditional analogue systems. In recent
years, there has been a rising interest in digital interferometers to provide fast and ac-
curate AOA estimation for military ES and ELINT systems.

In this chapter, the principles of interferometry and some of the contemporary imple-
mentations of digital interferometers will be presented. Contemporary digital techniques
to resolve the ambiguities of multiple long baseline interferometers will also be presented.

3.2 Signal Model

In this section, the signal model that will be used to describe the intercepted radar
signal from multiple spatially separated antennas will be established. While most of
the algorithms presented can be generalised to any array geometry, this thesis shall
concentrate on linear arrays.
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Figure 3.1: Relationship between the antenna separation and propagation delay of the signal
arrival for a linear array.

3.2.1 Propagation Delays

Consider a linear array of antennas as depicted in Figure 3.1. In interferometry and array
processing, it is conventional to define the antenna positions in Cartesian coordinates.
Let the k-th and l-th antennas be located at position vectors, uk and ul, where

uk =

 xk
yk
zk

 and ul =

 xl
yl
zl

 (3.1)

are vector coordinates which specify two points in Cartesian space and x, y and z are
the scalar values of the antenna position along the x-axis, y-axis and z-axis respectively.
The distance vector between these two points can be written as

dkl =

 dkl,x
dkl,y
dkl,z

 =

 xk − xl
yk − yl
zk − zl

 . (3.2)

Since radar intercept receivers are intended to provide early warning of the presence
of radars, the radar intercept receiver is generally operated at large distances from the
radar. The radar signal arriving at the radar intercept receiver’s antenna array can
therefore be reasonably approximated as a uniform plane wave. Due to the spatial sep-
aration between the antennas, the signal wavefront arrives at each antenna at slightly
different times. These propagation delays are a function of the array geometry and the
AOA of the signal.

It is natural to define the AOA of an intercept in terms of geographical coordinates
such that the AOA of the signal is defined in terms of an azimuth component, θ, and
elevation component, φ, as depicted in Figure 3.2. The geographical coordinates can be
converted into Cartesian coordinates through the following transformation

uθ,φ =

 sin θ cosφ
cos θ cosφ

sinφ

 . (3.3)
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In the geographical coordinate system, the azimuth angles are measured clockwise from
the y-axis and the elevation angle is measured from the xy-plane towards the z-axis as
depicted in Figure 3.2. This is in contrast to the spherical polar coordinates commonly
used in mathematics where the azimuth angles are measured counter-clockwise from the
x-axis of the equivalent Cartesian representation and the elevation angle is measured
from the z-axis towards the xy-plane as depicted in Figure 3.3.

Using the geographical coordinate system, the additional distance that the signal wave-
front must travel from the l-th antenna to the k-th antenna can then be expressed as

d̄kl = uTθ,φdkl = dkl,x sin θ cosφ+ dkl,y cos θ cosφ+ dkl,z sinφ, (3.4)

where the superscript T denotes the vector transpose operation. The corresponding
propagation delay is then given by

τkl =
d̄kl
c

=
dkl,x
c

sin θ cosφ+
dkl,y
c

cos θ cosφ+
dkl,z
c

sinφ, (3.5)

where c is the speed of light. For mathematical convenience, it is generally assumed that
the origin of the coordinate system coincides with the position of an arbitrarily chosen
reference antenna – typically the first antenna. Another common assumption is that the
elevation angle of the AOA is often assumed to be zero, i.e. φ = 0◦, and so the radar
signal and radar intercept receiver both lie entirely in the xy-plane. Furthermore, for
a linear array, the Cartesian coordinate system can be arbitrarily arranged so that the
antennas all lie on the x-axis, as depicted in Figure 3.1, and so the propagation delay
between the k-th and l-th antennas reduces to

τkl =
dkl
c

sin θ, (3.6)

where dkl,y = 0, dkl,z = 0 and φ = 0◦. In the above expression, the subscript x is omitted
from dkl,x for notational brevity.
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3.2.2 Narrowband Signal Model

Traditional narrowband radar signals can be modelled as a single tone, s(t), as a function
of time, t, as follows

s(t) = Aej(2πft+ϕ), (3.7)

where A, f and ϕ are the signal’s peak amplitude, carrier frequency and initial phase
respectively. For practical systems, the ideal signal is corrupted by an additive noise
component, ε(t). For a multi-channel system with K antennas, the signal of the k-th
antenna with respect to the l-th antenna is given by

xkl(t) = s(t+ τkl) + εk(t) = Aej(2πf(t+τkl)+ϕ) + εk(t), (3.8)

where k = 1, 2, . . . ,K and τkl is the propagation time for the signal to reach the k-th
antenna after arriving at the l-th antenna as defined in (3.6).

The receiver noise in the k-th channel, εk(t) ∼ N (0, σ2
εk

), is modelled as an independent
and identically distributed, complex-valued, zero mean, white Gaussian random variable
with variance, σ2

εk
. The receiver noise is assumed to be independent for each receiver.

The real and imaginary components of εk(t) have an equal variance that is given by
σ2
k = σ2

εk
/2. It is generally reasonable to assume that the receiver noise power in

each channel is the same and so the complex receiver noise power can be written more
generally as σ2

ε = σ2
ε1 = σ2

ε2 = · · · = σ2
εK

, and the corresponding real and imaginary
noise power can be written as σ2 = σ2

1 = σ2
2 = · · ·σ2

K . The signal-to-noise ratio (SNR)
of the signal, η, can then be defined as

η =
A2

σ2
ε

=
A2

2σ2
. (3.9)

For a narrowband signal and a linear array geometry, the propagation time can be
readily converted into an equivalent phase as follows,

ψkl = 2πfτkl =
2πfdkl
c

sin θ. (3.10)

For a multi-channel digital receiver, the digital sampling of the signal occurs at regular,
discrete time intervals, ts. For a collection of N samples, the n-th digital sample of the
narrowband signal model can be re-written as

xkl[n] = Aej(2πfnts+ϕ+ψkl) + εk[n], (3.11)

which corresponds to the time instance, t = nts, and n = 0, 1, . . . , N − 1.

It should be noted that the propagation time, τkl, is actually a time advance for positive
θ and a time delay for negative θ. Similarly, the propagation phase, ψkl, is a phase
advance for positive θ and a phase delay for negative θ. However, for notational brevity,
this thesis will generally refer to τkl and ψkl as the propagation time delay and phase
delay respectively.
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3.3 Interferometry

By estimating the frequency of the signal and the phase delay between the outputs of
two antennas, the AOA of the signal can be estimated by re-arranging (3.10) to give

θ̂ = arcsin

(
cψ̂

2πfd

)
, (3.12)

where the accentˆdenotes an estimated parameter. Since only two antennas are consid-
ered, the subscripts for ψ and d have been omitted from (3.12) for notational brevity.

The antenna separation, d, is often referred to as the baseline of the interferometer.
When discussing the performance of AOA estimation algorithms, it is often convenient
to use the term broadside to indicate a signal arriving from an AOA of θ = 0◦ (i.e.
perpendicular to the interferometer baseline) and the term endfire to indicate a signal
arriving from θ = ±90◦ (i.e. parallel to the interferometer baseline).

The expression (3.12) allows the AOA of a single signal with a phase delay of ψ and a
frequency f to be estimated. However, as will be discussed in Section 3.4.1, the AOA
of multiple signals can also be estimated by carefully isolating the phase delay and fre-
quency of each signal in the frequency domain.

In ES applications, the radar intercept receiver usually does not know the frequency
of the intercepted signal and so in practice the frequency must be estimated from the
intercepted signal. However, the frequency estimation problem is considered beyond the
scope of this thesis and so this thesis shall assume that the frequency estimation errors
are negligible. Due to the frequency dependence of the interferometer, this thesis shall
explicitly write all expressions in terms of the signal frequency, f , rather than the signal
wavelength, λ, which is more commonly used in the AOA estimation literature. The
signal frequency and wavelength are related by

λ =
c

f
. (3.13)

3.3.1 Relationship to TDOA

Interferometry is closely related to the time-difference-of-arrival (TDOA) technique.
While the TDOA technique directly estimates the propagation delay through correlation
or measurements of the time-of-arrival (TOA) of the pulses in each channel, interferom-
eters can be considered to be indirectly estimating the propagation delay through the
equivalent phase delay as follows [47],

τ̂ =
ψ̂

2πf
. (3.14)

The AOA of the signal can then be estimated as

θ̂ = arcsin

(
cτ̂

d

)
. (3.15)

The advantage of interferometry is that accurate phase delay measurements can be
obtained with less demanding hardware than direct TDOA techniques. Furthermore,
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while direct TDOA methods can only estimate the AOA of one signal at a time, inter-
ferometers can have the ability to estimate the AOA of multiple signals simultaneously
provided that they have different frequencies.

3.4 AOA Estimation in the Presence of Receiver Noise

The effect of receiver noise is an important consideration in all practical electronic sys-
tems. Unlike systematic errors, which can be mitigated through calibration (Chapter
6), receiver noise errors cannot be eliminated but their effects can be minimised through
the careful selection of algorithms.

In interferometry, the receiver noise errors affect the AOA estimation by manifesting
as random errors in the frequency and phase delay estimation. However, as stated in
Section 1.4.4, this thesis shall assume that the frequency estimation errors are negligible.
This section will therefore assume that receiver noise errors manifest entirely as phase
delay estimation errors.

3.4.1 Maximum Likelihood Estimate

The maximum likelihood estimate (MLE) of the AOA using two spatially separated
antennas, θ̂MLE, is derived in Appendix A.2.2 and can be shown to be

θ̂MLE = arcsin

(
cψ̂MLE

2πfd

)
, (3.16)

where ψ̂MLE is the maximum likelihood estimate of the phase delay between the two
antennas and can be estimated as

ψ̂MLE = ∠X2(f)X∗1 (f), (3.17)

and X1(f) =
∑N−1

n=0 x1[n]e−j2πfnts and X2(f) =
∑N−1

n=0 x2[n]e−j2πfnts are the Fourier
coefficients of each channel at the signal frequency, f .

A common implementation of this method is to perform a Discrete Fourier Transform
(DFT) on the output of each channel and then compute the difference between the
phases of the Fourier coefficients corresponding to the signal frequency. Since this im-
plementation is based on the DFT algorithm, the performance of the AOA estimation
inherits all of the advantages and disadvantages of the DFT algorithm. That is, the
maximum likelihood estimator for AOA estimation is expected to perform well at low
SNR. Furthermore, since the Fourier transform is essentially a frequency channeliser,
the phase delay corresponding to signals from different frequencies can be isolated to
the relevant frequency bins. Thus, provided that two or more signals are sufficiently
separated in frequency such that their signal energy falls into different frequency bins,
the corresponding phase delay for each signal can be independently estimated. This pro-
vides the interferometer with the ability to estimate the AOA of multiple narrowband
signals that may be simultaneously illuminating the antenna array.

On the other hand, this implementation also inherits the drawbacks of the DFT al-
gorithm. In particular, the DFT implementation is prone to scalloping losses due to
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spectral leakage [48]. If the signal frequency does not fall exactly on a single DFT fre-
quency bin, some of the signal energy will leak into the adjacent frequency bins resulting
in a reduced signal power in the main frequency bin of interest. In the worst case, the
signal frequency will lie exactly halfway between two frequency bins which causes the ef-
fective SNR of the signal to be attenuated by 3.92 dB (assuming no windowing function
has been applied). The effects of the scalloping loss can be reduced by zero-padding the
signal prior to the DFT [49]. If the signal data length is doubled through zero-padding,
the scalloping loss can be reduced to 0.91 dB. However, this reduction in the scalloping
loss comes at the expense of requiring a DFT length that is twice the signal data length.
While windowing functions may offer some improvement, they may not be able to com-
pletely eliminate the spectral leakage problem [8, 49, 50]. Furthermore, interpolation
methods using multiple DFT bins [51–53] and spectral optimisation algorithms [2, 8] can
also reduce, or even eliminate, the effects of scalloping losses. However, this improve-
ment comes at the expense of greater computational complexity. The use of windowing
functions, interpolation and spectral optimisation algorithms is considered beyond the
intended scope of this discussion. For the purposes of AOA estimation, it is sufficient
to say that the DFT implementation can achieve good performance when the signal
frequency lies exactly on a single DFT frequency bin but can suffer some performance
degradation when the signal frequency lies between two frequency bins. Since the DFT
can be efficiently implemented using Fast Fourier Transform (FFT) algorithms, then
using “big-Oh” notation [54, 55], the FFT implementation of the maximum likelihood
estimator without further optimisation has an algorithm complexity of O(2N log2N+1),
where N is the number of digital samples.

Since phase-based frequency estimators do not suffer from scalloping losses, an alterna-
tive implementation of the maximum likelihood estimator is to first estimate the fre-
quency of the signal using a phase-based frequency estimator and then directly calculate
the Fourier coefficients at the estimated frequency. This implementation is significantly
faster with an algorithm complexity of O(3N + 1). However, phase-based frequency
estimators can only estimate the frequency of one signal and so this technique is not
effective when multiple signals are simultaneously illuminating the antenna array. Fur-
thermore, phase-based frequency estimators only work well for signals with high SNR,
typically above 10 dB [15, 25–31]. At lower SNRs, the frequency estimation errors are
not negligible and so this implementation will introduce large errors to the phase delay
estimation.

3.4.2 Time-Domain Methods

At high SNR (typically above 10 dB), the receiver noise in each channel may be modelled
as an additive phase noise [25]. Under this assumption, the narrowband signal model
may be written as

xkl[n] ≈ Aej(2πfnts+ϕ+ψkl+zk[n]), (3.18)

where the additive receiver noise, εk[n], has been converted to an equivalent phase noise,
zk[n], which has a variance, σ2

zk
,

σ2
zk

=
1

2η
. (3.19)
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Using this signal model, two time-domain phase delay estimators, denoted TD1 and
TD2 respectively, can be defined as follows [15, 26, 27]

ψ̂TD1 =
1

N

N−1∑
n=0

∠x2[n]x∗1[n], (3.20)

ψ̂TD2 = ∠
1

N

N−1∑
n=0

x2[n]x∗1[n]. (3.21)

The corresponding interferometric AOA estimators are

θ̂TD1 = arcsin

(
cψ̂TD1

2πfd

)
, (3.22)

θ̂TD2 = arcsin

(
cψ̂TD2

2πfd

)
. (3.23)

The first time-domain method, TD1, is an average of the instantaneous phase delay an-
gles measured between the two channels. In contrast, the second time-domain method,
TD2, computes a single phase delay angle from the average of the complex phasors.
While both methods have an algorithm complexity of O(N + 1), the TD2 estimator is
generally preferred since it is more robust against phase wrapping errors and is also com-
putationally more efficient since it only requires one arctangent operation. Unlike the
FFT-based MLE implementation, these methods will only estimate the correct phase
delay when there is one narrowband signal present.

3.4.3 Cramér-Rao Lower Bound for a Two-Antenna Interferometer

The Cramér-Rao Lower Bound (CRLB) specifies the minimum variance that can be
obtained for any unbiased estimator and is often used as a benchmark for optimal per-
formance [2, 45, 56]. Estimators that achieve the CRLB are considered to be optimal
or statistically efficient. Estimators that achieve the CRLB at high SNR are said to
be asymptotically efficient. The performance of the AOA estimators can be evaluated
by comparing their mean-square-error (MSE) against the CRLB, or equivalently, by
comparing the root-mean-square (RMS) error against the square-root of the CRLB, or
root-CRLB.

The CRLB for AOA estimation using a two-antenna array is derived in Appendix A.3.2
as follows

CRLB(θ) = CRLB(ψ) ·
(

c

2πfd cos θ

)2

=
1

ηN
·
(

c

2πfd cos θ

)2

, (3.24)

where CRLB(ψ) is the CRLB of the phase delay estimate and is given by

CRLB(ψ) =
1

ηN
. (3.25)
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3.4.4 Performance Comparison

In this section, the AOA estimation performance of the two-antenna interferometers
are evaluated as a function of the signal’s SNR and AOA respectively. The RMS error
performance of each algorithm is compared against the root-CRLB using Monte Carlo
simulations with Q = 10, 000 receiver noise realisations to compute the RMS error of
the angle estimate, θ̂RMS, as follows,

θ̂RMS =

√√√√ 1

Q
Q∑
q=1

(
θ̂q − θ

)2
, (3.26)

where q = 1, 2, . . . ,Q, θ̂q represents the AOA estimate of the q-th receiver noise realisa-
tion and θ represents the true AOA of the signal. In these simulations, the parameters
are assumed to be θ = 23.42◦, f = 18 GHz, d = λ/2 = 8.3333 mm, N = 2048 samples,
and ts = 750 ps. It is assumed that the signal frequency has been estimated with negli-
gible estimation error.

Figure 3.4 shows the RMS error performance of each algorithm as a function of SNR. In
this simulation, the FFT-based MLE utilises a 2048-point FFT which ensures that the
signal frequency lies exactly on a FFT frequency bin. This simulation shows that all of
the interferometer implementations are asymptotically efficient in the sense that their
RMS errors achieve the root-CRLB at high SNR. The SNR thresholds for the FFT-
based MLE (which uses a FFT-based frequency estimator), phase-based MLE (which
uses a phase-based frequency estimator) and the two time-domain estimators are −18
dB, −11 dB, 8 dB and 8 dB respectively.

This simulation verifies the following:

• The FFT-based MLE has the best performance in the sense that it has the lowest
RMS errors at low SNR. This performance is attributed to the processing gain of
the FFT.

• The phase-based MLE performs worse than the FFT-based MLE at low SNR due
to its reliance on a phase-based frequency estimator which in turn requires a high
SNR signal.

• The phase-based MLE generally performs better than the two time-domain meth-
ods due to the processing gain of the frequency channelisation it performs while
estimating the AOA.

• The TD2 estimator generally has a lower RMS error than the TD1 estimator
because it is more robust against phase wrapping errors at low SNR.

Figure 3.5 repeats the above simulation with the FFT-based MLE utilising a 2050-
point FFT. In this example, the signal frequency lies exactly halfway between two FFT
frequency bins and so the FFT-based MLE no longer achieves the root-CRLB. This
performance degradation is attributed to the scalloping losses that arise due to spectral
leakage and is consistent with the expected performance of a signal whose SNR is at-
tenuated by 3.92 dB. While the use of a larger FFT with zero padding can alleviate the
problem, this example highlights the fact that the FFT-based MLE may not be optimal
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Figure 3.4: Comparison of the RMS errors of an interferometer as a function of SNR.
Simulation parameters: θ = 23.42◦, f = 18 GHz, d = 8.3333 mm, N = 2048 samples, and
ts = 750 ps. A 2048-point FFT was used to calculate the phase delays of the FFT-based
MLE.
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Figure 3.5: Comparison of the RMS errors of an interferometer as a function of SNR.
Simulation parameters: θ = 23.42◦, f = 18 GHz, d = 8.3333 mm, N = 2048 samples, and
ts = 750 ps. A 2050-point FFT was used to calculate the phase delays of the FFT-based
MLE.
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Figure 3.6: Comparison of the RMS errors of an interferometer as a function of AOA.
Simulation parameters: η = 15 dB, f = 18 GHz, d = 8.3333 mm, N = 2048 samples, and
ts = 750 ps. A 2048-point FFT was used to calculate the phase delays of the FFT-based
MLE.

when spectral leakage occurs. The FFT-based MLE will generally require the use of
windowing functions, interpolation methods and/or spectral optimisation methods to
minimise the effects of scalloping losses. Furthermore, this example verifies that the
RMS error performance of the other estimators are not affected by scalloping losses.

Figure 3.6 shows the RMS error performance of each algorithm as a function of AOA. In
this simulation, the SNR is 15 dB and the FFT-based MLE uses a 2048-point to avoid
scalloping losses. All other simulation parameters are set to the same values as the pre-
vious simulations. This figure shows that at 15 dB SNR all of the estimators generally
achieve the root-CRLB but rapidly fail when the magnitude of the AOA exceeds some
threshold. The AOA threshold is ±84◦ for the two MLE and TD2 estimators and ±50◦

for the TD1 estimator. This threshold behaviour is characteristic of interferometers and
is attributed to the circular nature of the phase measurements. The AOA estimation
is more accurate about broadside (i.e. θ = 0◦) and becomes increasingly worse as the
AOA tends towards endfire (i.e. θ = ±90◦). This suggests that beyond a certain AOA
threshold, phase wrapping errors in the phase delay measurements cause large errors in
the AOA estimation. This threshold behaviour limits the practical range of angles that
an algorithm can reliably estimate the AOA below a certain error tolerance. The span of
this angular range is termed the field-of-view (FOV) of the algorithm. In this example,
the two MLE and the TD2 estimators can estimate the AOA below an accuracy of 1◦

RMS with a FOV of 169◦. Similarly, the TD1 estimator has a FOV of 117◦.
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Finally, Figure 3.4 and Figure 3.6 verify that the TD1 estimator is inferior to the TD2
estimator at low SNR and when the AOA of the signal is close to endfire. Since the
TD2 estimator is also faster than the TD1 estimator, the TD2 estimator is generally
preferred if a time-domain AOA estimation method is required.

3.4.5 RMS Error of an Interferometer

When discussing the performance of an algorithm, it is often desirable to have an ana-
lytical expression to describe the RMS error of that algorithm. Due to the complexity of
the mathematical derivation, an exact analytical expression to describe the RMS errors
of a specific implementation of a two-antenna interferometer under all conditions has
thus far been elusive [57–59]. However, since the RMS errors of all four interferometer
implementations have been shown to be asymptotically efficient at high SNR, it is rea-
sonable to approximate the RMS errors of a two-antenna interferometer at high SNR
using the expression for the root-CRLB as follows [5],

δθRMS ≈
1√
ηN
· c

2πfd cos θ
. (3.27)

Note that by recognising that the RMS errors of the phase delay is given by

δψRMS =
1√
ηN

, (3.28)

then first-order differential error analysis techniques can also be applied to (3.12) to
derive the same expression for the RMS error of a two-antenna interferometer [5, 36, 41].

3.5 Long Baseline Interferometry

In this section, it will be shown that the accuracy of the AOA estimation can be sig-
nificantly improved using so-called long baseline interferometers. Inspection of (3.27)
suggests that an interferometer’s AOA estimation accuracy can be improved by one or
more of the following:

• increasing the SNR of the signal,

• increasing the signal duration (and hence number of samples),

• increasing the signal frequency,

• operating closer to broadside (i.e. θ = 0◦), and/or

• increasing the antenna separation.

Since the parameters of the radar signal are beyond the control of the radar intercept
receiver, the first three parameters cannot be changed. Some improvement in the AOA
estimation accuracy can be gained by actively rotating the interferometer baseline to
operate closer to the broadside region. For moving platforms, this can be achieved
by changing the trajectory of the platform, while for stationary platforms, this can be
achieved by using multiple, short baseline interferometers with different orientations
and appropriately switching between the baselines on an intercept-by-intercept basis.
However, these methods will only provide a small improvement in the AOA estimation
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performance and may be impractical to achieve. The most practical method to improve
the AOA estimation performance is to utilise a longer baseline interferometer.

Figure 3.7 shows the unwrapped, unambiguous phase delays for a short baseline (dshort =
λ/2) and a long baseline (dlong = 5λ) interferometer. From (3.27), it is expected that
the RMS errors of the long baseline interferometer will be 10 times lower than the RMS
errors of the short baseline interferometer operating under the same conditions, since

δθRMS,long

δθRMS,short
=

1/5λ

1/0.5λ
=

1

10
. (3.29)

Figure 3.8 shows the peak errors in the AOA estimation for each baseline corresponding
to a peak error of ±5◦ in the phase delay measurement. For the short-baseline inter-
ferometer (i.e. the blue area bounded by the solid line), the peak error in the AOA
estimation is ±1.59◦. For the long-baseline interferometer (i.e. the red area bounded
by the dashed line), the peak error is ±0.159◦. This example verifies that the AOA
estimation errors are reduced by a factor of 10 in the long baseline interferometer.

While long baseline interferometers offer improved AOA estimation performance, they
also introduce an ambiguity problem because the theoretical phase delays can exceed
±π, however, the phase delays can only be measured between [−π, π] due to the circu-
lar nature of phases. Phase delay values that exceed this interval will be aliased back
into the same interval and so leads to ambiguities since an ambiguous phase delay mea-
surement cannot be distinguished from its 2π ambiguity. This effect is known as phase
wrapping.

To further illustrate the relationship between the AOA accuracy and phase ambiguities,
Figure 3.9 shows that an unambiguous AOA estimate is obtained for a signal arriving
from θ = 23.42◦ using a short baseline (dshort = λ/2) interferometer. In this figure,
the AOA estimate is plotted as a triangle with the peak displaying the estimated AOA
and the width of the base reflecting the peak error of ±1.59◦ corresponding to a peak
error of ±5◦ in the phase delay measurement. On the other hand, Figure 3.10 shows
the ambiguous AOA estimates for the same signal using a longer baseline (dlong = 5λ)
interferometer. At the true AOA of θ = 23.42◦, the peak error is reduced to ±0.159◦

corresponding to the same phase delay measurement error. While the long baseline in-
terferometer has a significant performance gain, the ambiguities in the AOA estimation
needs to be resolved for correct AOA estimation.

The ambiguity problem can be described mathematically as follows. Recall that the
phase delay between two antennas is defined as

ψ =
2πfd

c
sin θ. (3.30)

The maximum and minimum values of the phase delay will correspond to θ = ±90◦,
and so the phase delays will be bounded by

− 2πfd

c
≤ ψ ≤ 2πfd

c
. (3.31)

In order to ensure that the unambiguous phase delays and the measured phase delays
maintain a unique relationship, the unambiguous phase delays must lie completely within
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Figure 3.7: Unambiguous phase delays as a function of AOA for a short and long baseline
interferometer. Simulation parameters: f = 18 GHz, λ = 16.67 mm, dshort = λ/2 and
dlong = 5λ.

Figure 3.8: Peak error in the AOA estimation for a short and long baseline interferometer
due to a peak phase error is δψpeak = ±5◦. Simulation parameters: θ = 0◦, f = 18 GHz,
λ = 16.67 mm, dshort = λ/2 and dlong = 5λ.
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Figure 3.9: This plot shows that a short baseline interferometer obtains unambiguous AOA
estimates. However, the estimation errors (as indicated by the widths of the triangles) are
also larger. In this plot, θ = 23.42◦, f = 18 GHz, dshort = λ/2 and the peak phase error is
δψpeak = ±5◦.
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Figure 3.10: This plot shows that a long baseline interferometer has lower estimation errors
(as indicated by the widths of the triangles) but are ambiguous. In this plot, θ = 23.42◦,
f = 18 GHz, dlong = 5λ and the peak phase error is δψpeak = ±5◦.
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the interval [−π, π]. This is only true when the antenna separation is “short” in the
sense that it satisfies the following constraint,

d ≤ c

2f
=
λ

2
. (3.32)

For “long” baselines, where d > λ/2, the unambiguous phase delay, ψ, will exceed the
interval [−π, π] and is given by

ψ = ψ̃ + ρ2π, (3.33)

where ψ̃ ∈ [−π, π] represents the measured, ambiguous phase delay, and ρ is an in-
teger representing the possible ambiguity numbers which correspond to one of the 2π
ambiguities of the phase delay measurements and is bounded by⌈

−fd
c
− ψ̃

2π

⌉
≤ ρ ≤

⌊
fd

c
− ψ̃

2π

⌋
, (3.34)

where b · c and d · e represent the floor and ceiling operations respectively. For a given
phase delay measurement, ψ̃, the complete set of ambiguity numbers, Υ(ψ̃), is written
as

Υ(ψ̃) =

{⌈
−fd
c
− ψ̃

2π

⌉
, . . . ,−2,−1, 0, 1, 2, . . . ,

⌊
fd

c
− ψ̃

2π

⌋}
. (3.35)

The total number of ambiguities, Na
Υ(ψ̃)

, i.e. the number of elements in Υ(ψ̃), is given

by

Na
Υ(ψ̃)

= round

[
2fd

c

]
, (3.36)

where round[ · ] represents the rounding operation.

The corresponding ambiguous AOAs of a long baseline interferometer are given by

θ̂(ρ) = arcsin

(
c(ψ̃ + ρ2π)

2πfd

)
. (3.37)

Ambiguity resolution methods are required to correctly resolve the unambiguous AOA
from all of the ambiguous possibilities.

Example 3.1
Consider a long baseline interferometer with a baseline, dlong = 5λ. The
signal frequency is assumed to be f = 18 GHz and the corresponding wave-
length is λ = 16.67 mm. For an AOA of θ = 23.42◦, (3.30) gives the unam-
biguous phase delay as

ψ = 715.44◦. (3.38)

Due to phase wrapping, the measured, ambiguous phase delay is

ψ̃ = [ψ]2π = −4.56◦. (3.39)

The complete set of ambiguity numbers can then be calculated from (3.35)
as follows

Υ(ψ̃ = −4.56◦) = {−4,−3,−2,−1, 0, 1, 2, 3, 4, 5} . (3.40)
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Figure 3.11: Ambiguous phase delays as a function of AOA for a short and long baseline
interferometer. Simulation parameters: f = 18 GHz, λ = 16.67 mm, dshort = λ/2 and
dlong = 5λ. The black dots represent the ambiguous AOAs that correspond to an ambiguous

phase delay measurement of ψ̃ = −4.56◦.

This set contains a total of Na
Υ(ψ̃)

= 10 possible ambiguities. From (3.37),

the corresponding set of ambiguous AOA estimates are

θ̂(ρ ∈ Υ(ψ̃)) = {−53.37◦,−37.05◦,−23.74◦,−11.69◦, (3.41)

−0.1451◦, 11.39◦, 23.42◦, 36.69◦, 52.89◦, 85.92◦} .(3.42)

Based on a single measured, ambiguous phase delay, ψ̃ = −4.56◦, the radar
intercept receiver cannot determine which of the above ambiguities is the
true AOA of the signal. Figure 3.11 plots this example pictorially.

By virtue of the lower RMS error performance, long baseline interferometers also have
an increased field-of-view (FOV). For a given RMS error tolerance, δθtol, the maximum
positive and negative AOA that can be estimated by an interferometer, ±θmax, can be
approximated by re-arranging (3.27) to give

± θmax ≈ ± arccos

(
1√
ηN
· c

2πfdδθtol

)
. (3.43)

The FOV of an interferometer can therefore be written as

FOV = θmax − θmin ≈ 2 arccos

(
1√
ηN
· c

2πfdδθtol

)
. (3.44)

Figure 3.12 shows the FOV with various RMS error tolerances as a function of the array
aperture. This figure shows that as the array aperture is increased, the FOV rapidly
approaches 180◦.
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Figure 3.12: This plot shows the improvement in FOV for a given maximum error tolerance
as a function of the aperture.

3.6 Ambiguity Resolution Using Independent Methods

The objective of using an independent direction finding method is to obtain an un-
ambiguous AOA estimate that can be used to “select” the correct AOA from the set
of ambiguous AOA estimates from a long baseline interferometer [35, 41, 42, 60]. In
general, the AOA estimates of the independent method are assumed to have a low, or
“coarse”, angular accuracy while the long baseline interferometer has a much higher
angular accuracy. In order to perform ambiguity resolution, the angular accuracy of
the independent method must be accurate enough so that only one of the ambiguous
AOA estimates will be associated with the coarse AOA estimate. As a rule of thumb,
three times the RMS error of the independent coarse method, δθRMS,coarse, should be
less than or equal to one half of the smallest angular separation between the ambiguities,
δθamb,min. That is,

3δθRMS,coarse ≤
δθamb,min

2
, (3.45)

or

δθRMS,coarse ≤
δθamb,min

6
. (3.46)

Due to the nature of arcsine functions, δθamb(ρ) will tend to be smaller about broadside
and larger towards endfire and so the smallest angular separation between the ambigu-
ities can be approximated as

δθamb,min ≈ arcsin

(
c(ψ̃ + 2π)

2πfd

)
− arcsin

(
cψ̃

2πfd

)
≈ c

fd
. (3.47)
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Figure 3.13: Successful ambiguity resolution using an independent method requires that the
coarse AOA estimate has a RMS error that satisfies δθRMS,coarse ≤ δθamb,min/6.

The required accuracy of the independent AOA estimation method can then be written
as

δθRMS,coarse ≤
δθamb,min

6
≈ c

6fd
. (3.48)

As a corollary, given the RMS error of a coarse AOA estimation method, the antenna
separation of a long baseline interferometer should satisfy

d ≤ c

6fδθRMS,coarse
. (3.49)

3.6.1 Amplitude Comparison

Amplitude comparison direction finders have been identified as a suitable contender to
provide the necessary coarse AOA estimate for ambiguity resolution at low microwave
frequencies [35, 41, 42]. In [35], such a system was demonstrated to achieve approxi-
mately 0.65◦ RMS for signals received between 0.5− 2 GHz.

However, amplitude comparison systems are less effective at resolving the ambiguities
at higher frequencies. For a amplitude comparison system with a RMS error of 10◦,
(3.49) suggests that the maximum antenna spacing for the corresponding long baseline
interferometer is 15.9 mm (or about 0.95λ at 18 GHz). Since physically large antennas
that are capable of receiving signals between 2 − 18 GHz generally exceed 4.5λ (at 18
GHz), long baseline interferometers using these antennas will also exceed 4.5λ. Thus, the
amplitude comparison system will not have sufficient accuracy to resolve the ambiguities
of long baseline interferometer at higher frequencies.

3.6.2 Short Baseline

Another method to resolve the ambiguities is to use a short baseline interferometer in
conjunction with a long baseline interferometer [61]. The short baseline interferometer
will provide the unambiguous coarse AOA estimate, while the long baseline interfer-
ometer will provide the ambiguous high accuracy AOA estimates. The simplest imple-
mentation of such a system will require three antennas with a common reference antenna.
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From (3.27) and (3.49), the maximum long baseline interferometer that can be used
with the short baseline interferometer can be shown to be

dlong ≤ dshort ·
π

3
cos θmax

√
ηN, (3.50)

where dshort and dlong are the antenna separations for the short and long baseline inter-
ferometers respectively, η is the SNR, N is the number of samples, and θmax refers to
the maximum AOA to be estimated by the short baseline interferometer. In general,
θmax is limited to the desired FOV of the short baseline interferometer.

If an application requires a very high accuracy such that the coarse AOA estimation
provided by the short baseline interferometer does not have enough accuracy to directly
resolve the ambiguities of the long baseline interferometer then additional auxiliary
antennas may be used to provide intermediate baselines to allow successive ambiguity
resolution. For M interferometer baselines, the dm baseline must satisfy

dm ≤ dm−1 ·
π

3
cos θmax

√
ηN, (3.51)

where m = 2, 3, . . . ,M and d1 ≡ dshort is the unambiguous short baseline interferometer.

Mathematically, this inference-based ambiguity resolution algorithm can be formulated
as described below. Note that since the resolved phase delays and AOA have a unique
one-to-one relationship, it is computationally more efficient to resolve the ambiguous
phase delays rather than the ambiguous AOA estimates.

Consider a set of M measured ambiguous phase delays, Ψ = {ψ̃1, ψ̃2, . . . , ψ̃M}, and
their corresponding antenna separations, D = {d1, d2, . . . , dM}, where m = 1, 2, . . . ,M
and each ψ̃m ∈ [−π, π]. It is assumed that the interferometer baselines are sorted into
ascending order and that the first phase delay corresponds to a short baseline interfer-
ometer and is unambiguous.

Let Ψm and Dm denote the m-th element of Ψ and D respectively. For m ≥ 2, the
expected unambiguous phase delay, Ψ̂m,inferred, of the Dm baseline can be inferred from

the previous baseline, Dm−1, and the previously resolved phase delay, Ψ̂m−1,resolved, as
follows,

Ψ̂m,inferred =
Dm

Dm−1
Ψ̂m−1,resolved, (3.52)

where Ψ̃1,resolved = ψ̃1 is unambiguous. The ambiguity number of the Dm baseline, ρm,
can then be estimated as

ρ̂m = round

[
Ψ̂m,inferred − ψ̃m

2π

]
, (3.53)

and so the resolved, unambiguous phase delay of the Dm baseline, Ψ̂m,resolved, is

Ψ̂m,resolved = ψ̃m + ρ̂m2π. (3.54)

The final AOA estimate can then be obtained from the resolved phase delay of the
longest baseline. This process is illustrated graphically in Figure 3.14.



CHAPTER 3. INTERFEROMETRY 45

Auxiliary Baselines
(d2 Baseline)

Long Baseline
(dM Baseline)

θ̂

θ̂

Short Baseline
(d1 Baseline)

θ̂

......

Figure 3.14: A short-baseline interferometer can be used to successively resolve the ambi-
guities of the longer baselines. In this figure, the width of the triangles indicate the RMS
errors associated with the interferometer baselines. The RMS error improves as the coarse
AOA estimation method successively resolves the ambiguities of the longer baselines.

3.7 Ambiguity Resolution Using Multiple Baselines

Ambiguity resolution using independent, non-interferometric AOA estimation methods
may impose additional constraints on the design of the direction finding systems. For
example, amplitude comparison systems require that directional antennas be mounted
at physically squinted angles, while TDOA systems may require very long baselines
and/or very high sample rate digitisers. Furthermore, the accuracy of these algorithms
may not be sufficient to resolve the ambiguities of the long baseline interferometer at
higher frequencies. On the other hand, ambiguity resolution using a short-baseline in-
terferometer requires that at least one pair of antennas be spaced no more than one-half
a wavelength apart (at the highest frequency of operation). In practice, these design
constraints may not be achievable due to the size of the antenna or mounting charac-
teristics of the platform.

In this section, alternative ambiguity resolution methods which make use of multiple
long baseline interferometers constructed from the sparse array geometry are presented.
These methods are loosely based on the Chinese Remainder Theorem (CRT) and require
appropriately chosen interferometer baselines. For large apertures, unambiguous AOA
estimates can generally be obtained with fewer intermediate baselines than the “short-
baseline” ambiguity resolution method. For simplicity, the methods discussed in this
section will be described in terms of a non-uniform linear array, however, the results
can be generalised to arbitrary array geometries. All phase delay measurements are
assumed to be performed in the frequency domain using the FFT implementation and
it is further assumed that no scalloping losses occur.

3.7.1 The Chinese Remainder Theorem

The Chinese Remainder Theorem was developed by the Chinese mathematician, Sun
Tzu, in the third century AD to solve a system of simultaneous congruences [8, 62–
64]. The theorem provides a common solution that simultaneously satisfies a set of
constraints specified by a system of congruences with positive integer variables.
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Theorem 3.7.1
Suppose γ1, γ2, . . . , γM are positive integers which are pairwise co-prime, i.e.
the greatest common denominator of all of the integers is 1. For a sequence of
integers, r1, r2, . . . , rM , let there exist an integer Λ that solves the following
system of simultaneous congruences.

[Λ]γ1
≡ r1, (3.55)

[Λ]γ2
≡ r2, (3.56)

... (3.57)

[Λ]γM ≡ rM , (3.58)

where [ · ]γm represents the modulo γm operation and m = 1, 2, . . . ,M . The
solution to Λ (modulo Γ) can be shown to be [8, 62]

Λ =

[
M∑
m=1

rmbm
Γ

γm

]
Γ

, (3.59)

where

Γ =
M∏
m=1

γm, (3.60)

and bm denotes the modular multiplicative inverse of Γ/γm such that[
bm

Γ

γm

]
γm

= 1. (3.61)

In other words, bm is the smallest positive, real integer that satisfies (3.61).

Example 3.2
Consider the following system of congruences,

[Λ]7 = 3, (3.62)

[Λ]3 = 2. (3.63)

In this example, γ1 = 7, γ2 = 3, r1 = 3, r2 = 2 and M = 2. The product, Γ,
is given by

Γ =

M∏
m=1

γm = 7× 3 = 21, (3.64)

For m = 1,
Γ

γ1
=

21

7
= 3, (3.65)

and so finding the modular multiplicative inverse, b1, is a search for the
smallest positive real integer that satisfies the following expression[

b1
Γ

γ1

]
γ1

= [b1 × 3]7 = 1. (3.66)
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b1 b1Γ/γ1 [b1Γ/γ1]γ1

1 3 3
2 6 6
3 9 2
4 12 5
5 15 1
6 18 4
...

...
...

Table 3.1: Possible candidates for b1.

Table 3.1 lists some possible candidates for b1 and the corresponding solution
to the expression [b1Γ/γ1]γ1

. This table shows that the smallest positive, real
integer that satisfies (3.66) occurs when b1 = 5.

Similarly, for m = 2,
Γ

γ2
=

21

3
= 7, (3.67)

and so finding the modular multiplicative inverse, b2, is a search for the
smallest positive real integer that satisfies the following expression[

b2
Γ

γ2

]
γ2

= [b2 × 7]3 = 1. (3.68)

Table 3.2 lists some possible candidates for b2 and the corresponding solution
to the expression [b2Γ/γ2]γ2

. This table shows that the smallest positive
integer that satisfies (3.68) is b2 = 1.

b2 b2 · Γ/γ2 [b2 · Γ/γ2]γ2

1 7 1
2 14 2
3 21 0
4 28 1
5 35 2
6 42 0
...

...
...

Table 3.2: Possible candidates for b2.

From (3.59), the solution to the system of congruences is therefore given by

Λ =

[
M∑
m=1

rmbm
Γ

γm

]
Γ

(3.69)

= [(3× 5× 3) + (2× 1× 7)]21 (3.70)

= [59]21 (3.71)

= 17. (3.72)

Thus, the solution to the system of congruences is 17 (modulo 21).
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Application of the CRT for Ambiguity Resolution

The Chinese Remainder Theorem has been applied to resolve the ambiguities of multiple
long baseline interferometers [62–69]. The following formulation is based on the work
by Zheng et al. [62].

Consider M long baseline interferometers with antenna separations d1, d2, . . . , dM , such
that

λmin

2
< d1 < d2 < . . . < dM . (3.73)

Let d0 represent a larger distance such that each interferometer baseline can be written
as

dm =
d0

γm
, (3.74)

where dm represents the m-th interferometer baseline, γm is a positive integer divisor
of d0, and m = 1, 2, . . . ,M . It is assumed that the interferometer baselines and d0 is
chosen such that the integers specified by γm are co-prime, i.e. the greatest common
divisor for γ1, γ2, . . . , γM is 1.

Recall that the unambiguous phase delay of the dm baseline, ψm, is given by

ψm =
2πfdm
c

sin θ = ψ̃m + ρm2π, (3.75)

where ψ̃m ∈ [−π, π] is the measured, ambiguous phase delay and ρm is an integer
representing the ambiguity numbers constrained by (3.34). Substituting (3.74) into
(3.75) and re-arranging gives

fd0 sin θ

c
= γm

ψ̃m
2π

+ ρmγm. (3.76)

Since ρm is an integer, (3.76) can be written as

[Λ]γm = rm, (3.77)

where Λ is a quantity that is common between all interferometer baselines given by

Λ =
fd0

c
sin θ, (3.78)

and rm is the remainder term given by

rm = γm
ψ̃m
2π

. (3.79)

Since γm is an integer by definition and the normalised measured phase delay, ψ̃/2π,
lies in the interval [−0.5, 0.5], the remainder term, rm, can be approximated by an
integer. Since the right-hand side of (3.77) is approximately an integer, then Λ is
also approximately an integer. Furthermore, since the remainder term is defined using
modulo arithmetic, negative values corresponding to negative AOAs can be converted
to an equivalent positive integer representation (although this step does not need to be
explicitly performed). Thus, (3.77) specifies a system of congruences with approximately
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positive integer parameters that can be solved using the CRT algorithm. Given that the
solution to Λ is specified by (3.59), the AOA of the signal can then be unambiguously
estimated as

θ̂ = arcsin

(
cΛ

fd0

)
. (3.80)

In practice, two additional modifications will need to be made to the above algorithm.
Firstly, since the phase delays are measured as a continuous variable but the CRT
algorithm requires that the remainder term be an integer, (3.79) must be replaced with
a rounded value, r̃m, such that

r̃m = round [rm] , (3.81)

where round[ · ] represents the rounding operation. Secondly, the CRT algorithm only
applies to positive integer parameters and so will only estimate positive solutions of Λ
(modulo Γ) and hence positive AOAs. However, negative AOAs can be still estimated
with an appropriate correction to the estimated value of Λ. For a linear array, the AOA
of the signal lies in the interval θ ∈ [−90◦, 90◦], and so from (3.78), the possible values
of Λ will be constrained by Λ ∈ [−B,B], where

B =
fd0

c
. (3.82)

The CRT algorithm estimates positive values for Λ (modulo Γ) in the interval Λ ∈ [0, 2B]
and so the negative values of Λ, [−B, 0), is mapped to the region (B, 2B]. The AOA of
the signal can then be unambiguously estimated for both positive and negative angles
as follows

θ̂ =


arcsin

(
cΛ

fd0

)
Λ ≤ B,

arcsin

(
c(Λ− Γ)

fd0

)
Λ > B.

(3.83)

Example 3.3
Consider two interferometer baselines where d1 = 3λ/2, d2 = 7λ/2, λ = 16.67
mm, the signal frequency is f = 18 GHz and the AOA of the signal is
θ = 23.42◦. This example shall assume an ideal signal without any receiver
noise.

The first step in this example is to re-express the AOA estimation problem
as a system of congruences. Let d0 be the lowest common multiple of d1 and
d2, i.e. d0 = 21λ/2. This implies that γ1 = 7 and γ2 = 3, which satisfies
(3.74) as follows,

d1 =
d0

γ1
=

21λ/2

7
= 3λ/2, (3.84)

d2 =
d0

γ2
=

21λ/2

3
= 7λ/2. (3.85)

For θ = 23.42◦, the unambiguous phase delays are

ψ1 =
2πfd1

c
sin θ = 214.63◦, (3.86)

ψ2 =
2πfd2

c
sin θ = 500.81◦. (3.87)
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However, the measured, ambiguous phase delays are

ψ̃1 = [ψ1]2π = −145.37◦, (3.88)

ψ̃2 = [ψ2]2π = 140.81◦. (3.89)

The rounded remainder terms, r̃m, are therefore

r̃1 = round

[
γ1
ψ̃1

2π

]
= round[−2.8266] ≈ −3, (3.90)

r̃2 = round

[
γ2
ψ̃2

2π

]
= round[1.1734] ≈ 1. (3.91)

In this example, the system of congruences that must be solved can be writ-
ten as

[Λ]7 = −3 (3.92)

[Λ]3 = 1. (3.93)

This system of congruences can now be solved in a similar manner to Exam-
ple 3.2. Consider that Γ is given by

Γ =

M∏
m=1

γm = 7× 3 = 21, (3.94)

and so,

Γ

γ1
=

21

7
= 3, (3.95)

Γ

γ2
=

21

3
= 7. (3.96)

Since these values are the same as Example 3.2, the corresponding modular
multiplicative inverses are b1 = 5 and b2 = 1 as shown in Table 3.1 and Table
3.2 respectively. From (3.59), the solution to this system of congruences is
therefore given by

[Λ]Γ =

[
M∑
m=1

rmbm
Γ

γm

]
Γ

(3.97)

= [(−3× 5× 3) + (1× 1× 7)]21 (3.98)

= [−38]21 . (3.99)

While the computed value of Λ is a negative value (modulo 21), it is conven-
tional to re-express Λ in positive terms by taking into account the modulus
as follows,

[Λ]Γ = [−38]21 ≡ 4. (3.100)

Prior to estimating the AOA, the appropriate expression for the AOA esti-
mation must first be determined from (3.83). In this example, the boundary
conditions for Λ is specified by

B =
fd0

c
= 11. (3.101)
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Since Λ < B, the AOA of the signal can be estimated as

θ̂ = arcsin

(
cΛ

fd0

)
= 22.39◦. (3.102)

Example 3.4
Consider the same example as above but this time the AOA is negative, i.e.
θ = −23.42◦. In this scenario, the measured, ambiguous phase delays are

ψ̃1 = [ψ1]2π = 145.37◦, (3.103)

ψ̃2 = [ψ2]2π = −140.81◦. (3.104)

The corresponding rounded remainder terms, r̃m, are

r̃1 = round

[
γ1
ψ̃1

2π

]
= round[2.8266] ≈ 3, (3.105)

r̃2 = round

[
γ2
ψ̃2

2π

]
= round[−1.1734] ≈ −1, (3.106)

and so the system of congruences can be written as

[Λ]7 = 3 (3.107)

[Λ]3 = −1. (3.108)

Using the intermediate results from the previous example, it can be shown
that the solution to Λ is

Λ =

[
M∑
m=1

rmbm
Γ

γm

]
Γ

(3.109)

= [(3× 5× 3) + (−1× 1× 7)]21 (3.110)

= [38]21 (3.111)

≡ [17]21 . (3.112)

In this example, the solution to Λ is greater than the boundary condition
specified by (3.101), i.e. Λ > B, and so the AOA of the signal can be
estimated from (3.83) as follows

θ̂ = arcsin

(
c(Λ− Γ)

fd0

)
= −22.39◦. (3.113)

Due to the rounding operation performed in (3.81), the CRT algorithm suffers from
quantisation as the approximation of rm as an integer quantises the possible values of the
AOA estimates and hence introduces an additional bias error to the AOA estimation.
This quantisation effect can be observed in Example 3.3 and Example 3.4 where the
magnitude of the true AOA is 23.42◦ but the magnitude of the estimated AOA is 22.39◦.
The difference is the quantisation error of 1.03◦. This quantisation effect is further
illustrated in Figure 3.15 which plots the estimated AOA of an ideal (noiseless) signal
against the true AOA for two baselines with d1 = 3λ/2 and d2 = 7λ/2. This example
shows that the CRT algorithm will only estimate the AOA as one of 21 possible AOA
values for this particular combination of d1 and d2. Furthermore, as noted in [62–69], the
CRT algorithm is not robust since small errors in the remainder term, rm, can produce
large errors in the AOA estimation, particularly at the quantisation boundaries.
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Figure 3.15: AOA estimation using the CRT ambiguity resolution algorithm on a noiseless
signal produces quantised estimates. Simulation parameters: d1 = 3λ/2, d2 = 7λ/2, f = 18
GHz, λ = 16.67 mm.

3.7.2 Non-Uniform Array Geometry

The limitations of the CRT ambiguity resolution algorithm described above can be over-
come with an alternative interpretation of the CRT algorithm as described by Tsui [8].
From (3.77), the CRT algorithm suggests that when the interferometer baselines are
not integer multiples of each other, a common angle dependent quantity, Λ, will exist
that can be uniquely estimated. This further suggests that a unique relationship may
exist between the set (or combination) of measured, ambiguous phase delays from each
baseline and the signal’s AOA. In other words, for sparse non-uniform arrays, there will
only be one AOA estimate that is common among all of the ambiguities of the long
baseline interferometers. An example of this scenario is illustrated in Figure 3.16.

The requirement for non-uniform baselines can be formulated mathematically by first de-
riving an expression for the relationship between the measured, ambiguous phase delays
of two interferometer baselines and then ensuring that the set of measured, ambiguous
phase delays are unique for all AOAs.

Relationship Between the Measured, Ambiguous Phase Delays at θ

Consider the phase delays of two long interferometric baselines, dk and dm, when the
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Figure 3.16: For interferometers with non-uniform antenna spacings, there will only be one
AOA that is common among the ambiguities of the long baselines.

AOA is θ. The unambiguous phase delays, ψk(θ) and ψm(θ), are

ψk(θ) =
2πfdk
c

sin θ = ψ̃k(θ) + ρk2π, (3.114)

ψm(θ) =
2πfdm
c

sin θ = ψ̃m(θ) + ρm2π, (3.115)

where ψ̃k(θ), ψ̃m(θ) ∈ [−π, π] are the measured, ambiguous phase delays and ρk, ρm are
integers representing the ambiguity numbers as constrained by (3.34).

Without loss of generality, it is assumed that dk > dm. In this section, all phase delay
notations have been explicitly written as a function of θ to distinguish between the phase
delay measurements from different AOA.

The expressions (3.114) and (3.115) can be re-arranged to give the following equality,

2πf

c
sin θ =

ψ̃k(θ) + ρk2π

dk
=
ψ̃m(θ) + ρm2π

dm
. (3.116)

This can be further arranged to give an expression that describes the relationship be-
tween the measured, ambiguous phase delays of each baseline at θ, as follows,

ψ̃k(θ) =
dk
dm

ψ̃m(θ) + 2π

(
dk
dm

ρm − ρk
)
. (3.117)

Measured, Ambiguous Phase Delays at a Different AOA, θ′

Consider the phase delays of the same interferometer baselines for a different AOA, θ′.
The unambiguous phase delays, ψk(θ

′) and ψm(θ′), are

ψk(θ
′) =

2πfdk
c

sin θ′ = ψ̃k(θ
′) + ρ′k2π, (3.118)

ψm(θ′) =
2πfdm
c

sin θ′ = ψ̃m(θ′) + ρ′m2π, (3.119)

where ψ̃k(θ
′), ψ̃m(θ′) ∈ [−π, π] are the measured, ambiguous phase delays and ρ′k, ρ

′
m are

integers representing the ambiguity numbers as constrained by (3.34). Note that the
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parameters ψ̃k(θ
′), ψ̃m(θ′), ρ′k and ρ′m for θ′ are generally different from the parameters

ψ̃k(θ), ψ̃m(θ), ρk and ρm for θ.

Uniqueness of the Set of Measured, Ambiguous Phase Delays at Different AOAs

Let Ψ(θ) denote the set of measured, ambiguous phase delays from each interferometer
baseline for an AOA, θ, as follows,

Ψ(θ) =
{
ψ̃k(θ), ψ̃m(θ)

}
. (3.120)

In order to ensure that the set of ambiguous phase delays from all baselines is unique
for each AOA, the set of measured, ambiguous phase delays, Ψ(θ), for θ must not be
the same as the set of measured phase delays, Ψ(θ′), for a different AOA, θ′, i.e.

Ψ(θ) 6= Ψ(θ′). (3.121)

This expression requires that the elements of each set to not be simultaneously pairwise
equal. In other words, uniqueness requires at least one of the following conditions must
be true,

ψk(θ) 6= ψk(θ
′), or (3.122)

ψm(θ) 6= ψm(θ′). (3.123)

While the unambiguous phase delays measured at θ and θ′ will be different, it is possible
that the measured, ambiguous phase delays of one baseline to be the same due to phase
wrapping. As an example, consider that an ambiguity exists in the dm baseline such
that the same ambiguous phase delay is measured at θ and θ′. While the unambiguous
phase delays are unique, i.e. ψm(θ) 6= ψm(θ′), it is possible that for this particular pair
of AOAs, the measured phase delays are ambiguous such that

ψ̃m(θ) ≡ ψ̃m(θ′). (3.124)

When this occurs, the ambiguity numbers will differ, i.e. ρm 6= ρ′m, however these values
cannot be directly measured. In this example, (3.123) is not satisfied and so (3.122)
must be satisfied in order to ensure that Ψ(θ) and Ψ(θ′) are unique.

For the dk baseline, the corresponding measured, ambiguous phase delay due to θ′ can
be determined by substituting θ′, ρ′k and ρ′m into (3.117) to give

ψ̃k(θ
′) =

dk
dm

ψ̃m(θ′) + 2π

(
dk
dm

ρ′m − ρ′k
)
. (3.125)

Since it is assumed that ψ̃m(θ) ≡ ψ̃m(θ′), the above expression can be re-written as

ψ̃k(θ
′) =

dk
dm

ψ̃m(θ) + 2π

(
dk
dm

ρ′m − ρ′k
)
,

= ψ̃k(θ) + 2π

(
dk
dm

(ρ′m − ρm)− (ρ′k − ρk)
)
. (3.126)

Inspection of (3.126) suggests that the ambiguous phase delays, ψ̃k(θ) and ψ̃k(θ
′), will

only be the same if dk is an integer multiple of dm, or (ρ′m − ρm) is an integer multiple
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Figure 3.17: A simple set of interferometer baselines comprising of 4 antennas.
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Figure 3.18: An extended set of interferometer baselines comprising of 4 antennas.

of dm. In practice, dm can be readily chosen to ensure that (ρ′m − ρm) is not an integer
multiple of dm. Thus, if dk is chosen such that it is also not an integer multiple of dm
then the right hand side of (3.126) will not be an integer multiple of 2π. This ensures
that the ambiguous phase delays measured by the dk baseline at θ and θ′ are unique. In
other words, (3.122) can be satisfied with an appropriate choice of the dk and dm and so
this guarantees that the set of phase delays is unique for each AOA, i.e. Ψ(θ) 6= Ψ(θ′).
This unique relationship can be exploited to unambiguously estimate the AOA of the
signal.

This formulation does not assume integer parameters and so there is no quantisation
problem due to rounding. Furthermore, the conditions imposed on the interferometer
baselines are more relaxed in this formulation compared with the CRT algorithm. Fi-
nally, while only two baselines were considered in this discussion, the result generalises
to any number of baselines.

3.7.3 Number of Baselines

For an array of antennas, the position of one antenna is usually arbitrarily chosen to
be the reference position. All antenna positions and outputs are then defined relative
to this reference. By convention, the reference antenna is assumed to be the first antenna.

For a K-antenna interferometer, a simple set of interferometer baselines can be formed
by taking the first antenna as the reference and then using the outputs of the subsequent
antennas to form K−1 independent interferometer baselines as depicted in Figure 3.17.
In this case, the set of measured phase delays will be

Ψsimple =
{
ψ̃21, ψ̃31, . . . , ψ̃K1

}
, (3.127)

which correspond to the simple set of interferometer baselines, Dsimple, where

Dsimple = {d21, d31, d41, . . . , dK1} . (3.128)

In [70], it was shown that there is a small, but statistically significant, performance gain
by considering an extended set of interferometer baselines that contains all of the unique
piecewise combinations of baselines which are formed when each antenna is successively
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used as the reference as depicted in Figure 3.18. In this case, K(K−1)/2 interferometer
baselines can be formed and the extended set of measured phase delays will be

Ψextended =
{
ψ̃21, ψ̃31, ψ̃41, . . . , ψ̃K1, ψ̃32, ψ̃42, . . . , ψ̃K2, . . . ψ̃K,K−1

}
, (3.129)

which corresponds to the extended set of interferometer baselines, Dextended, where

Dextended = {d21, d31, d41, . . . , dK1, d32, d42, . . . , dK2, . . . , dK,K−1} . (3.130)

Since the ambiguity resolution methods discussed in the subsequent discussions are
equally valid for the simple and extended set of interferometer baselines, the algorithms
will be generically discussed in terms of M interferometer baselines which correspond
to the antenna separations, d1, d2, . . . , dM . For the simple set of baselines, there are
M = K − 1 interferometer baselines and the antenna separations are given by Dsimple.
For the extended set of baselines, there are M = K(K − 1)/2 interferometer baselines
and the antenna separations are given by Dextended.

3.7.4 Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) for the AOA using a non-uniform linear array
is derived in Appendix A.2.1. For a M baseline interferometer, the maximum likelihood
estimate of the AOA is given by

θ̂ = argmax
θs JMLE(θs), (3.131)

where

JMLE(θs) =
M∑
m=1

cos
(
ψ̃m − ψm(θs)

)
, (3.132)

where ψ̃m ∈ [−π, π] is the measured, ambiguous phase delay and ψm(θs) is the unam-
biguous phase delay corresponding to a search angle, θs. The MLE algorithm can be
interpreted as a grid search algorithm that looks for the angle, θs, whose corresponding
set of phase delays best match the measured data. The search angle, θs, is a parameter
controlled by the AOA estimation algorithm and is not to be confused with the signal’s
AOA, θ. By using baselines that are not integer multiples of each other, the measured,
ambiguous phase delays are guaranteed to be unique for each signal AOA, θ. When
θs = θ, the summation produces a large peak that can be used to indicate the AOA of
the signal.

In general, the number of search angles, G, can be arbitrarily large or small and is
determined by the desired search range and resolution. For example, if the algorithm
searches over angles between [−90◦, 90◦] with an equal resolution of 1◦, then G = 181.
If a 5◦ resolution is tolerable, then G = 37. However if a 0.1◦ resolution is required, then
G = 1801. Furthermore, there is no requirement that the search angles be equi-spaced,
or that they cover the full interval between [−90◦, 90◦]. For example, it may be desirable
to monitor the interval [−10◦, 10◦] with a 0.1◦ resolution and the intervals [−60◦,−10◦)
and (10◦, 60◦] with a 5◦ resolution, and so in this case scenario G = 221.

The MLE algorithm described in this section only considers an interferometric imple-
mentation. Maximum likelihood estimators using array processing and subspace ap-
proximations will be discussed in Chapter 5.
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Optimisation Using Newton’s Method

Since the MLE algorithm is a grid search algorithm, the search space is quantised to
a discrete set of possibilities and so quantisation errors can occur if the true AOA lies
between two grid points. In practice, optimisation methods, such as Newton’s Method
[2, 71], gradient descent [2], or interpolation methods are often used to reduce, or even
eliminate, the quantisation error. In this thesis, Newton’s Method, as described in [71],
will be used to refine the AOA estimate as follows

θ̂(γ+1) = θ̂(γ) − J ′MLE(θ̂(γ))

J ′′MLE(θ̂(γ))
, (3.133)

where J ′MLE(θ̂(γ)) and J ′′MLE(θ̂(γ)) represent the first and second derivatives of the max-

imum likelihood cost function JMLE(θ̂(γ)) with respect to θ(γ), Γ is the number of iter-
ations, γ = 1, 2, . . . ,Γ, and the initial estimate is set to the grid search estimate that
corresponds to the maximum output of the maximum likelihood cost function. The op-
timisation algorithm is performed until a specified maximum number of iterations has
been completed or until the difference between iterative estimates falls below a specified
tolerance, i.e. |θ̂(γ+1) − θ̂(γ)| ≤ δθtol, where δθtol is the chosen tolerance. For good
initial estimates that are close to the true AOA, the actual number of iterations may be
significantly less than the maximum number of iterations.

For the maximum likelihood cost function, the first and second derivatives of JMLE(θ̂(γ))
are given by

J ′MLE(θ̂(γ)) =
M∑
m=1

sin
(
ψ̃m − ψm(θ)

)
ψ′m(θ), (3.134)

J ′′MLE(θ̂(γ)) = −
M∑
m=1

cos
(
ψ̃m − ψm(θ)

)
ψ′m(θ)2 + sin

(
ψ̃m − ψm(θ)

)
ψm(θ),

(3.135)

where ψ′m(θ) is the first derivative of ψm(θ) and is given by

ψ′m(θ) =
2πfdm
c

cos θ. (3.136)

It is important to note that the cost function JMLE(θ̂(γ)) may contain many peaks
and that Newton’s Method only finds the closest local peak. This suggests that if the
initial estimate is closer to one of the sidelobes than the main lobe, then the output of
Newton’s Method may estimate the AOA erroneously. This further suggests that the
initial estimate used to initialise Newton’s Method (i.e. the grid search estimate) must
be accurate enough so that it lies within the main lobe of the cost function.

Algorithm Complexity

A typical execution of the MLE algorithm requires that the phase delays of each inter-
ferometer baseline to be estimated. Assuming that a FFT is performed to estimate the
phase delays in the frequency domain, as described by (3.17), the algorithm complexity
to estimate the phase delays is O(Φ+M), where Φ = KN log2N represents the number
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Figure 3.19: The correlative interferometer searches for the set of true phase delays that
best match the measured, ambiguous phase delays.

of operations to perform the FFT on each antenna output, K is the number of antennas,
N is the number of samples and M is the number of baselines.

The next part of the MLE algorithm involves the grid search. For each search angle,
the value of the cost function described by (3.132) is performed. This computation has
an approximate algorithm complexity of O(M). For G search angles, the approximate
algorithm complexity of the grid search is O(GM).

Finally, Newton’s Method is used to refine the grid search estimate. For each iteration,
Newton’s Method requires calculating the derivatives of the array output from (3.134)
and (3.135) which are O(M) operations. For Γ iterations, the approximate algorithm
complexity of the optimisation is then O(2ΓM).

The total approximate algorithm complexity of the MLE algorithm is therefore O(Φ +
M(G + 2Γ + 1)). It should be noted that this expression for the algorithm complexity
is effectively an approximation of the number of loops performed by the algorithm. It
does not represent a detailed analysis for all operations in the algorithm. Furthermore,
it does not distinguish between the speed of individual operations, such as addition and
multiplication.

3.7.5 Correlative Interferometers

Correlative interferometers resolve the ambiguities by correlating, or “phase-matching”,
the set of measured, ambiguous phase delays with a set of true, unambiguous phase
delays. The search angle that corresponds to the set of true phase delays that best
match the data is considered the AOA of the signal. The operation of a correlative
interferometer is illustrated graphically in Figure 3.19.

For a M baseline interferometer, the correlative interferometer estimates the AOA by
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searching for the maximum of the correlation cost function, J(θ), as follows,

θ̂ = argmax
θs J(θs). (3.137)

Several correlation cost functions have been proposed in the literature [70, 72–75], in-
cluding:

• The Cosine (COS) Function Criterion

Jcos(θs) =
M∑
m=1

cos
(
ψ̃m − ψm(θs)

)
, (3.138)

• Least-Squares (LS) Criterion

JLS(θs) = −
M∑
m=1

([
ψ̃m − ψm(θs)

]
2π

)2
, (3.139)

where ψ̃m ∈ [−π, π] is the measured, ambiguous phase delay and ψm(θs) is the unam-
biguous phase delay corresponding to the search angle θs. Note that (3.132) is identical
to (3.138) and so the maximum likelihood estimator discussed in Section 3.7.4 is essen-
tially a specific implementation of a correlative interferometer.

Example 3.5
Consider the same two-baseline interferometer as Example 3.3, where d1 =
3λ/2, d2 = 7λ/2, λ = 16.67 mm and f = 18 GHz. Figure 3.20 shows the
normalised cosine and least-squares cost functions when θ = 23.42◦ for a
noiseless signal. Given a cost function, J(θs), which has a maximum and
minimum value of Jmax and Jmin respectively, the normalised cost function,
Jnorm(θs), can be written as

Jnorm(θs) =
J(θs)− Jmin

Jmax − Jmin
. (3.140)

This example shows that cosine and least-squares cost functions both have
a single correlation peak at θ = 23.42◦ and exhibit high sidelobes at other
angles. High sidelobes can occur with correlative interferometry when a par-
ticular array geometry measures similar phase delays at different angles. In
this example, while the sidelobes occur at the same angles in both func-
tions, the cosine cost function consistently has lower sidelobes than the least
squares cost function. This suggests that while both cost functions can be
used to correctly estimate the AOA of the signal, the cosine cost function
is expected to be more robust against noise due to its consistently lower
sidelobes.

Optimisation Using Newton’s Method

Since the correlative interferometer is also a grid search algorithm, Newton’s Method,
as described by (3.133), can also be used to remove the quantisation errors that arise
due to a discrete search resolution. Since the cosine cost function is identical to the
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Figure 3.20: Example of the cosine and least squares cost functions for a correlative interfer-
ometer. These cost functions have been normalised to the same scale for visual comparison.

maximum likelihood cost function, the first and second derivatives of Jcos(θ̂
(γ)) are also

given by (3.134) and (3.135) respectively.

For the least squares cost function, the first and second derivatives of JLS(θ̂(γ)) can be
shown to be

J ′LS(θ̂(γ)) = 2
M∑
m=1

[
ψ̃m − ψm(θs)

]
2π
ψ′m(θ), (3.141)

J ′′LS(θ̂(γ)) = −2
M∑
m=1

ψ′m(θ)2 +
[
ψ̃m − ψm(θs)

]
2π
ψm(θs). (3.142)

Algorithm Complexity

In a similar manner to the maximum likelihood estimator, the correlative interfer-
ometer has an approximate algorithm complexity of O(Φ + M(G + 2Γ + 1)), where
Φ = KN log2N , K is the number of antennas, N is the number of samples, M is the
number of baselines, G is the number of search angles, and Γ is the number of iterations
used by Newton’s Method.

3.7.6 Common Angle Search

Exhaustive Search

An intuitive and straightforward algorithm to resolve the AOA ambiguities is to explic-
itly search for the unique common AOA among all of the AOA ambiguities from each
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baseline. However, due to noise, it will be unlikely that the any of the ambiguous AOAs
in each baseline will exactly match, and so the common angle search (CAS) algorithm
becomes a search for the closest matching set of ambiguous AOAs.

Since there is a unique relationship between the ambiguous AOAs and the ambiguous
phase delays, the CAS algorithm can be formulated as a search for the common “nor-
malised phase delays” (i.e. the ratio of the ambiguous phase delay and the interferometer
baseline). This is a slightly more efficient implementation since it avoids the computa-
tionally expensive arcsine function.

Generalising (3.116), the phase delay relationship of a system of M interferometer base-
lines can be written as follows,

2πf

c
sin θ =

ψ̃1 + ρ12π

d1
=
ψ̃2 + ρ22π

d2
= · · · = ψ̃M + ρM2π

dM
. (3.143)

This expression suggests that at a given AOA, there will exist a particular combination
of ambiguity numbers that will satisfy the above equality. Since it is assumed that the
interferometer baselines are not integer multiples of each other, it is guaranteed that
there will only be AOA estimate that is common among the ambiguities of all of the
baselines, and hence one unique combination of ambiguity numbers that will satisfy the
equality.

Consider that the dm interferometer baseline has a set of possible ambiguity numbers,
Υm(ψ̃m), that are constrained by (3.34) as follows

Υm(ψ̃m) =

{⌈
−fdm

c
− ψ̃m

2π

⌉
, . . . ,−2,−1, 0, 1, 2, . . . ,

⌊
fdm
c
− ψ̃m

2π

⌋}
, (3.144)

where m = 1, 2, . . . ,M . The exhaustive set of possible combinations of ambiguity num-
bers, Ωexhaustive, can then be written as the Cartesian product of the elements of Υm(ψ̃m)
for each baseline as follows,

Ωexhaustive = Υ1(ψ̃1)�Υ2(ψ̃2)� · · · �ΥM (ψ̃M ), (3.145)

where � denotes the Cartesian product operator. Each element in Ωexhaustive is a vec-
tor, ρ , that represents one unique combination of the ambiguity numbers from each
interferometer baseline. The total number of elements contained in Ωexhaustive is given
by

Qexhaustive =

M∏
m=1

Na
Υm(ψ̃m)

, (3.146)

where

Na
Υm(ψ̃m)

= round

[
2fdm
c

]
(3.147)

represents the number of ambiguities contained in Υm(ψ̃m) for the dm baseline as spec-
ified by (3.147).
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The CAS algorithm can then be described as the minimisation of a cost function,
JCAS(ρ q), as follows,

θ̂ = arg min
ρ q∈Ωexhaustive

JCAS(ρ q), (3.148)

where

JCAS(ρ q) =

M∑
m=1

∣∣∣∣∣ ψ̃m + ρqm2π

dm
− ψ̃M + ρqM2π

dM

∣∣∣∣∣, (3.149)

=

M∑
m=1

1

dm

∣∣∣∣ψ̃m − dm
dM

ψ̃M − 2π

(
dm
dM

ρqM − ρqm
)∣∣∣∣, (3.150)

and ρ q = {ρq1, ρq2, . . . , ρqM} is a vector representing the q-th combination of ambiguity
numbers from Ωexhaustive, ρ

q
m represents the ambiguity number of the dm baseline for

the q-th combination, and q = 1, 2, . . . , Qexhaustive. Once the set of ambiguity numbers
that minimises JCAS(ρ q) has been found, the AOA can be estimated using the longest
baseline to provide the best AOA estimation performance in noise.

While the CAS algorithm and correlative interferometers are both search-based algo-
rithms, they differ because they search over different parameters. The correlative in-
terferometer searches over all possible AOAs while the CAS algorithm searches over all
possible ambiguities of the measured phase delays. The search space of the CAS algo-
rithm is generally smaller than the correlative interferometer.

Example 3.6
Consider the same two-baseline interferometer described in Example 3.3,
where d1 = 3λ/2, d2 = 7λ/2, λ = 16.67 mm, f = 18 GHz, and θ = 23.42◦.
At this AOA, the measured, ambiguous phase delays are

ψ̃1 = [ψ1]2π = [214.63◦]2π = −145.37◦, where ρ1 = 1, (3.151)

ψ̃2 = [ψ2]2π = [500.81◦]2π = 140.81◦, where ρ2 = 1. (3.152)

In this example, equations (3.144) and (3.147) suggest that the d1 and d2

baselines will have 3 and 7 ambiguities respectively, where

Υ1(ψ̃1) = {−1, 0, 1}, (3.153)

Υ2(ψ̃2) = {−3,−2,−1, 0, 1, 2, 3}, (3.154)

and so a total of Qexhaustive = 21 unique combinations of ρ1 and ρ2 can be de-
fined. These combinations are listed in Table 3.3 and the corresponding cost
function is illustrated in Figure 3.21. This figure shows that the minimum
of the cost function occurs for the 19-th combination of ambiguity numbers
which corresponds to ρ1 = 1 and ρ2 = 1. These estimated ambiguity num-
bers match the true ambiguity numbers in (3.151) and (3.152) and so the
ambiguity is successfully resolved in this example.

Subset Search

The performance of the exhaustive phase delay search can be significantly improved
by recognising that only a subset of possible combinations of ambiguity numbers will
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Combination ρ q

q ρ1 ρ2

1 -1 -3
2 -1 -2
3 -1 -1
4 -1 0
5 -1 1
6 -1 2
7 -1 3
8 0 -3
9 0 -2
10 0 -1
11 0 0
12 0 1
13 0 2
14 0 3
15 1 -3
16 1 -2
17 1 -1
18 1 0
19 1 1
20 1 2
21 1 3

Table 3.3: Possible combinations of ρ1 and ρ2.

0 2 4 6 8 10 12 14 16 18 20 22
0

100

200

300

400

500

600

700

Cost Function for the Common Angle Search Algorithm

J C
A

S
 (

ρq )

Combination Number (q)

Figure 3.21: Example of the cost function for the exhaustive CAS algorithm.
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Figure 3.22: Plot of the unambiguous phase delays of the d2 baseline against the d1 baseline.

correspond to a valid AOA. Let Ωsubset be a subset of Ωexhaustive which only contain
the combinations of ambiguity numbers that correspond to a valid AOA in the interval
θ ∈ [−90◦, 90◦]. In general, the number of elements in Ωsubset will be smaller than the
number of elements in Ωexhaustive, i.e.

Qsubset ≤ Qexhaustive, (3.155)

where Qsubset is the number of elements in Ωsubset.

Example 3.7
Figure 3.22 plots the unambiguous phase delays of the d2 baseline as a func-
tion of the unambiguous phase delays of the d1 baseline, i.e. ψ2 vs ψ1. Each
point on this line corresponds to a unique azimuth between θ ∈ [−90◦, 90◦].
The corresponding ambiguity numbers, ρ1 and ρ2, for each phase delay are
also shown. This figure shows that while there are a total of 21 possible com-
binations of ambiguity numbers, only 9 of these combinations will correspond
to a valid AOA estimate. Written as an ordered pair of the form (ρ1, ρ2),
these combinations are (−1,−3), (−1,−2), (−1,−1), (0,−1), (0, 0), (0, 1),
(1, 1), (1, 2) and (1, 3). By only considering the subset of valid combinations,
the number of combinations can be reduced by

21− 9

21
× 100% = 57.1%. (3.156)

Algorithm Complexity

Like the correlative interferometers, a typical execution of the CAS algorithm requires
that the phase delays of each interferometer baseline to be estimated. Assuming that a
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FFT is performed to estimate the phase delays in the frequency domain, as described
by (3.17), the algorithm complexity to estimate the phase delays is O(Φ + M), where
Φ = KN log2N represents the number of operations to perform the FFT on each an-
tenna output, K is the number of antennas, N is the number of samples and M is the
number of baselines.

The next part of the CAS algorithm involves the grid search for the combination of
ambiguity numbers, i.e. ρ q, that minimises the cost function JCAS(ρ q). For each
ρ q, the computation of the cost function has an algorithm complexity of O(M). The
approximate algorithm complexity of the entire grid search isO(MQsubset), whereQsubset

is the number of ambiguity number combinations that correspond to a valid AOA.
The total approximate algorithm complexity of the CAS algorithm is therefore O(Φ +
M(Qsubset + 1)).

3.7.7 Line Fitting

Recall from (3.117) that the relationship between the measured phase delays for two
interferometer baselines can be written as

ψ̃k =
dk
dm

ψ̃m + 2π

(
dk
dm

ρm − ρk
)
. (3.157)

This expression is essentially the equation of a line of the form y = αx + β, where the
dependent value is y = ψ̃k, the independent value is x = ψ̃m, the slope is α = dk/dm
and the y-axis intercept is β = 2π ((dk/dm)ρm − ρk). For each combination of ambiguity
numbers, the slope remains the same but the y-axis intercept changes. This suggests
that there will be a separate line segment for every combination of ambiguity numbers
which correspond to a valid AOA. In the presence of noise, the ambiguity resolution
algorithm becomes a search for the line segment that is closest to the point representing
the measured phase delays.

Example 3.8
Consider the same two-baseline interferometer as described in Example 3.3,
where d1 = 3λ/2, d2 = 7λ/2, λ = 16.67 mm, f = 18 GHz and θ = 23.42◦.
Figure 3.23 plots the line segments that are formed by the measured, am-
biguous phase delays of the d2 baselines when plotted as a function of the
measured, ambiguous phase delays of the d1 baseline, i.e. ψ̃2 vs ψ̃1. Due to
phase wrapping, the phase delay relationship between ψ2 and ψ1 now corre-
spond to 9 different line segments. Each point on one of these line segments
corresponds to a unique azimuth between θ ∈ [−90◦, 90◦].

Recall that for θ = 23.42◦, the measured, ambiguous phase delays are

ψ̃1 = [ψ1]2π = [214.63◦]2π = −145.37◦ where ρ1 = 1, (3.158)

ψ̃2 = [ψ2]2π = [500.81◦]2π = 140.81◦ where ρ2 = 1. (3.159)

Plotting the point (ψ̃1, ψ̃2) = (−145.37◦, 140.81◦) on Figure 3.23 (as indi-
cated by the red circle) shows that this point falls on the line segment cor-
responding to ρ1 = 1 and ρ2 = 1. These ambiguity numbers match the true
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Figure 3.23: Plot of the ambiguous phase delays of the d2 baseline against the d1 baseline.

ambiguity numbers in (3.158) and (3.159) and so the ambiguity is success-
fully resolved in this example.

The key to the line fitting algorithm is to correctly determine the line segment that
the point representing the measured phase delays lies on. In practice, noise effects will
generally mean that the point will not lie exactly on any line segment. As a result, it
is possible that the wrong line segment is chosen, particularly at low SNR. When this
occurs, the AOA error is significant because the ambiguity numbers corresponding to
adjacent line segments are not incremental.

In order to avoid large AOA estimation errors, the line fitting algorithm works best
for relatively short baselines which have few line segments. If more than two baselines
are available, the line fitting algorithm can be performed on the shortest baselines and
then successively applied to the longer baselines. By omitting any ambiguities resolved
from the shorter baselines, the number of ambiguities in the longer baselines can be
reduced. Once the estimated ambiguity numbers have been found, the AOA can then
be estimated using the longest baseline to provide the best AOA estimation performance
in noise.

Mathematical Approach

The search for the most appropriate line segment can be formulated mathematically as
a search for the line segment with the shortest Euclidean distance to the measured phase
delay point. For a point (x1, y1) and a line y = αx+β, the shortest Euclidean distance,
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JEuclidean, between the point and the line is given by

JEuclidean =
|y1 − αx1 − β|√

α2 + 1
. (3.160)

Writing the phase delay measurements from the dm and dk baseline as an ordered pair,
(x1, y1) = (ψ̃m, ψ̃k), the Euclidean distances from this point to each of the line segments
specified by (3.157) can be written as

Jline(ρ
q) =

dm√
d2
k + d2

m

∣∣∣∣ψ̃k − dk
dm

ψ̃m − 2π

(
dk
dm

ρqm − ρqk
)∣∣∣∣ , (3.161)

where ρ q = {ρqk, ρ
q
m} is a vector representing the q-th combination of ambiguity numbers

from Ωsubset, and ρqk, ρ
q
m represents the ambiguity number of the dk and dm baselines for

the q-th combination respectively. The mathematical line fitting algorithm can there-
fore be considered a search for the combination of ambiguity numbers, ρk and ρm, that
minimises the cost function, Jline(ρ

q).

The line fitting ambiguity resolution algorithm can be extended to M interferometer
baselines as follows,

Jline(ρ
q) =

M∑
m=1

dM√
d2
m + d2

M

∣∣∣∣ψ̃m − dm
dM

ψ̃M − 2π

(
dm
dM

ρqM − ρqm
)∣∣∣∣, (3.162)

where ρ q = {ρq1, ρq2, . . . , ρqM}. Comparing (3.162) with (3.150) shows that the cost
functions for the line fitting and the CAS algorithms are quite similar. The difference

between the two cost functions only lies in the scaling values, dM/
√
d2
m + d2

M and 1/dm
respectively. Since these scaling values do not affect the relationship between the ambi-
guity numbers, ρqm and ρqM , the two cost functions are essentially scaled-equivalents.

Look-Up-Table Approach

The line fitting algorithm can be more efficiently implemented using a look-up-table.
Figure 3.24 represents the plot in Figure 3.23 as a look-up-table with a 20◦ resolution
to resolve the ambiguities of the d2 baseline. In this algorithm, the measured phase
delays are converted into an address that can be used to “look-up” the corresponding
ambiguity numbers from the look-up table [76, 77].

Example 3.9
Consider the same two-baseline interferometer described in Example 3.3,
where d1 = 3λ/2, d2 = 7λ/2, λ = 16.67 mm, f = 18 GHz and θ = 23.42◦.
Recall that for θ = 23.42◦, the measured, ambiguous phase delays are

ψ̃1 = [ψ1]2π = [214.63◦]2π = −145.37◦ where ρ1 = 1, (3.163)

ψ̃2 = [ψ2]2π = [500.81◦]2π = 140.81◦ where ρ2 = 1. (3.164)

Since the look-up-table in Figure 3.24 represents the phases from −180◦ to
180◦ with a 20◦ resolution, the measured phase delays can be converted into
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Figure 3.24: Look-up-table representation of Figure 3.23. Each entry in the look-up-table
represents the corresponding ambiguity number for ρ2 for a given combination of ambiguous
phase delay measurements, ψ̃1 and ψ̃2. Note that the row address is counted upwards and
the column address is counted rightwards.

an equivalent address as follows,

ψ̃1 =⇒ d(−145.37◦ + 180◦)/20◦e ≡ Address 2, (3.165)

ψ̃2 =⇒ d(140.81◦ + 180◦)/20◦e ≡ Address 17, (3.166)

Hence, by looking up the Column 2 for ψ̃1 and the Row 17 for ψ̃2 of the
look-up-table, the estimated ambiguity number for the d2 baseline is ρ2 = 1
and so the ambiguity number is correctly resolved in this example.

The advantage of the look-up table approach is that it can be readily implemented in
digital hardware, particularly field-programmable-gate arrays (FPGAs). Since FPGAs
are designed to rapidly access look-up-tables, this approach can be performed in a single
addressing operation.

A significant drawback of this implementation is that the look-up table quantises the
transition boundaries between two line segments. As previously mentioned, if the wrong
ambiguity number is selected, the AOA errors are significant because the ambiguity
numbers corresponding to adjacent line segments are not incremental. Consequently,
the look-up table must be designed with adequate resolution to minimise the quantisa-
tion errors at the transition boundaries. This tends to result in very large look-up tables
which in turn require large amounts of digital memory.



CHAPTER 3. INTERFEROMETRY 69

A separate look-up-table is required for each pair of interferometer baselines and each
table will generally need to cover the full range of possible phase delay measurements for
the two baselines. For a regular angular resolution, ∆q, a L×L look-up table containing
L2 entries will be required, where

L =

(
2π

∆q
+ 1

)2

. (3.167)

A look-up table with a 1◦ resolution will contain 130, 321 entires, while a look-up table
with a 0.1◦ resolution will contain 12, 967, 201 entries. Thus, the speed advantage of the
look-up table implementation is offset by the hardware resources required to implement
it.

Algorithm Complexity

Like the previous algorithms, the line fitting algorithm requires that the phase delays
of each interferometer baseline to be estimated. Assuming that a FFT is performed
to estimate the phase delays in the frequency domain, as described by (3.17), the al-
gorithm complexity to estimate the phase delays is O(Φ + M), where Φ = KN log2N
represents the number of operations to perform the FFT on each antenna output, K
is the number of antennas, N is the number of samples and M is the number of baselines.

Since the mathematical implementation of the line fitting algorithm is essentially a
scaled equivalent of the CAS algorithm, the algorithm complexity of this approach is
also O(Φ + M(Qsubset + 1)), where Qsubset is the number of ambiguity number combi-
nations that correspond to a valid AOA.

Furthermore, since the look-up-table implementation of the line fitting algorithm can
resolve the ambiguity in a single addressing operation which has an algorithm complexity
of O(1), the total algorithm complexity of this approach is O(Φ +M + 1).

3.8 Performance Comparison

In this section, the RMS error performance of the ambiguity resolution algorithms dis-
cussed in Section 3.7 are evaluated using Monte Carlo simulations and compared against
the square-root of the Cramér-Rao Lower Bounds (CRLB), or root-CRLB.

3.8.1 Cramér-Rao Lower Bound for a Non-Uniform Linear Array

The CRLB for AOA estimation using a non-uniform linear array is derived in Appendix
A.3.1. For a K-antenna non-uniform linear array, the CRLB is given by

CRLB(θ) =
1

ηN
·
(

c

2πf cos θ

)2

· 1

2d̄2
, (3.168)

where

d̄2 =

K∑
k=2

d2
k1 −

1

K

(
K∑
k=2

dk1

)2

, (3.169)
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and dk1 is the distance of the k-th antenna relative to the first (reference) antenna.

Since some algorithms use all antennas and others only use two antennas in their final
AOA estimation, two different CRLBs are defined to reflect the bounds obtained using
(a) the widest antenna pair and (b) all available antennas. The square-root of these
bounds shall be referred to as the “dK1-root-CRLB” and “K-antenna root-CRLB” re-
spectively.

3.8.2 Array Geometry

A 4-antenna non-uniform linear array will be used in these simulations. The antennas
are assumed to be positioned at 0 mm, 106.0 mm, 464.1 mm and 937.5 mm respectively
and are specifically chosen to correspond to the antenna positions used in an experiment
that will be discussed in Chapter 8. Assuming the intercepted signal is a single-tone with
a frequency of f = 9410 MHz, the interferometer baselines are effectively d21 = 3.32λ,
d31 = 14.56λ and d41 = 29.41λ. All antenna spacings are chosen to ensure that no
baseline is an integer multiple of another baseline to allow the ambiguity resolution al-
gorithms to be applied. This array geometry is depicted in Figure 3.25.

1 2 3

464.1 mm

4

937.5 mm

106.0 mm

Figure 3.25: Array geometry for the performance comparison.

The performance comparison will initially be performed on a 3-antenna subset compris-
ing of Antennas 1, 3 and 4. A second comparison will then be conducted using all four
antennas to show that the performance of the algorithms can be improved at low SNR
with additional auxiliary antennas (i.e. Antenna 2).

It should be noted that of all of the ambiguity resolution algorithms discussed in Sec-
tion 3.7, only the MLE algorithm and correlative interferometers simultaneously exploit
the phase delays from all available antennas in their final AOA estimation. The other
ambiguity resolution algorithms use all available antennas for ambiguity resolution, but
ultimately only use the phase delay from the widest antenna pair in its final AOA esti-
mation.

As discussed in [70], there is a small, but statistically significant, performance improve-
ment when all of the antenna outputs are used to estimate the AOA. This statement
can be verified by considering the RMS errors of the interferometer as approximated
by the square root of the CRLB at high SNR. For different antenna configurations, the
expression for the RMS error is identical with the exception of the d̄2 term in (3.168).
When only the widest antenna pair is used to perform the AOA estimation with this
array geometry, it can be shown that

d̄2
41 = 432.47λ2. (3.170)
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In comparison, when all four antennas are used to perform the AOA estimation,

d̄2
4-Ant ≈ 528.88λ2. (3.171)

The RMS errors of the 4-antenna interferometer is therefore expected to be lower than
the RMS errors of the 2-antenna interferometer constructed from the widest antenna
pair by a factor of

√
528.88/432.47 ≈ 1.223. Due to this small but statistically signifi-

cant performance gain, it is generally desirable to use all of the available antennas in the
AOA estimation algorithm. In this performance comparison, it will be assumed that the
correlative interferometers will construct all of the M = K(K − 1)/2 possible baselines
from a K antenna non-uniform linear array.

In general, it is expected that algorithms that use three antennas to estimate the AOA
will also perform better than the d41 baseline interferometer. However, it is interesting
to note that in this particular example, the d̄2 term for the 3-antenna array geometry is
given by

d̄2
3-Ant ≈ 432.49λ2, (3.172)

and so there will be a small, but barely noticeable, difference between the RMS error
performance of the d41 baseline interferometer and the 3-antenna interferometer.

3.8.3 Monte Carlo Simulations

Monte Carlo simulations are used to evaluate the AOA estimation performance of each of
the algorithms discussed in Section 3.7. These simulations assume that the intercepted
signal is a single-tone with a frequency of f = 9410 MHz and so the interferometer
baselines are effectively d21 = 3.32λ, d31 = 14.56λ and d41 = 29.41λ.

The signal is assumed to arrive from an AOA of θ = 23.42◦ and has an initial phase
of ϕ = 0◦. For each noise realisation, it is assumed that N = 2048 digital samples are
collected at a sample interval of ts = 750 ps, which corresponds to a signal duration of
1.536 µs. The phase delays are estimated using the FFT maximum likelihood estimator
implemented using a 2048-point FFT. It is assumed that no scalloping losses occur in
these simulations. The hardware configuration and signal parameters are intentionally
chosen to correspond to an experimental trial that will be discussed in Chapter 7 and
Chapter 8.

RMS Error Comparison

Figure 3.26 to Figure 3.29 show the RMS error performance of each algorithm evaluated
using Q = 10, 000 receiver noise realisations. Most of the algorithms discussed in Section
3.7 have been implemented with the exception of the mathematical line fitting algorithm.
Consideration of this algorithm is omitted since it is functionally equivalent to the CAS
algorithm. In these simulations, the correlative interferometers have been implemented
using a look-up-table with a search resolution of 0.1◦ and the look-up-table line fitting
(LF) algorithm is implemented with a 1◦ angular resolution. Newton’s Method optimi-
sation of the correlative interferometer grid search is allowed to perform a maximum of
Γmax = 100 iterations and the convergence tolerance is set to δθtol = 1◦ × 10−5.
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Figure 3.26 and Figure 3.27 show the RMS error performance of each algorithm using
the 3-antenna array geometry. This figure verifies that there is no noticeable difference
between the expected RMS errors (i.e. root-CRLB) of an AOA estimation algorithm if
only the widest antenna pair or all three antennas is used to perform the AOA estima-
tion. This figure also shows that the CAS and LF algorithms perform asymptotically
well in the sense that they achieve the d41-root-CRLB at SNRs above 8 dB and 9 dB
respectively.

In this example, the performance of the correlative interferometers using the MLE and
least-squares (LS) cost functions have an identical performance. Due to the discrete na-
ture of the look-up table, the grid search of both correlative interferometers are unable
to estimate the AOA beyond a resolution of 0.1◦ and hence consistently suffer from a
quantisation error of 0.02◦ at SNRs above 3 dB. In this example, optimisation of the
grid search estimates using Newton’s Method is able to completely remove the effects
of quantisation. While the maximum number of iterations was set to Γmax = 100 itera-
tions, convergence of the AOA estimates generally occurred after Γactual = 2 iterations.

Figure 3.28 and Figure 3.29 show that with the inclusion of a fourth auxiliary antenna
(i.e. Antenna 2), the SNR thresholds reduce significantly. In this example, the SNR
threshold for the MLE and LS correlative interferometers and the CAS algorithm are
all reduced to −11 dB. The SNR threshold for the LF algorithm is reduced to 1 dB. As
expected, the correlative interferometers are able to achieve the 4-antenna root-CRLB
while the other ambiguity resolution algorithms are only able to achieve the d41-root-
CRLB.

Relative Execution Time

In addition to computing the AOA accuracy of each algorithm, these Monte Carlo
simulations also measured the average execution time of each algorithm. It should be
noted that the absolute execution time of each algorithm is a system-dependent metric
that is dependent on a number of factors, including

• the computing hardware used to run the simulations,

• the efficiency of the programming language, and

• the efficiency of the program code.

The absolute execution times are therefore a meaningless metric since a slow algorithm
may simply be the result of slow computing hardware or inefficient programming. How-
ever, the relative execution time of each algorithm is still a useful indicator of the
algorithm’s relative computational speed.

Table 3.4 shows the average relative execution time of each algorithm while perform-
ing a single AOA estimation using the 4-antenna array geometry described in Section
3.8.2. These values have been normalised to the execution time of a so-called “SODA
interferometer” that will be introduced in the next chapter. This normalisation is in-
tentionally performed to allow a direct comparison of the relative execution time with
the algorithms that will be introduced in the subsequent chapters. The algorithms are
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Figure 3.26: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 3 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations. The “Opt.” label indicates that Newton’s Method
optimisation has been performed.
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Figure 3.27: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 3 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations.
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Figure 3.28: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 4 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations. The “Opt.” label indicates that Newton’s Method
optimisation has been performed.
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Figure 3.29: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 4 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations.
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Algorithm Algorithm Complexity Relative Time

LF O(Φ +M + 1) 1.03
CAS O(Φ +M(Qsubset + 1)) 1.22
MLE / COS O(Φ +M(G+ 1)) 12.42
MLE / COS (Opt.) O(Φ +M(G+ 2Γ + 1)) 12.55
LS O(Φ +M(G+ 1)) 136.34
LS (Opt.) O(Φ +M(G+ 2Γ + 1)) 136.94

Table 3.4: Relative execution times for the conventional ambiguity resolution algorithms.
The “Opt.” label indicates that Newton’s Method optimisation has been performed.

presented in the order of increasing execution time, i.e. from fastest to slowest.

This table verifies that the LF algorithm is the fastest conventional ambiguity resolution
algorithm. The CAS algorithm has a comparable performance to the LF algorithm.
The correlative interferometers are considerably slower with the MLE algorithm being
approximately one order of magnitude slower and the LS algorithm approximately two
orders of magnitude slower than the LF algorithm.

3.9 Other Considerations

3.9.1 Multiple Signals

The interferometers described in this chapter all assume that the phase delay between
two antennas has the form specified by (3.10). However, this expression is only valid
when a single signal is illuminating the antenna array. If two or more signals are simul-
taneously illuminating the antenna array, the output of each antenna will be a superpo-
sition of the signal waveforms and so the phase delay can no longer be represented by
(3.10). In order to correctly estimate the AOA of each signal a method of isolating the
individual phase delay from each signal is required prior to the AOA estimation.

As discussed in Section 3.4.1, one method of isolating the individual phase delays of
each signal is to use a FFT algorithm to transform the phase delay information from
the time-domain into the frequency-domain as described by (3.17). The phase delays
of multiple signals can then be isolated to the individual frequency bins of the FFT
provided that the signals have different frequencies.

Finally, it should be mentioned that beamforming and array processing methods can
inherently estimate the AOA of multiple signals. These techniques will be discussed in
Chapter 5.

3.9.2 Optimal Linear Array Geometries

The ambiguity resolution algorithms and examples discussed in this chapter have all
been presented using arbitrarily chosen linear array geometries. Other than requiring
that the interferometer baselines be non-integer multiples of each other, there was no
discussion on the optimal number of antennas or the optimal antenna positions for
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a given aperture. The number of antennas and their positions have two important
implications on the performance of the interferometer, namely

i the aperture of the array, i.e. the length of the widest antenna pair, approximately
governs the magnitude of the RMS error of the AOA estimation in the presence
of noise, and

ii the sparsity of the array, i.e. how far apart the antennas are spaced, affect the
number of ambiguities and how far apart the ambiguities are, i.e. the magnitudes
and positions of the sidelobes, which in turn affect the ability of the ambiguity
resolution algorithms to correctly resolve the ambiguities.

Due to the inverse relationship between the interferometer baseline and its RMS error
performance, the length of the widest antenna pair is generally chosen to be as long as
practically tolerable, subject to the mounting and physical constraints of the application
and the ability of the ambiguity resolution algorithm to robustly resolve the ambiguities.

The robustness of the ambiguity resolution algorithm significantly depends on the num-
ber of antennas and their positions. In general, for a given aperture, the extent of
the sparsity of the antenna array determines the robustness of the ambiguity resolu-
tion algorithm in the presence of noise. By using more antennas or by reducing the
spacing between antennas, the sparsity of the antenna array can be reduced such that
the ambiguities of each baseline are spaced further apart and so the ambiguities from
multiple baselines are unlikely to correlate at angles other than the signal’s AOA. In
other words, there will be lower sidelobes in the correlation cost function and so the am-
biguity resolution algorithm will more likely resolve the ambiguities correctly. On the
other hand, if less antennas are used or the spacing between antennas are increased, the
sparsity of the antenna array will increase so that the ambiguities of each baseline are
spaced closer together and so ambiguities from multiple baselines are likely to correlate
at angles other than the signal’s AOA. In other words, there will be higher sidelobes
in the correlation cost function and so the ambiguity resolution algorithm will be more
susceptible to ambiguity resolution errors.

Hence, the number of antennas and their positions are important design considerations
which affect the robustness of the ambiguity resolution algorithms. While there has been
extensive research into the problem of optimal non-uniform linear array geometries [78–
83], in general there is no single optimal design formula for linear array geometries. For
the purposes of this thesis, the problem of optimal array geometries is considered to be
beyond the scope of this research. Rather, in Chapter 4, a specific array geometry will
be presented which can be exploited in a manner that achieves unambiguous, high accu-
racy AOA estimates in a more computationally efficient manner than the conventional
interferometric methods presented in this chapter. This array geometry will form the
basis of all subsequent discussions in this thesis.

3.9.3 Field-of-View

The field-of-view (FOV) of an interferometer is an important design consideration as it
specifies the range of angles that the interferometer can estimate the AOA of a signal
with reasonable accuracy. There are two aspects to the FOV consideration, namely the
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range of angles that can be viewed and the accuracy associated with the FOV.

For a linear array, the range of angles that can be estimated by an interferometer is
limited by its AOA estimation performance in the endfire region. In these regions, the
AOA approaches ±90◦ and so the corresponding phase delay approaches ±π. With
the addition of noise errors, the measured phase delays can cross the ±π boundary
which results in large AOA estimation errors since a signal arriving from 90◦ may be
estimated as arriving from −90◦ and vice versa. These large AOA estimation errors
therefore reduce the practical FOV of the interferometer. From (3.44), the practical
FOV of an interferometer with a RMS error tolerance, δθtol, may be approximated by

FOV ≈ 2 arccos

(
1√
ηN
· c

2πfdδθtol

)
. (3.173)

This expression shows that FOV of an interferometer is dependent on the the SNR of
the signal, the operating frequency, the signal duration (or number of samples) and
the interferometer baseline (or array aperture). Figure 3.30 and Figure 3.31 show the
maximum FOV for a number of error tolerances as a function of SNR and frequency
respectively. These figures assume that the interferometer baseline is unambiguous (i.e.
d = λ/2) and demonstrate that the FOV increases with SNR and frequency. Similarly,
Figure 3.32 shows the maximum FOV for a number of maximum error tolerances as a
function of the aperture of the interferometer. This figure assumes that the SNR is 15
dB and the frequency is f = 18 GHz. This figure demonstrates that the FOV increases
as the array aperture increases.

360◦ FOV Using Linear Arrays

It is well known in array processing literature that linear antenna arrays are unable to
distinguish the phase delays from signals arriving from a cone centred along the array
axis due to symmetry. This is a geometric ambiguity and is not to be confused with
the phase measurement ambiguities associated with long baseline interferometers. If the
elevation component of the AOA is ignored, the cone of geometric ambiguities reduces
to a 180◦ ambiguity problem, where it is not known whether a signal is arriving from
the “front” or “back” hemispheres of the array as illustrated in Figure 3.33.

Due to the 180◦ geometric ambiguity problem, linear array interferometers are often de-
scribed as having a FOV between [−90◦, 90◦]. For linear arrays, a “sensing” mechanism
is required to resolve this ambiguity. This can be achieved by using directional, “sense”
antennas to determine whether a signal comes from the front or back hemispheres. Al-
ternatively, directional antennas with beampatterns that inherently reject signals from
the rear hemisphere, such as horns or cavity-backed spirals, can be used.

Furthermore, Figure 3.30 to Figure 3.32 show that the FOV of a linear array interferom-
eter is typically less 180◦, particularly at low SNR. This reduction in FOV is attributed
to the fact that random errors in the phase delay measurements can cause large AOA
estimation errors when the phase delay measurements straddle the ψ̃ = ±π boundary.

As a result of the above, three or more independent linear arrays with different rota-
tion angles, or “looking” angles, are required to obtain a reliable 360◦ field-of-view as
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Figure 3.30: Comparison of the FOV of an interferometer as a function of SNR at various
error tolerances. Simulation parameters: f = 18 GHz, d = λ/2, λ = 16.67 mm, N = 2048
samples, and ts = 750 ps.

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

Frequency (GHz)

M
ax

im
um

 F
O

V
 (

de
g)

FOV vs Frequency

 

 

δθ
tol

 = 0.5° RMS

δθ
tol

 = 1.0° RMS

δθ
tol

 = 2.0° RMS

δθ
tol

 = 5.0° RMS

δθ
tol

 = 10.0° RMS

Figure 3.31: Comparison of the FOV of an interferometer as a function of frequency at
various error tolerances. Simulation parameters: η = 15 dB, d = λ/2, λ = 16.67 mm,
N = 2048 samples, and ts = 750 ps.
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Figure 3.32: Comparison of the FOV of an interferometer as a function of the array aperture
with various error tolerances. Simulation parameters: η = 15 dB, f = 18 GHz, N = 2048
samples, and tS = 750 ps.
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Figure 3.33: Linear arrays are unable to distinguish between signals arriving from the “front”
or “back” hemispheres due to the geometric symmetry.
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Figure 3.34: Multiple independent linear arrays are required to obtain a 360◦ field-of-view.

depicted in Figure 3.34. For these systems, the AOA estimation of each “arm” may be
considered as a self-contained direction finding system, or may include the phase delay
measurements from different arms. The ambiguity resolution algorithms described in
this chapter can still be applied to these systems. When combining the phase delay
or AOA estimates from different arms, the rotational offset angles must be taken into
account. That is, the phase delay relationship with the AOA becomes

ψm =
2πfdm
c

sin(θ − ϑarm), (3.174)

where ϑarm is the rotation angle of the interferometer arm relative to some reference.

360◦ FOV Using Circular Arrays

The 180◦ geometric ambiguity problem of linear arrays can be avoided by using non-
linear array geometries. For radar intercept receivers, uniform circular arrays are often
used to achieve a 360◦ field-of-view. Unlike linear arrays which have a non-uniform per-
formance between broadside and endfire, the uniform geometry of circular arrays have
a more consistent performance at all azimuth angles.

3.10 Summary

This chapter has discussed the theory of contemporary interferometry. For short-baseline
interferometers, the maximum likelihood estimator and two time-domain estimators
were presented and their performance in noise was evaluated. All estimators were shown
to be asymptotically efficient, i.e. they achieve the root-CRLB at high SNR. The max-
imum likelihood estimator offered the best AOA estimation performance at low SNR
and can estimate the AOA of multiple signals simultaneously provided the signals are
sufficiently separated in frequency. The two time-domain methods were computationally
faster but can only estimate the AOA of one narrowband signal at a time and only work
well at high SNR.

This chapter has also shown that long baseline interferometers offer improved AOA
accuracy in the presence of noise. However, due to the circular nature of phase mea-
surements, long baseline interferometers suffer from phase ambiguities which must be
resolved with ambiguity resolution algorithms using either independent AOA estimation
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Figure 3.35: A circular array geometry.

algorithms or multiple interferometer baselines. Independent AOA estimation methods,
such as amplitude comparison or TDOA, can be used to resolve the phase ambiguities.
Alternatively, a short-baseline interferometer may be included to resolve the ambigu-
ities. However, such methods impose further design constraints on the antenna array
which may not be achievable in practice.

Alternatively, multiple carefully-chosen, long baseline interferometers can be used to re-
solve the ambiguities. A number of contemporary ambiguity resolution algorithms were
presented and compared. The correlative interferometer (and maximum likelihood esti-
mator) was shown to be able to coherently exploit the phase delay measurements from
all antenna baselines to give a asymptotically efficient AOA estimation performance that
achieves the root-CRLB at high SNR. However, the correlative interferometer was also
shown to be a computationally intensive algorithm and is generally one or more orders
of magnitude slower than other slightly sub-optimal methods.

The CAS algorithm is computationally faster, however, the AOA estimation performance
only achieves the d41-root-CRLB corresponding to the widest antenna pair. While this
performance degradation is statistically significant, the absolute degradation is typically
less than a fraction of a degree for large apertures and may be acceptable in practical
systems which require computationally fast algorithms, such as ES systems.

The look-up-table implementation of the LF algorithm was shown to be the most com-
putationally efficient algorithm and achieves the same AOA estimation accuracy as the
CAS algorithm at high SNR. However, any errors in the ambiguity resolution (either
due to noise or quantisation errors) can cause significant AOA estimation errors.

The performance comparison of the long baseline interferometers suggests that the LF
and CAS algorithms are computationally fast and near-optimal AOA estimators at high
SNR. Hence, these algorithms are ideally suited for implementation in ES and ELINT
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systems to provide near real-time surveillance using physically large wideband antennas
and sparse array geometries. Additional auxiliary antennas may be required to maintain
good performance at low SNR. Alternatively, the correlative interferometers may be used
to obtain better performance at low SNR at the expense of a greater computation time
and so is suited for offline or less time-critical systems, such as ELINT systems.



Chapter 4

Interferometry Using Second
Order Difference Arrays

4.1 Introduction

In the previous chapter, some contemporary multi-baseline interferometric implemen-
tations suitable for ES and ELINT systems were discussed. It was shown that while
a short-baseline interferometer can provide unambiguous AOA estimation in a compu-
tationally efficient manner, the accuracy of short baseline interferometers are relatively
coarse. Longer baselines offer greater accuracies but require the use of ambiguity reso-
lution algorithms. At high SNR, statistically optimal methods can significantly increase
the computation time of the algorithm while slightly sub-optimal methods can be one
or two orders of magnitude faster.

In this chapter, an alternative interferometric algorithm based on a second-order differ-
ence array (SODA) is considered. This so-called SODA interferometer will be shown to
be a computationally fast algorithm that provides unambiguous AOA estimation using
two long baselines with an AOA estimation performance comparable to a short-baseline
interferometer. It will also be shown that the accuracy of the AOA estimation can fur-
ther be improved by combining the SODA interferometer with some of the conventional
(“first-order”) ambiguity resolution methods discussed in the previous chapter.

The use of SODA geometries for unambiguous AOA estimation is not a new concept.
In [3], Jones et al. used a similar interferometric architecture to perform meteorological
studies. The wide antenna spacings allowed the authors to reduce the effects of mu-
tual coupling by using longer baselines. However, the authors only considered relatively
short apertures. More recently, Ballal and Bleakley [84–86] provided a rigorous math-
ematical proof to show that the principles of second-order differences can be used to
unambiguously estimate the time delay between three sensors. The authors noted that
the unambiguous time delay can be readily translated to an equivalent phase delay for
AOA estimation. Finally, many studies have been undertaken in the array processing
literature on the topic of virtual interpolated arrays for beamforming and array process-
ing techniques [45, 87–89]

While the use of SODA geometries has been previously considered in other applications,

83
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Figure 4.1: A collinear array with three antennas.

to the knowledge of the author an extensive study of the AOA estimation performance
and algorithm complexity of the SODA interferometer has not been considered be-
fore. Furthermore, the enhancement of the AOA estimation performance by combining
the SODA interferometer with conventional “first-order” ambiguity resolution methods
to derive optimal AOA estimates in a computationally efficient manner has not been
considered before. Finally, the application of SODA interferometry to the electronic
surveillance problem introduces a number of practical considerations that have not been
previously addressed, such as its performance over a wide frequency range and its ability
to obtain unambiguous AOA estimation using sparse large aperture arrays.

4.2 SODA Interferometry

4.2.1 Unambiguous AOA Estimation

Consider a collinear array with three antennas as depicted in Figure 4.1. The unambigu-
ous “first-order” phase delays for the d21 and d32 baselines, i.e. ψ21 and ψ32 respectively,
are given by

ψ21 =
2πfd21

c
sin θ, (4.1)

ψ32 =
2πfd32

c
sin θ, (4.2)

where it is assumed that d32 > d21 � λmin/2 and λmin corresponds to the wavelength of
the highest frequency of interest. The long baselines suggest that the phase delays are
highly ambiguous.

The “second-order” phase delay, ψ∆, can be calculated as the difference between the
first-order phase delays as follows,

ψ∆ = ψ32 − ψ21 =
2πf(d32 − d21)

c
sin θ =

2πfd∆

c
sin θ, (4.3)

where
d∆ = d32 − d21, (4.4)
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Figure 4.2: Array geometry for a SODA interferometer.

and is termed the second-order baseline. Since the expression for ψ∆ has the same
mathematical form as the first-order phase delays, the second-order phase delay can be
unambiguous, i.e. ψ∆ ∈ [−π, π], provided that the second-order baseline is sufficiently
short in the sense that the following constraint is satisfied,

0 < d∆ ≤
λmin

2
, (4.5)

where λmin is the wavelength of the highest frequency of interest. This constraint is
depicted graphically in Figure 4.2. Provided that (4.5) is satisfied, the AOA of the signal
can be unambiguously estimated using the so-called SODA interferometer as follows

θ̂ = arcsin

(
cψ∆

2πfd∆

)
. (4.6)

In this thesis, the terms “second-order” and “SODA” will be used interchangeably and
so the parameters, ψ∆ and d∆, may also be referred to as the SODA phase delay and
SODA baseline respectively.

4.2.2 Correction for Ambiguous Phase Delay Measurements

In the above formulation, the signs of the unambiguous first-order phase delays, ψ21 and
ψ32, are expected to be the same for any given AOA. That is, ψ21 and ψ32 are both
positive for positive AOA and are both negative for negative AOA. Furthermore, since
it is assumed that d32 > d21, it is expected that the magnitude of ψ32 will be greater
than ψ21, i.e. |ψ32| > |ψ21|. These two properties will ensure that the second-order
phase delay, as computed by (4.3), will be in the interval ψ∆ ∈ [−π, π].

However, in practice, the second-order phase delay, ψ∆, must be estimated from the
measured, ambiguous first-order phase delays, ψ̃21 ∈ [−π, π] and ψ̃32 ∈ [−π, π], where

ψ̃21 = [ψ21]2π, (4.7)

ψ̃32 = [ψ32]2π, (4.8)

and [ · ]2π represents the modulo 2π operation. Due to the effects of phase wrapping,
the signs of ψ̃21 and ψ̃32 may differ and the magnitude of ψ̃32 may not necessarily be
greater than ψ̃21. The combination of these two effects may cause the difference between
the measured first-order phase delays, i.e. ψ̃32− ψ̃21, to fall outside the interval [−π, π].
The following correction is therefore required to ensure that the estimated second-order
phase delay, ψ̃∆, lies in the interval [−π, π],

ψ̃∆ =
[
ψ̃32 − ψ̃21

]
2π
. (4.9)
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Even though a modulo 2π operation is used, ψ̃∆ is still guaranteed to be unambiguous
since the corresponding second-order baseline is short, i.e. d∆ ≤ λmin/2. The expression
(4.9) can be considered as the SODA ambiguity resolution algorithm since its purpose
is to convert the ambiguous first-order phase delays to an unambiguous second-order
phase delay.

4.2.3 Algorithm Complexity

As with conventional interferometry, a typical execution of the SODA interferometer re-
quires that the phase delays of each first-order interferometer baseline to be estimated.
Assuming that a FFT is performed to estimate the phase delays in the frequency do-
main as described by (3.17), the algorithm complexity to estimate the phase delays is
O(Φ + M), where Φ = KN log2N represents the number of operations to perform the
FFT on each antenna output, K is the number of antennas, N is the number of samples
and M is the number of baselines.

The SODA ambiguity resolution algorithm is very fast since it only involves a single
difference operation and an interval test to ensure that ψ∆ lies within [−π, π]. This has
an algorithm complexity of O(1). The approximate total algorithm complexity for the
SODA interferometer is therefore O(Φ +M + 1).

4.2.4 Alternate Expressions for the SODA Baseline Constraint

For the purposes of designing SODA geometries, it is sometimes convenient to re-express
the SODA baseline constraint (4.4) in terms of other first-order baselines. For a given
d21 baseline, a SODA geometry requires

d32 = d21 + d∆. (4.10)

Alternatively, since d31 = d21 + d32, a SODA geometry requires that

d31 = 2d21 + d∆. (4.11)

With this notation, the second-order phase delay is given by ψ̃∆ = [ψ̃31 − 2ψ̃21]2π =
[ψ̃32 − ψ̃21]2π. Provided that (4.5) is satisfied, then regardless of the physical lengths of
d21, d32 and d31, the same unambiguous second-order baseline, d∆, is formed. In other
words, the AOA estimation performance of the SODA interferometer is independent of
the physical first-order baselines (and hence physical array aperture) because the same
virtual aperture is formed.

Example 4.1
Consider the same two-baseline interferometer described in Example 3.3,
where d21 = 3λ/2, d31 = 7λ/2, λ = 16.67 mm, f = 18 GHz and θ = 23.42◦.
In this exaple, d21 and d31 satisfy the SODA baseline constraint in (4.11)
with d∆ = λ/2, i.e.

d31 = 7λ/2 = 2(3λ/2) + λ/2 = 2d21 + λ/2. (4.12)
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For θ = 23.42◦, the measured first-order ambiguous phase delays are given
by

ψ̃21 = [ψ1]2π = [214.63◦]2π = −145.37◦, (4.13)

ψ̃31 = [ψ2]2π = [500.81◦]2π = 140.81◦. (4.14)

The second-order phase delay can therefore be calculated as

ψ̃∆ =
[
ψ̃31 − 2ψ̃21

]
2π

= [140.81◦ − 2× (−145.37◦)]2π = 71.55◦. (4.15)

Applying the second-order variables to the SODA interferometer gives

θ̂ = arcsin

(
cψ̃∆

2πfd∆

)
= 23.42◦. (4.16)

4.2.5 RMS Error of the SODA Interferometer

The SODA interferometer is able to perform unambiguous AOA estimation using a
sparse array geometry because the first-order interferometric baselines have been specif-
ically chosen so that the ambiguities in the first-order interferometers cancel each other
to leave a residual phase delay that is unambiguously related to the signal’s AOA. This is
equivalent to the creation of a virtual pair of antennas with a baseline of d∆ as depicted
in Figure 4.3.

d
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d
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d
32
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Figure 4.3: A SODA interferometer effectively creates a virtual short-baseline interferometer
from a sparse antenna array.

The RMS error of the SODA interferometer is expected to be slightly worse than an
equivalent first-order interferometer with a physical baseline of d∆. This performance
degradation is attributed to the fact that three antenna outputs are used to estimate
the phase delay of a (virtual) 2-antenna interferometer. The extra antenna output is
expected to introduce more noise to the phase delay estimation and hence lead to a
reduced AOA estimation performance.

Consider a 2-antenna first-order interferometer with a physical baseline of d21,first-order =
λmin/2. For a given AOA, the first-order phase delay is computed as the difference
between two phase measurements (as discussed in Section 3.4), as follows,

ψ̃21,first-order = ∠X2(f)X∗1 (f) = [∠X2(f)− ∠X1(f)]2π =
[
Φ̃2 − Φ̃1

]
2π
, (4.17)

where Φ̃1 = ∠X1(f) and Φ̃2 = ∠X2(f) are the phase measurements of each channel
and are assumed to have an associated variance σ2

Φ1
and σ2

Φ2
respectively. For a multi-

channel system with identical components in each channel, it is reasonable to assume
that the variance of the phase measurements is the same for each channel, i.e., let

σ2
Φ = σ2

Φ1
= σ2

Φ2
. (4.18)
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From (4.18) and (3.25), the corresponding variance of the first-order phase delay esti-
mate, σ2

ψ21,first-order, can then be written as

σ2
ψ21,first-order = σ2

Φ1
+ σ2

Φ2
= 2σ2

Φ ≡
1

ηN
, (4.19)

Now consider a 3-antenna SODA interferometer with a virtual baseline of d∆ = λmin/2.
For a given angle, the second-order phase delay is computed as the difference between
the first-order phase delays as follows,

ψ̃∆ =
[
ψ̃32 − ψ̃21

]
2π
, (4.20)

=
[
(Φ̃3 − Φ̃2)− (Φ̃2 − Φ̃1)

]
2π
, (4.21)

=
[
Φ̃3 − 2Φ̃2 + Φ̃1

]
2π
, (4.22)

where Φ̃1 = ∠X1(f), Φ̃2 = ∠X2(f) and Φ̃3 = ∠X3(f) are the phase measurements in
the first, second and third channels respectively and are assumed to have an associated
variance σ2

Φ1
, σ2

Φ2
and σ2

Φ3
respectively. In [90], it was shown that the coefficients of

a linear combination of independent random variables is squared when computing the
variance of the linear combination. That is, given W = α1X1 +α2X2 +α3X3, where X1,
X2 and X3 are independent random variables and α1, α2 and α3 are constant coefficients,
the variance of W , is given by

Var{W} = α2
1Var{X1}+ α2

2Var{X2}+ α2
3Var{X3}. (4.23)

Applying (4.23) to (4.22) gives the variance of the second-order phase delay estimate,
σ2
ψ∆

, as follows

σ2
ψ∆

= σ2
Φ3

+ 4σ2
Φ2

+ σ2
Φ1
. (4.24)

Again, assuming that the variance of the phase measurements in each channel are the
same, i.e. let

σ2
Φ = σ2

Φ1
= σ2

Φ2
= σ2

Φ3
, (4.25)

the variance of the second-order phase delay estimate, σ2
ψ∆

, simplifies to

σ2
ψ∆

= σ2
Φ3

+ 4σ2
Φ2

+ σ2
Φ1

= 6σ2
Φ ≡ 3 · 1

ηN
. (4.26)

Since the physical first-order interferometer and the virtual SODA interferometer have
the same aperture, i.e. d21,first-order = d∆ = λmin/2, it is expected that the RMS errors
of both interferometers will be comparable. However, inspection of (4.19) and (4.26)
shows that the variance of the second-order phase delay estimate is three times higher
than the equivalent first-order phase delay estimate, i.e.

σ2
ψ∆

σ2
ψ21,first-order

= 3. (4.27)

Thus, the standard deviation (or RMS error) of the second-order phase delay is a factor
of
√

3 times higher than the RMS error of the equivalent first-order phase delay. From
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(3.27), it is expected that the equivalent physical first-order interferometer will have a
RMS error, δθRMS, first-order, given by

δθRMS, first-order ≈
1√
ηN
· c

2πfd∆ cos θ
, (4.28)

where d21,first-order = d∆ and 1/
√
ηN represents the RMS error of the phase delay esti-

mation. On the other hand, the SODA interferometer is expected to have a RMS error,
δθRMS, SODA, given by

δθRMS, SODA ≈
√

3 · 1√
ηN
· c

2πfd∆ cos θ
≡
√

3 · δθRMS, first-order. (4.29)

4.2.6 Performance Evaluation

In this section, Monte Carlo simulations are used to evaluate the AOA estimation per-
formance of the SODA interferometer and the equivalent first-order interferometer with
the same physical baseline, d∆. In these simulations, the SODA baseline is assumed to
be d∆ = λ/2, where λ is the wavelength of the signal frequency. The first-order baseline,
d21, has been arbitrarily chosen to be 3λ/2, and so from (4.11), d31 = 7λ/2.

Figure 4.4 shows the RMS error performance of the interferometers as a function of
AOA at a SNR of η = 15 dB and signal frequency of f = 18 GHz using 10,000 Monte
Carlo receiver noise realisations. The RMS errors are compared against the square-root
of the Cramér-Rao Lower Bound (CRLB) obtained using (a) the d∆ baseline, and (b)
all available antennas. These bounds are referred to as the “d∆-root-CRLB” and the
“3-antenna root-CRLB” respectively.

This example shows that while the RMS errors of the equivalent first-order interfer-
ometer achieves the d∆-root-CRLB, the RMS errors of the SODA interferometer is
consistently a factor of

√
3 worse than the first-order interferometer. However, in ab-

solute terms, this performance degradation is less than 1◦ RMS within the interval
θ ∈ [−82◦, 82◦]. This figure also shows that the performance of the SODA interferome-
ter is approximately 12 times worse than the 3-antenna root-CRLB.

Figure 4.5 shows the AOA estimation performance of the interferometers at θ = 70◦ as
a function of frequency. The angle, θ = 70◦, is chosen to correspond to the expected
limit of the FOV at 2 GHz with a maximum error tolerance of 2◦ RMS (see Figure 3.31).
This simulation verifies that the relative performance of the SODA interferometer and
equivalent first-order interferometer are consistent at all frequencies.

Finally, Figure 4.6 shows the AOA estimation performance of the SODA interferometer
as a function of both frequency and the d31 baseline. In this simulation, the RMS errors
are calculated over all angles between −70◦ and 70◦ in 1◦ intervals using 100 Monte
Carlo receiver noise realisations at each angle. This simulation verifies that the AOA
estimation performance of the SODA interferometer is independent of the first-order
baselines.
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4.3 SODA-Cued Ambiguity Resolution

The previous section demonstrated that the unambiguous AOA estimation performance
of the SODA interferometer is limited to a virtual, short-baseline, d∆, and does not take
advantage of the higher accuracy offered by the longer physical first-order baselines, i.e.
d21, d32 or d31. By comparing (4.29) with (4.28), the longest first-order baseline, d31, is
expected to offer an improvement in the AOA estimation by a factor of

Improvement =
√

3 · d31

d∆
. (4.30)

Alternatively, if all three first-order baselines are used, then using (4.11) and (4.29) with
the expressions for the CRLB, as described by (3.168), the improvement in the AOA
estimation is given by

Improvement = 2 ·
√

3

(
d21

d∆

)2

+ 3

(
d21

d∆

)
+ 1. (4.31)

The significant improvement in the AOA estimation provides a motivation to use the
relatively coarse SODA AOA estimate to cue the conventional first-order ambiguity
resolution methods discussed in Section 3.6 and Section 3.7. Such methods will allow
high accuracy AOA estimates to be obtained in a computationally efficient manner.

Example 4.2
Consider the 3-antenna interferometer discussed in Example 4.1 where d∆ =
λ/2, d21 = 3λ/2 and d31 = 7λ/2. In this example, the first-order baseline, d31
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Figure 4.7: The unambiguous second-order phase delay can be used to successively resolve
the ambiguities of the longer first-order baselines.

is expected to offer an improvement in the RMS error of the AOA estimation
of the SODA interferometer by a factor of

Improvement =
√

3
7λ/2

λ/2
≈ 12.12. (4.32)

If all three antennas are used, the RMS error can be improved by a factor of

Improvement = 2 ·
√

3

(
3λ/2

λ/2

)2

+ 3

(
3λ/2

λ/2

)
+ 1 ≈ 12.17. (4.33)

These figures are consistent with the simulation results observed in Figure
4.4.

4.3.1 SODA-Based Inference (SBI) Interferometer

One method of improving the SODA AOA estimate is to use the virtual short baseline
of the SODA interferometer as the unambiguous short-baseline interferometer as de-
scribed in Section 3.6.2. In this case, the unambiguous second-order phase delay is used
to successively resolve the ambiguities of the first-order baselines, which are assumed to
be sorted into ascending order. In other words, the ambiguities of the long first-order
baselines can be resolved using the following phase delay set, Ψ = {ψ̃∆, ψ̃21, ψ̃31}, and
their corresponding baselines, D = {d∆, d21, d31}, with the algorithm described in Sec-
tion 3.6.2. The final AOA estimate can then be obtained from the resolved phase delay
of the d31 baseline. This process is depicted in Figure 4.7 and shall be referred to as the
SODA-Based Inference (SBI) interferometer.

While the AOA estimation performance of the SODA interferometer is independent of
the first-order baselines, the coarse accuracy of the SODA interferometer places an upper
limit on the maximum length of the d21 baseline for the SBI interferometer. From (3.49)
and (4.29), the upper limit for the d21 baseline is given by

d21 ≤ d∆ ·
π

3
√

3
cos θmax

√
ηN. (4.34)
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This suggests that the maximum aperture of the array will also be constrained through
(4.11). If a large aperture is desired and the corresponding d21 baseline cannot satisfy
(4.34), additional auxiliary antennas may be used to provide shorter intermediate base-
lines to satisfy (4.34). However, this performance improvement comes at the expense of
additional receiver channels.

Since the SBI interferometer needs to resolve the ambiguity in each successively longer
baseline, this ambiguity resolution method has an algorithm complexity of O(M), where
M is the number of interferometer baselines. In the simplest case, M = 3 which com-
prises of the SODA baseline, d∆, and two first-order baselines, d21 and d31. Additional
auxiliary antennas may be used to improve the ambiguity resolution performance of the
SBI interferometer at low SNR, in which case, M > 3. Since the estimation of the phase
delays has an algorithm complexity of O(Φ+M), the total algorithm complexity for the
SBI interferometer is therefore O(Φ + 2M), where Φ = KN log2N , K is the number of
antennas and N is the number of samples.

The SBI interferometer is computationally faster than the first-order common angle
search (CAS) algorithm and correlative interferometers discussed in the previous chap-
ter. However, the SBI interferometer is also more sensitive to noise errors since any
resolution errors in the shorter baselines will be compounded with each successive in-
ference. When an ambiguity resolution error occurs, the error of the SBI interferometer
will be comparable to the SODA AOA estimate.

4.3.2 SODA-Cued Correlative Interferometer

The SODA AOA estimate can also be used to reduce the search space (and hence com-
putation time) of the correlative interferometer. For very sparse arrays, the SODA-cued
search space may also improve the AOA estimation performance of the correlative in-
terferometer by ignoring ambiguous angles with high sidelobes in the correlation cost
function.

For a linear array, the search interval of a correlative interferometer will typically be
[−90◦, 90◦]. With the SODA AOA estimate, θ̂SODA, this search space can be reduced to
the interval [θ̂SODA − δθsearch, θ̂SODA + δθsearch], where δθsearch is the number of angles
either side of θ̂SODA to search. While the full search interval spans 180◦, the reduced
interval only spans 2δθ̂search degrees. As a rule of thumb, a reasonable limit for the
search angle would be three times the RMS error of the SODA AOA estimate, i.e.
δθsearch = 3δθRMS,SODA.

Example 4.3
Consider the same array geometry as described in Example 3.5, where d21 =
3λ/2, d31 = 7λ/2 and λ = 16.67 mm. Figure 4.8 shows the output of the
correlative interferometer using a cosine cost function when the signal AOA
is θ = 23.42◦. Assuming a SNR of η = 15 dB, signal frequency of f = 18
GHz and N = 2048 samples, the RMS error of the SODA AOA estimate can
be calculated from (4.29) to be about 0.14◦. In one particular realisation,
the SODA interferometer estimates the AOA of the signal to be θ̂SODA =
23.48◦. The corresponding search space for the correlative interferometer
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Figure 4.8: The SODA AOA estimate can be used to reduce the search range of the correl-
ative interferometer.

can therefore be reduced from [−90◦, 90◦] to [23.06◦, 23.90◦]. This means
that only 0.46% of the full search space needs to be searched.

In general, the grid search estimate of the SODA-cued correlative interferometer will
still need to be refined using an optimisation algorithm, such as Newton’s Method, to
further improve the AOA estimation. At high SNR, it is reasonable to expect that the
RMS error of the SODA AOA estimate is sufficiently small that the AOA estimate falls
within the main lobe of the correlative interferometer’s cost function. If this the case, an
alternative implementation of the SODA-cued correlative interferometer is to bypass the
grid search altogether and simply use the SODA AOA estimate as the initial estimate
to the optimisation algorithm.

The complexity of the SODA-cued correlative interferometer is O(Φ+M(G′+Γ+1)+1),
where Φ = KN log2N , K is the number of antennas, N is the number of samples, M
is the number of baselines, G′ represents the number of search angles in the reduced
search space and Γ represents the number of iterations used by Newton’s Method. If the
grid search is not performed, the algorithm complexity of the SODA-cued optimisation
algorithm is O(Φ +M(Γ + 1) + 1).

4.3.3 SBI-Cued Correlative Interferometer

Since the SBI interferometer provides higher accuracy than the SODA interferometer
but is also computationally fast, an alternative is to use the SBI interferometer’s AOA
estimate to cue the correlative interferometer or directly cue its optimisation algorithm.
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Since the SBI interferometer can exploit auxiliary antennas, the SBI-cued correlative in-
terferometer is expected to have a better AOA estimation performance than the SODA-
cued correlative interferometer at low SNRs when auxiliary antennas are available.

The complexity of the SODA-cued correlative interferometer is O(Φ+M(G′+Γ+2)+1),
where Φ = KN log2N , K is the number of antennas, N is the number of samples, M
is the number of baselines, G′ represents the number of search angles in the reduced
search space and Γ represents the number of iterations used by Newton’s Method. If
the grid search is not performed, the algorithm complexity of the SBI-cued optimisation
algorithm is O(Φ +M(Γ + 2) + 1).

4.4 Performance Comparison

In this section, Monte Carlo simulations are used to evaluate the AOA estimation per-
formance of the discussed SODA-based algorithms using the same array geometry as
described in Section 3.8.2. Antennas 1, 3 and 4 of this array geometry forms a 3-
antenna SODA geometry designed to operate up to 16 GHz. In the interest of finding
fast algorithms, the SODA-cued and SBI-cued correlative interferometers are imple-
mented using the coarse AOA estimates to directly cue the optimisation algorithm of
the interferometric maximum likelihood estimator (MLE), i.e. the grid search of the cor-
relative interferometer is not performed. For notational convenience, these algorithms
are labelled as “SODA-Cued Opt.” and “SBI-Cued Opt.” respectively.

For comparison, the AOA estimation performance of the algorithms will be compared
against the square-root of the Cramér-Rao Lower Bound (CRLB). Three different CRLBs
are defined to reflect the bounds obtained using (a) the physical d∆ baseline, (b) the d41

baseline, and (c) all available antennas. The square-root of these bounds shall be referred
to as the “d∆-root-CRLB”, “d41-root-CRLB” and “K-antenna root-CRLB” respectively.

In order to allow direct comparison with the conventional ambiguity resolution algo-
rithms discussed in the previous chapter, these simulations assume the same parameters
as described in Section 3.8.3. That is, the intercepted signal is a single-tone with a
frequency and initial phase of f = 9410 MHz and ϕ = 0◦ respectively. The signal is
assumed to arrive from an AOA of θ = 23.42◦. The RMS error performance of each
algorithm is evaluated using Q = 10, 000 receiver noise realisations. For each noise real-
isation, it is assumed that N = 2048 digital samples are collected at a sample interval of
ts = 750 ps. In these simulations, the phase delays are estimated using the FFT max-
imum likelihood estimator implemented using a 2048-point FFT. No scalloping losses
are expected to occur in these simulations. Newton’s Method optimisation of the SODA
and SBI AOA estimates is allowed to perform a maximum of Γmax = 100 iterations and
the convergence tolerance is set to δθtol = 1◦ × 10−5.

RMS Error Comparison

Figure 4.9 and Figure 4.10 show the RMS error performance of each algorithm when
implemented using the 3-antenna array geometry. For this particular array geometry
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no noticeable difference is observed between the d∆-root-CRLB and the 3-antenna root-
CRLB.

As expected, this simulation shows that the RMS errors of the SODA interferometer is a
factor of

√
3 above the d∆-root-CRLB and approximately a factor of 175 above the d41-

root-CRLB and 3-antenna root-CRLB. These results are consistent with the expected
values obtained from (4.29), (4.30) and (4.31). While the AOA estimation performance
of the SODA interferometer is clearly sub-optimal, in absolute terms, the RMS errors
are still below 1◦ RMS at SNRs above 2 dB.

On the other hand, the SBI interferometer achieves the d41-root-CRLB from 8 dB SNR
and the SODA-cued and SBI-cued optimisation algorithms achieve the 3-antenna root-
CRLB from 22 dB and 8 dB respectively. While the maximum number of iterations was
set to Γmax = 100 iterations, the actual number of iterations taken in these simulations
was on average Γactual = 2.

Interestingly, below 20 dB SNR, the SODA-cued optimisation algorithm has a worse
AOA estimation performance than the SODA interferometer. This performance degra-
dation is attributed to the SODA interferometer having insufficient accuracy at low
SNRs to estimate the AOA to within the main lobe of the cost function of the correla-
tive interferometer (see Figure 3.20). As a result, the poor initial estimate provided to
Newton’s Method caused the optimisation algorithm to fail. In these simulations, the
correlative interferometer’s grid search was intentionally not performed to increase the
computational speed of the algorithm. It is expected that the SNR thresholds of these
algorithms can be significantly improved by explicitly performing the grid search prior
to the optimisation algorithm.

Figure 4.11 and Figure 4.12 shows that with the inclusion of a fourth auxiliary antenna,
the SNR threshold of the SBI and SBI-cued optimisation algorithms are both reduced
to −4 dB. As discussed in Section 3.8.2, there is a small but statistically significant dif-
ference between the d41-root-CRLB and the 4-antenna root-CRLB. Since the SBI-cued
optimisation algorithm achieves the 4-antenna root-CRLB but the SBI interferometer
only achieves the d41-root-CRLB, the SBI-cued optimisation algorithm is generally pre-
ferred since it achieves an optimal AOA estimation performance at high SNR with the
same SNR threshold. Not surprisingly, the inclusion of the auxiliary antenna has no
effect on the performance of the SODA or SODA-cued correlative interferometers since
the SODA algorithm does not utilise the outputs of the auxiliary antennas.

Relative Execution Time

Table 4.1 shows the average relative execution time of each algorithm while performing
a single AOA estimation using the 4-antenna array geometry. These execution times
are normalised to the execution time of the SODA interferometer. The algorithms are
presented in the order of increasing execution time, i.e. from fastest to slowest.

In the previous chapter, it was shown that the line fitting algorithm was the fastest
conventional ambiguity resolution technique. Directly comparing the relative execution
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Figure 4.9: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 3 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations.
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Figure 4.10: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 3 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations.
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Figure 4.11: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 4 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations.
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Figure 4.12: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 4 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
ts = 750 ps and Q = 10, 000 realisations.
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Algorithm Algorithm Complexity Execution Time

SODA O(Φ +M + 1) 1.00
SBI O(Φ + 2M) 1.01
SODA-Cued Opt. O(Φ +M(Γ + 2)) 1.16
SBI-Cued Opt. O(Φ +M(Γ + 2)) 1.12

Table 4.1: Relative execution times for the SODA-based algorithms.

times in Table 4.1 with Table 3.4 shows that the SODA and SBI interferometers are
marginally faster than the line fitting algorithm. These algorithms will therefore be
preferred for time-critical applications. On the other hand, the SODA-cued and SBI-
cued optimisation methods are only marginally slower than the SODA interferometer.
Since they achieve optimal AOA estimation performance at high SNR, these algorithms
will generally be preferred for optimal AOA estimation.

4.5 Other Considerations

4.5.1 Other Linear Combinations of First-Order Phase Delays

The SODA interferometer presented thus far forms two first-order interferometer base-
lines, d21 and d32, using three physical antennas with one antenna common between
the two baselines. A linear combination of the two first-order phase delays obtained
from these baselines, ψ̃21 and ψ̃32, are then used to obtain an unambiguous second-order
phase delay, ψ̃∆, i.e.

ψ̃∆ =
[
ψ̃32 − ψ̃31

]
2π
. (4.35)

It should be noted that the above is not the only possible linear combination of first-
order phase delays and that it is possible to obtain the same second-order phase delay
using other linear combinations of the first-order phase delays. Furthermore, the number
of possible linear combinations increases as the number of available antennas increase.
However, it is important to note that increasing the number of first-order phase delays
and/or using high magnitude coefficients in the linear combination will also increase
the variance of the second-order phase delay estimate. In other words, using a large
number of antennas or using a linear combination of first-order phase delays with large
coefficients may in fact result in a RMS error that is worse than the 3-antenna SODA
interferometer presented in Section 4.2.

Example 4.4
Consider a 6-antenna SODA interferometer whose first-order baselines, d21,
d54 and d63, are chosen such that a second-order baseline, d∆,6-Ant, can be
formed using the following linear combination,

d∆,6-Ant = d63 − d54 − 2d21, (4.36)

and that d∆,6-Ant is unambiguous in the sense that it satisfies (4.5). The
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corresponding second-order phase delay, ψ̃∆,6-Ant, can be computed as

ψ̃∆,6-Ant =
[
ψ̃63 − ψ̃54 − 2ψ̃21

]
2π
, (4.37)

=
[
(Φ̃6 − Φ̃3)− (Φ̃5 − Φ̃4)− 2(Φ̃2 − Φ̃1)

]
2π
, (4.38)

=
[
Φ̃6 − Φ̃5 + Φ̃4 − Φ̃3 − 2Φ̃2 + 2Φ̃1

]
2π
, (4.39)

where Φ̃1, Φ̃2, Φ̃3, Φ̃4, Φ̃5 and Φ̃6 are the phase measurements of each channel
and are assumed to have an associated variance σ2

Φ1
, σ2

Φ2
, σ2

Φ3
, σ2

Φ4
, σ2

Φ5
and

σ2
Φ6

respectively. From (4.23), the variance of the second-order phase delay
estimate, σ2

ψ∆,6-Ant
, is given by

σ2
ψ∆,6-Ant

= σ2
Φ6

+ σ2
Φ5

+ σ2
Φ4

+ σ2
Φ3

+ 4σ2
Φ2

+ 4σ2
Φ1
. (4.40)

Assuming that the variance of the phase measurements in each channel are
the same, i.e. σ2

Φ = σ2
Φ1

= σ2
Φ2

= σ2
Φ3

= σ2
Φ4

= σ2
Φ5

= σ2
Φ6

, the variance of
the second-order phase delay estimate, σ2

ψ∆,6-Ant
, simplifies to

σ2
ψ∆,6-Ant

= 10σ2
Φ ≡ 5 · 1

ηN
. (4.41)

In Section 4.2.5, it was shown that the phase delay of a 2-antenna first-order
interferometer with a physical baseline of d∆ has a variance given by (4.19)
as follows

σ2
ψ21,first-order = 2σ2

Φ ≡
1

ηN
, (4.42)

Inspection of (4.41) and (4.42) suggests that the variance of the second-order
phase delay obtained using the 6-antenna implementation of the SODA in-
terferometer is five times higher than the equivalent first-order phase delay
estimate. This further suggests that the RMS error in the AOA estimation
performance of the 6-antenna SODA interferometer will be a factor of

√
5

higher than the RMS error of the equivalent first-order interferometer.

In this particular example, the RMS error of the 6-antenna SODA interfer-
ometer is actually higher than the RMS error of the 3-antenna SODA inter-
ferometer as discussed in Section 4.2.5. Thus, this example shows that im-
plementing a SODA interferometer with more antennas and a more complex
linear combination of first-order phase delays does not necessarily improve
the AOA estimation and may even be worse than the 3-antenna implemen-
tation.

A drawback of the 3-antenna SODA interferometer is that one of the antennas is com-
mon between the two first-order baselines. This introduces a correlated noise component
which ultimately leads to a larger than necessary RMS error in the AOA estimation.
With four or more antennas, a linear combination of first-order phase delays that avoids
the use of a common antenna can be chosen which may result in a lower RMS error.
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Example 4.5
Consider a 4-antenna SODA interferometer whose first-order baselines, d21

and d43, are chosen such that a second-order baseline, d∆,4-Ant, can be formed
using the following linear combination,

d∆,4-Ant = d43 − d21, (4.43)

and that d∆,4-Ant is unambiguous in the sense that it satisfies (4.5). Using
a similar analysis to Example 4.4, it can be shown that the RMS error of
the 4-antenna implementation of the SODA interferometer is a factor of

√
2

higher than the RMS error of the equivalent first-order interferometer and is
lower than the RMS error of the 3-antenna SODA interferometer by a factor
of (

1−
√

2√
3

)
× 100% = 18.35%. (4.44)

Example 4.5 shows that the RMS error of the SODA interferometer can be slightly im-
proved by choosing a linear combination of first-order phase delays that avoids the use of
a common antenna. However, such an implementation requires the use of four antennas
and so this performance improvement comes at the expense of additional hardware costs.

In Section 4.3, it was shown that the 3-antenna SODA AOA estimate can be used with
the conventional first-order ambiguity resolution methods discussed in Section 3.6 and
Section 3.7 to provide a more significant improvement in the AOA estimation perfor-
mance. Since these methods provide a better performance with a smaller number of
antennas, and hence at a reduced cost, the remainder of this thesis shall only consider
the 3-antenna SODA interferometer.

4.5.2 Non-Collinear SODA Interferometer

The SODA interferometer presented thus far has assumed a collinear array. In this
section, it will be shown that the collinearity requirement can be relaxed for smaller
apertures to allow slightly non-linear arrays to be constructed. This may allow a con-
formal mounting of the antennas onto a platform, such as the hull of an aircraft or the
mast of a ship.

In general, any non-linear array comprising of three antennas can be considered as a
triangle. For mathematical convenience, a mathematical polar coordinate system (see
Figure 3.3) can be defined so that Antennas 1 and 3, and hence the the d31 baseline, are
aligned to the 0◦ axis. Antenna 2 can be positioned so that the d21 baseline interfer-
ometer is rotated by an angle, α, counter-clockwise away from the 0◦ axis. This array
geometry is depicted in Figure 4.13.

The unambiguous first-order phase delays for the d21 and d31 baselines, i.e. ψ21 and ψ31,
are given by

ψ21 =
2πfd21

c
sin(θ + α), (4.45)

ψ31 =
2πfd31

c
sin θ, (4.46)
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Figure 4.13: A 3-antenna non-linear array can be considered as a triangular array.

where 0 ≤ α ≤ π/2, and it is assumed that d31 > d21 � λmin/2, and where λmin is the
wavelength of the highest frequency of interest. It can be shown that the second-order
phase delay is given by

ψ∆ = ψ31 − 2ψ21 =
2πfd∆

c
sin(θ + Θ), (4.47)

where d∆ is the second-order baseline and Θ is a rotation angle defined as follows

d∆ =
√
d2

31 + 4d2
21 − 4d21d31 cosα, (4.48)

Θ = arctan

( −2d21 sinα

d31 − 2d21 cosα

)
. (4.49)

Like the collinear case, the second-order phase delay, ψ∆, can be made unambiguous if
the following constraint is satisfied,

0 < d∆ ≤
λmin

2
. (4.50)

The second-order phase delay, ψ∆, therefore corresponds to a virtual antenna pair with
a second-order baseline, d∆, that is rotated by an angle Θ. The AOA of the signal can
then be unambiguously estimated using the so-called non-collinear SODA interferometer
as follows

θ̂ = arcsin

(
cψ̃∆

2πfd∆

)
−Θ. (4.51)

Note that while the physical triangular array is not a linear array, the virtual array as
described above is still a linear array and so the AOA estimation still limited to a 180◦

field-of-view (FOV). Hence, the non-collinear SODA interferometer is only useful for
mounting purposes and does not provide any increase in the FOV of the system.

For an arbitrary aperture, d31, the non-collinear SODA interferometer requires corre-
sponding d21 baseline interferometer to be

d21 =
1

2
d31 cosα+

1

2

√
d2

∆ − d2
31 sin2 α. (4.52)

Since d21 and d31 are physical lengths, their values must be real and positive. This
implies that the term under the square root sign in (4.52) must also be real and so it
can be shown that the d21 baseline rotation angles, α, must satisfy

α ≤ arcsin

(
d∆

d31

)
. (4.53)
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The constraint (4.53) effectively limits the maximum value of α and hence also limits
the extent of non-collinearity that can be tolerated for a given aperture. Figure 4.14
plots the maximum value of α when d∆ = λ/2 as a function of the array aperture, i.e.
the d31 baseline. This figure shows that for larger apertures, α rapidly tends towards
zero and so the array becomes increasingly collinear. However, for smaller apertures,
the maximum value of α may be as high as 30◦.

Due to the non-collinear nature of the array geometry, the ‘broadside or “looking”
direction of the SODA virtual antenna pair is rotated by an angle, Θ. Figure 4.15 plots
Θ as a function of α when d31 = 50λ and d∆ = λ/2. This figure shows that as α increases
to its maximum value as specified by (4.53), Θ rapidly approaches 90◦. This implies
that care must be taken to correctly orientate the non-collinear SODA interferometer
to offset the rotation angle of the virtual array.

4.5.3 Field-of-View

Since the collinear and non-collinear SODA interferometer both create a virtual antenna
pair from three antennas, then regardless of the array geometry, the virtual array is
effectively a linear array with a field-of-view (FOV) limited to [−90◦, 90◦]. Hence, the
discussion in Section 3.9.3 regarding the FOV for linear arrays is equally relevant for
SODA interferometers. That is, in order to construct a SODA-based direction finding
system that is capable of a 360◦ FOV, multiple arms of linear SODA interferometers
will need to be orientated at different rotation angles as illustrated in Figure 3.34.

4.6 Summary

This chapter introduced the concept of using second-order processing to obtain the out-
put from a virtual antenna pair for unambiguous AOA estimation in a computationally
fast manner from highly ambiguous, long baseline interferometers. The AOA estimation
performance of the SODA interferometer was shown to be independent of the physical
first-order baselines. Rather, the AOA estimation performance of the SODA interfer-
ometer was shown to be a factor of

√
3 worse than an equivalent physical first-order

short-baseline interferometer. However, in absolute terms, the SODA interferometer is
still able to achieve sub-degree RMS errors at high SNR and so is a good candidate for
implementation in real-time radar intercept receivers, such as ES systems, where fast
AOA estimation is necessary and relatively coarse AOA accuracies can be tolerated.

In order to take advantage of the higher accuracies offered by the physical first-order
interferometers that make up the SODA interferometer, it was shown that the SODA
AOA estimate can be used to cue the first-order ambiguity resolution methods. These
techniques are referred to as the SBI, SODA-cued and SBI-cued correlative interferom-
eters. At high SNRs, the SODA-cued and SBI-cued correlative interferometers can be
more efficiently implemented by bypassing the grid search to directly cue the optimisa-
tion algorithm.

The SBI and SBI-cued correlative interferometers are asymptotically efficient at high
SNR and strikes a good balance between the AOA estimation accuracy and compu-
tation time. The SODA-cued and SBI-cued correlative interferometer were shown to
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provide better AOA estimation performance than the SBI interferometer since they
achieve the K-antenna root-CRLB while the SBI interferometer only achieves the dK1-
root-CRLB corresponding to the widest antenna pair. When the grid search is bypassed,
the SBI-cued optimisation algorithm exhibits a significantly lower SNR threshold than
the SODA-cued optimisation algorithm and so will generally be preferred. These results
suggest that the SBI and SBI-cued correlative interferometers are good candidates for
implementation in real-time radar intercept receivers, such as ES or ELINT receivers,
where higher AOA accuracies are required.

Finally, non-collinear SODA geometries were considered. This study showed that while
it was possible to implement a SODA interferometer using non-collinear geometries, the
extent of non-collinearity that could be tolerated is generally very small, particularly for
long first-order baselines. Furthermore, the orientation of the virtual array generated
from a non-collinear SODA geometry is rotated in azimuth and so care must be taken to
correctly orientate the array. Finally, since the non-collinear SODA interferometer does
not provide any improvement in the field-of-view of the system, the use of non-collinear
arrays is mainly useful for conformal mounting purposes.
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Chapter 5

Array Processing Using Second
Order Difference Arrays

Array processing algorithms simultaneously exploit the amplitude and phase delay in-
formation from all available antennas in a coherent fashion to perform AOA estimation.
This is in contrast to the operation of interferometers which only exploit the phase delay
information. Interferometers ignore the signal’s amplitude and so effectively give equal
weighting to all phase delay measurements.

It would be remiss of this thesis to only discuss AOA estimation in the context of
interferometry without any discussion on array processing techniques. This chapter shall
introduce two common array processing techniques, namely the conventional phaseshift
beamformer (CBF) and multiple signal classification (MUSIC) algorithms, and focus on
their application to second-order difference array (SODA) geometries for unambiguous
AOA estimation. The intention of this chapter is not to produce new array processing
algorithms, but rather to evaluate the performance of the conventional algorithms using
a SODA geometry. Since SODA geometries are linear arrays, the array processing
methods discussed in this chapter will be confined to linear arrays.

5.1 Beamforming and Array Processing

5.1.1 Signal Model

Consider a single, narrowband signal incident upon a linear array of K antennas as
depicted in Figure 5.1. As described in Section 3.2.2, the noiseless, narrowband signal
model, s(t), can be written as a function of time, t, as specified in (3.7) as follows

s(t) = Aej(2πft+ϕ), (5.1)

where A, f and ϕ represent the signal’s peak amplitude, carrier frequency and initial
phase respectively. In practical systems, the ideal signal is corrupted by an additive noise
component, ε(t). Taking the position of the first antenna as an arbitrary reference, the
noisy antenna output of the k-th antenna with respect to the first antenna can be written
as

xk1(t) = s(t+ τk1) + εk(t) = Aej(2πft+ϕ+ψk1(θ)) + εk(t), (5.2)

107
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Figure 5.1: Array processing algorithms exploit the propagation delays in a coherent man-
ner.

where k = 1, 2, . . . ,K, τk1 is the propagation time delay for the signal to reach the
k-th antenna after arriving at the first antenna, and εk(t) represents the independent
receiver noise in the k-th channel. The equivalent propagation phase delay between the
k-th antenna and the first antenna, ψk1(θ), is given by

ψk1(θ) = 2πfτk1 =
2πfdk1

c
sin θ. (5.3)

As described in Section 3.2.2, the propagation time, τkl, is actually a time advance for
positive θ and a time delay for negative θ. Similarly, the propagation phase, ψkl is a
phase advance for positive θ and a phase delay for negative θ. However, for notational
brevity, this thesis will generally refer to τkl and ψkl as the propagation time delay and
phase delay respectively. In this chapter the phase delay is explicitly written as a func-
tion of the AOA to highlight the relationship between the phase delays and the AOA of
the signal.

The narrowband signal component of the antenna output can be separated into a time-
varying component, s(t), and an independent phase delay, ejψk1(θ), as follows,

xk1(t) = s(t)ejψk1(θ) + εk(t). (5.4)

For a multi-channel digital receiver, the digital sampling of the signal occurs at regular,
discrete time intervals, ts. For a collection of N digital samples, the n-th sample of the
narrowband signal model can be re-written as

xk1[n] = s[n]ejψk1(θ) + εk[n], (5.5)

which corresponds to the time instance, t = nts, and n = 0, 1, . . . , N − 1. The output
from all K antennas can be expressed more compactly in vector notation as

x [n] = s[n]


ejψ11(θ)

ejψ21(θ)

...

ejψK1(θ)

+


ε1[n]
ε2[n]

...
εK [n]

 = s[n]v (θ) + ε [n], (5.6)
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where x [n] is a K × 1 vector representing the K antenna outputs of the n-th sample,
ε [n] is a K×1 vector representing the noise in each channel, and v (θ) is a K×1 vector
representing the propagation phase delays of the signal with respect to the first antenna
and is defined as

v (θ) =


ejψ11(θ)

ejψ21(θ)

...

ejψK1(θ)

 =


ej2πfd11 sin θ/c

ej2πfd21 sin θ/c

...

ej2πfdK1 sin θ/c

 . (5.7)

The aim of the array processors is to search for the AOA whose corresponding prop-
agation phase delay vector best matches the signal’s propagation phase delay vector.
This search is the electronic equivalent of a mechanically steered directional antenna
and is hence termed electronic steering. The AOA and propagation phase delay vector
corresponding to the currently steered direction are termed the steering angle and steer-
ing vector respectively. The steering parameters are controlled by the AOA estimation
algorithm and are not to be confused with the signal parameters. The subscript s will
be used to distinguish the steering parameters from the signal parameters.

The antenna array effectively has a beampattern associated with the steering angle that
is given by

Pbeampattern(θ, θs) =
1

K2

∣∣vH(θ)v (θs)
∣∣2 , (5.8)

where Pbeampattern(θ, θs), represents the received power from a unit amplitude plane
wave incident upon the array from an angle θ when the array is steered to an angle, θs.
Figure 5.2 shows the beampattern for an 8-antenna uniform linear array (ULA) with
a λ/2 spacing between the antennas and when the steering angle is θs = 0◦. Since a
narrow “beam” is formed in the direction of the steered angle, algorithms which exploit
the beampattern are generally termed beamformers.

5.1.2 Conventional Phaseshift Beamformer

A straightforward implementation of a beamformer is to search for the AOA that pro-
duces the propagation phase delays that most closely match the signal’s measured propa-
gation phase delays [2, 45, 91]. For the steering angle, θs, the corresponding beamformer
output, y [θs, n], is given by

y [θs, n] =
1

K
vH(θs)x [n], (5.9)

where the superscript H represents the Hermitian (complex conjugate transpose) op-
eration. Since it is conventional to express the array output in terms of power, the
array output power of the conventional phaseshift beamformer (CBF), PCBF(θs), can be
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defined as follows

PCBF(θs) = E
{
|y [θs, n]|2

}
(5.10)

= E

{∣∣∣∣ 1

K
vH(θs)x [n]

∣∣∣∣2
}

(5.11)

=
1

K2
vH(θs)E

{
x [n]xH [n]

}
v (θs) (5.12)

=
1

K2
vH(θs)R v (θs), (5.13)

where E{·} represents the expectation operator, and R = E
{
x [n]x [n]H

}
is a K ×K

matrix termed the covariance matrix, or cross-spectral matrix.

Using the CBF algorithm, the AOA estimation can be performed by searching for the
peaks in the beamformer output. For L signal arrivals, the AOA of the signals will
generally correspond to the steering angles of the L highest peaks of the beamformer
output. In general, a K-antenna array can estimate the AOA of up to K − 1 signals
simultaneously incident upon the array. In the special case of a single signal, i.e. L = 1,
the AOA estimation can be written as

θ̂ = argmax
θs PCBF(θs) = argmax

θs

1

K2
vH(θs)R v (θs). (5.14)

Figure 5.3 shows the array output of the CBF algorithm using an 8-antenna uniform
linear array with a λ/2 spacing. In this example, the AOA of the signal is θ = 23.42◦

and the electronic scanning is performed with a resolution of ∆θ = 0.01◦. This figure
shows that there is a distinct peak in the array output in the direction of the signal’s
AOA.

In practice, the cross-spectral matrix can be estimated by averaging over a number of
samples in the time-domain, namely,

R̂ =
1

N

N−1∑
n=0

x [n]xH [n]. (5.15)

Alternatively, frequency-domain beamforming can be performed by estimating the cross-
spectral matrix in the frequency-domain. The element in the k-th row and l-th column
of the cross spectral matrix, Rkl, can be written as

R̂kl =
1

W

W∑
w=1

Xk,f,wX
∗
l,f,w, (5.16)

where Xk,f,w and Xl,f,w represent the Fourier coefficients of the w-th snapshot for the
k-th and l-th receiver evaluated at the signal frequency, f , respectively. The estimate of
the cross spectral matrix may be improved by averaging over W independent snapshots.

Optimisation Using Newton’s Method

The CBF algorithm is another example of a grid search algorithm. As discussed in
3.7.5, all practical implementations of a grid search algorithm will have a discrete search
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resolution and so the resolution of the AOA estimation will be quantised. Newton’s
Method can be used to refine the AOA estimate as follows [71]

θ̂(γ+1) = θ̂(γ) − P ′CBF(θ̂(γ))

P ′′CBF(θ̂(γ))
, (5.17)

where the initial estimate is set to the AOA estimate that corresponds to the maximum
output of the CBF algorithm as described by (5.14), i.e. θ̂(1) = θ̂CBF, Γ is the number of
iterations, γ = 1, 2, . . . ,Γ, and P ′CBF(θ̂(γ)) and P ′′CBF(θ̂(γ)) represent the first and second

derivatives of PCBF(θ̂(γ)) with respect to θ(γ) and are given by

P ′CBF(θ̂(γ)) =
K∑
k=1

K∑
l=1

jv∗l Clkvk

(
∂ψk1

∂θ
− ∂vl
∂θ

)
(5.18)

P ′′CBF(θ̂(γ)) =

K∑
k=1

K∑
l=1

v∗l Clkvk

(
2
∂ψk1

∂θ

∂ψl1
∂θ

+j (ψl1 − ψk1)−
(
∂ψk1

∂θ

)2

−
(
∂ψl1
∂θ

)2
)
. (5.19)

In the above expressions, Clk = R̂lk, which represents the element at the l-th row
and k-th column of the estimated cross spectral matrix, R̂ , and vk and vl represent
the k-th and l-th elements of the steering vector evaluated at θ̂(γ), i.e. v (θ̂(γ)). The
optimisation algorithm is terminated when the specified maximum number of iterations
has been completed or once the difference between iterative estimates falls below a
specified tolerance, i.e. |θ̂(γ+1) − θ̂(γ)| ≤ δθtol, where δθtol is the chosen tolerance.

Algorithm Complexity

A typical execution of the CBF algorithm requires that the cross-spectral matrix be
estimated. Assuming that a FFT is used to estimate the cross-spectral matrix in the
frequency domain as described by (5.16), the algorithm complexity to estimate the
cross-spectral matrix is O(W (Φ+K2)), where Φ = KN log2N represents the number of
operations to perform the FFT on each antenna output, K is the number of antennas,
N is the number of samples and W is the number of snapshots.

The next part of the CBF algorithm is the grid search. For each steering angle, the
steering vector is computed from (5.7) and has an algorithm complexity of O(K). The
CBF array output is then computed from (5.13) using matrix multiplications and so
has an algorithm complexity of O(K2). A search must then be performed to determine
which angle produces the largest array output. For G steering angles, this will be an
O(G) operation. The algorithm complexity of the entire grid search is therefore approx-
imately O(G(K2 +K + 1)).

Finally, Newton’s Method is used to refine the grid search estimate. For each iteration,
Newton’s Method requires calculating the derivatives of the array output from (5.18)
and (5.19) which are O(K2) operations. For Γ iterations, the algorithm complexity of
the optimisation is then approximately O(K2Γ).
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The total algorithm complexity of the CBF algorithm is therefore approximatelyO(WΦ+
K2(W + G + Γ) + GK + G). It should be noted that the algorithm complexity pre-
sented here is effectively an approximation of the number of loops performed by the
algorithm and does not represent a detailed analysis for all operations in the algorithm.
Furthermore, it does not distinguish between the speed of individual operations, such
as addition and multiplication.

5.1.3 Optimal Beamformers and Super-Resolution Methods

Since its inception there have been many variations to the beamforming concept. In
particular, so-called optimal beamformers were developed by applying carefully chosen
weights to meet certain criteria of optimality [2, 45, 91, 92]. Some well-known optimal
beamformers include the maximum-likelihood beamformer, which maximises the likeli-
hood function of the array output [2, 45, 92, 93], the maximum gain beamformer, which
maximises the array gain [92, 94], the minimum mean square error beamformer, which
minimises the mean square error [2], and the minimum variance distortionless response
(MVDR) beamformer, which minimises the output power of the array while normalising
the beampattern in the steered direction [92, 94–96]. For applications with known signal
waveforms, beamformers can also be developed to explicitly exploit the signal’s wave-
form to give improved performance [97]. Examples of such beamformers include chirp
beamformers [98–100] and binary phase shift keyed (BPSK) beamformers [101–103].

More recently, eigenanalysis of the cross-spectral matrix have shown that the signal and
noise components of the array output spans different subspaces if they are uncorrelated.
This gave rise to a new class of very powerful AOA estimation techniques generally
known as subspace, or super-resolution, techniques. Some well-known super-resolution
techniques include the multiple signal classification (MUSIC) [104], estimation of signal
parameters via rotational invariance principles (ESPRIT) [105], and min-norm [106]
algorithms. Strictly speaking, these methods are not beamformers since they do not
form “beams” in the conventional sense. Furthermore, unlike beamformers whose array
output power is related to the signal power, the output of super-resolution techniques
have no physical meaning and are only used to indicate the AOA of a signal. As such,
these methods are generally referred to as array processors.

5.1.4 Multiple Signal Classification (MUSIC)

MUSIC [2, 45, 91, 104] is a well-known array processing technique that is often used
in high resolution AOA estimation problems. This technique exploits the orthogonality
between the signal and noise subspaces of the cross-spectral matrix, R .

The first step of the MUSIC algorithm is to perform an eigen-decomposition of the
cross-spectral matrix to obtain the set of eigenvalues, {γ1, γ2, . . . , γK}, and correspond-
ing eigenvectors, {q 1, q 2, . . . , qK}. It is assumed that the eigenvalues, and their cor-
responding eigenvectors, are sorted into descending order so that

γ1 ≥ γ2 ≥ · · · ≥ γK . (5.20)



CHAPTER 5. SODA ARRAY PROCESSING 114

The output of the MUSIC algorithm, PMUSIC(θs), can then be written as [2, 45, 104]

PMUSIC(θs) =
1∑K

k=L+1 |vH(θs)q k|2
, (5.21)

where L is the number of signals simultaneously illuminating the array. In practice, L
must either be known or estimated from the data [2, 91]. For the purposes of this thesis,
it is assumed that only one signal is illuminating the array and so it is assumed that
L = 1.

Figure 5.4 shows the array output of a MUSIC array processor when applied to the
same AOA estimation problem as Figure 5.3. This figure shows that the array output
has a single distinct peak in the direction of the signal’s AOA. In contrast to the CBF
algorithm, the array output of the MUSIC array processor has a very narrow mainlobe
width and exhibits very low sidelobes. These highly desirable characteristics have led
to the popularity of using the MUSIC array processor for AOA estimation problems.
As previously stated, the peaks of the MUSIC array output only indicate the AOA of
signals; the magnitude of the peaks are not related to the signal’s power.

Optimisation Using Newton’s Method

Newton’s Method can also be used to optimise the quantised AOA estimate from the
MUSIC grid search and can be obtained by replacing the derivatives, P ′CBF(θ(γ)) and
P ′′CBF(θ(γ)), in (5.17)–(5.19) with the corresponding MUSIC derivatives, P ′MUSIC(θ(γ))
and P ′′MUSIC(θ(γ)), respectively. The MUSIC derivatives can be computed from (5.18)
and (5.19), by setting Clk = Λlk which represents the element at the l-th row and k-th
column of the matrix, Λ , where

Λ = Q QH , (5.22)

and
Q =

[
q L+1 q L+2 · · · qK

]
. (5.23)

Algorithm Complexity

A typical execution of the MUSIC algorithm follows a similar sequence of operations
to the CBF algorithm. However, the MUSIC algorithm requires an additional step to
compute the eigenvalue decomposition of the cross-spectral matrix. For an array of K
antennas, the algorithm complexity of an eigenvalue decomposition of a K ×K matrix
will be O(K3). The total algorithm complexity of the MUSIC algorithm is therefore
approximately O(WΦ +K3 +K2(W +G+ Γ) +GK +G).

5.2 Sparse Large Aperture Arrays

Inspection of the Cramér-Rao Lower Bound (CRLB) for the AOA estimation using a
non-uniform linear array (NULA), as specified by (3.168), suggests that better AOA
estimation performance can be obtained with large aperture arrays. This statement is
consistent with the use of long baselines in interferometry to improve the AOA estimation
performance. However, for a uniform linear array, unambiguous AOA estimation can
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Figure 5.4: Array output of a MUSIC array processor using an 8-antenna uniform linear
array with a λ/2 antenna spacing when θ = 23.42◦. Simulation parameters: η = 15 dB,
f = 16 GHz, N = 2048 samples, W = 1 snapshot, and ∆θ = 0.01◦.

only be obtained if the inter-element spacing between the antennas, d, is less than or
equal to λmin/2 apart, i.e.

d ≤ λmin

2
, (5.24)

where λmin is the wavelength of the highest frequency of interest. This condition is the
spatial equivalent of the Nyquist rate from digital sampling theory, and so is sometimes
called the spatial Nyquist rate in array processing.

As with the interferometric case, this thesis assumes that physically large wideband
antennas need to be used for wide spectrum electronic surveillance and so the spatial
Nyquist rate will not be satisfied, i.e. d > λmin/2. As a result, spatial aliasing occurs and
manifests in the array beampattern as so-called grating lobes. Grating lobes are peaks
in the array beampattern that are indistinguishable from the main lobe and hence give
rise to ambiguities in the AOA estimation. In terms of interferometry, spatial aliasing
manifests as ambiguities in the phase delay measurements as described in Section 3.5.

Example 5.1
Figure 5.5 shows the beampattern for an 8-antenna uniform linear array
with a 7.1429λ spacing between the antennas to form a 50λ physical aper-
ture. This figure shows that when the array is steered to θs = 0◦, a main lobe
forms at 0◦, however there also exists a number of grating lobes at ±8.05◦,
±16.26◦, ±24.84◦, ±34.06◦, ±44.43◦, ±57.15◦ and ±78.55◦ respectively due
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Figure 5.5: Beampattern of an 8-antenna uniform linear array with a uniform antenna
spacing of 7.1429λ (50λ aperture).

to spatial aliasing.

Figure 5.6 and Figure 5.7 show the corresponding array outputs of CBF
and MUSIC algorithms for a signal arriving from θ = 23.42◦. These figures
show that the array outputs have a peak corresponding to the true AOA at
θ = 23.42◦ as well as a number of grating lobes at −90◦, −59.60◦, −46.26◦,
−35.63◦, −26.27◦, −17.61◦, −9.35◦, −1.29◦, 6.75◦, 14.92◦, 32.51◦, 42.65◦,
54.83◦, and 73.23◦ respectively. Based on these array outputs, it is not
possible to distinguish which peak corresponds to the true AOA of the signal
and so the AOA estimation is ambiguous.

As with the interferometric case, non-uniform antenna spacings are required to overcome
the ambiguities associated with grating lobes [79]. With non-uniform antenna spacings,
the spatially aliased copies of the main lobe do not sum in a fully coherently manner
and so technically do not give rise to grating lobes. This will allow unambiguous AOA
estimation to be performed. However, it should be noted that depending on the sparsity
of the non-uniform array, partial uniformity among some of the antennas may cause a
partially coherent summation at some angles which gives rise to high sidelobes. As with
the previous chapters, this chapter shall assume that no pair of antennas satisfy the
spatial Nyquist rate.

The relationship between the lack of grating lobes and the non-uniform antenna spacings
is related to the discussion in Section 3.7.1. That is, when the antenna separations are
non-uniform (i.e. not integer multiples of each other), a unique set of ambiguous phase
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Figure 5.6: CBF array output using an 8-antenna uniform linear array with a uniform
antenna spacing of 7.1429λ (50λ aperture) when θ = 23.42◦. Simulation parameters: η = 15
dB, f = 16 GHz, N = 2048 samples, W = 1 snapshot, and ∆θ = 0.01◦.
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Figure 5.7: MUSIC array output using an 8-antenna uniform linear array with a uniform
antenna spacing of 7.1429λ (50λ aperture) when θ = 23.42◦. Simulation parameters: η = 15
dB, f = 16 GHz, N = 2048 samples, W = 1 snapshot, and ∆θ = 0.01◦.
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Figure 5.8: An 8-antenna non-uniform linear array.

delays will be measured for each AOA. In terms of array processing, this translates to
a unique set of propagation phase delays which will ensure that the array output will
only coherently sum in the direction of the signal.

Example 5.2
Consider an 8-antenna non-uniform linear array with a 50λ aperture as il-
lustrated in Figure 5.8. Figure 5.9 shows the beampattern for this array
when the steering angle is θs = 0◦ with an AOA search resolution arbitrarily
chosen to be ∆θ = 0.01◦. This figure shows that there is one distinct main
lobe at θs = 0◦. While there are also a number of high sidelobes, the magni-
tudes of the side lobes are distinctly smaller than the main lobe and so are
technically not considered grating lobes.

Figure 5.10 shows the corresponding beamformer output of the CBF algo-
rithm for a signal arriving from θ = 23.42◦. This figure shows that there
is one distinct peak at the true AOA at θ = 23.42◦ and so the AOA of the
signal can be unambiguously estimated if it is known that there is only one
signal arrival. In this example, a number of sidelobes exist within 3 dB of
the peak of the main lobe. The largest sidelobe occurs at θ = −67.52◦ and
is only 1.19 dB below the peak of the main lobe.

Note that the beamformer output is not simply a circularly rotated version
of the array beampattern. The difference between the beamformer output
and the rotated array beampattern is attributed to the fact these outputs
are related to the AOA, θ, in a non-linear arcsine fashion as described in
(5.3). However, the beamformer output will be a circularly rotated array
beampattern if the beamformer output is plotted against sin θ instead of θ.

Figure 5.11 shows the corresponding array output of the MUSIC algorithm.
In this example, the MUSIC array processor has managed to suppress many
of the sidelobes that are exhibited in the array beampattern while maintain-
ing a very narrow mainlobe width. Furthermore, while the CBF algorithm
has a large sidelobe at θ = −67.52◦, the MUSIC algorithm significantly
suppresses the array output in this direction.

5.2.1 Grid Search Resolution

Beamforming and array processing algorithms use a grid search to find the steering angle
which produces a large peak in the array output that corresponds to the direction of
a signal arrival. The Rayleigh resolution limit [2] suggests that the resolution of the
grid search should be less than or equal to one-half of the null-to-null beamwidth of the
array beampattern. The null-to-null beamwidth, BWNN, is the angular width between
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Figure 5.9: Beampattern of a 8-antenna non-uniform linear array with a 50λ aperture at 16
GHz.

the first nulls from the peak of the main lobe of the array beampattern and is illustrated
in Figure 5.2. For a uniform linear array with λ/2 spacing, the null-to-null beamwidth,
BWNN,ULA, may be approximated by [2]

BWNN, ULA ≈ 2 arcsin

(
λ

aperture

)
, (5.25)

where it is assumed that the aperture is significantly greater than λ. The grid search
resolution of a uniform linear array should therefore be

∆θULA ≤
1

2
BWNN,ULA ≈ arcsin

(
λ

aperture

)
. (5.26)

However, for non-uniform linear arrays, the null-to-null beamwidth, BWNN,NULA, is
often smaller than but similar to BWNN,ULA. Since (5.25) is only an approximation and
BWNN,NULA ≤ BWNN,ULA, this thesis shall arbitrarily choose the search resolution for
non-uniform linear array geometries to be one-quarter of BWNN,ULA as follows,

∆θNULA =
1

4
× BWNN,ULA ≈

1

2
arcsin

(
λ

aperture

)
. (5.27)

The choice of the grid search resolution is particularly important for sparse non-uniform
linear array geometries due to the combined effect of scalloping losses and high sidelobes.
As with all grid search algorithms, scalloping losses can occur if the AOA of the signal
lies between two search bins. Since sparse array geometries have high sidelobes, the
presence of scalloping losses can lead to incorrect AOA estimation as one of the side-
lobes may be mistaken to indicate the signal’s AOA. Using a finer search resolution will
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Figure 5.10: CBF array output using an 8-antenna non-uniform linear array with a 50λ
aperture when θ = 23.42◦. Simulation parameters: η = 15 dB, f = 16 GHz, N = 2048
samples, W = 1 snapshot, and ∆θ = 0.01◦.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−10

0

10

20

30

40

MUSIC Array Output (8−Antenna NULA, 50λ Aperture, ∆θ = 0.01°)

M
ag

ni
tu

de
 (

dB
)

Azimuth (deg)

Figure 5.11: MUSIC array output using an 8-antenna non-uniform linear array with a 50λ
aperture when θ = 23.42◦. Simulation parameters: η = 15 dB, f = 16 GHz, N = 2048
samples, W = 1 snapshot, and ∆θ = 0.01◦.
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provide a more robust performance against scalloping losses as well as improve the AOA
estimation accuracy. However, these improvements come at the expense of increased
computations.

Example 5.3
This example will demonstrate the importance of choosing an appropriate
search resolution. Consider the array geometry used in Example 5.2. This
array geometry has an aperture of 50λ at 16 GHz and so BWNN, ULA is
approximately

BWNN, ULA ≈ 2 arcsin

(
λ

50λ

)
≈ 2.292◦. (5.28)

Consider setting the grid search resolution to ∆θ = 1.146◦, which is inten-
tionally chosen to not satisfy (5.27). Inspection of the array beampattern in
Figure 5.9 suggests that with this resolution, the maximum scalloping loss
is 4.77 dB when the signal’s AOA lies exactly halfway between two search
bins. Furthermore, this array beampattern has 14 sidelobes with magnitudes
within 4.77 dB of the magnitude of the main lobe. Thus, when scalloping
losses occur, the peak of the array output may be attenuated to a level that
is indistinguishable from the sidelobes. Figure 5.12 and Figure 5.13 confirm
that the array output of the CBF and MUSIC algorithms do not yield an
unambiguous peak at the signal’s true AOA at θ = 23.42◦. In fact, the side-
lobes at −67.61◦, 6.88◦, and 42.40◦ have a higher peak than the main lobe
at 22.92◦ for both algorithms.

In order to overcome the problem of scalloping losses, a finer search resolu-
tion is required. Using a search resolution of ∆θ = 0.573◦ to satisfy (5.27),
would yield a maximum scalloping loss of 1.19 dB if the signal lies exactly
halfway between two search bins. Since the magnitude of the highest side-
lobe is 2.675 dB below the magnitude of the main lobe, the signal’s peak is
guaranteed to be higher than the sidelobe peaks even when scalloping losses
occur. This search resolution would therefore be adequate to yield an un-
ambiguous peak in the array output as confirmed by Figure 5.14 and Figure
5.15.

In the AOA estimation problems considered in this thesis, the sensitivity of the grid
search resolution to scalloping losses is further accentuated by the presence of high side-
lobes due to the use of sparse large aperture arrays. The number of sidelobes and the
extent of their magnitudes tend to increase as the sparsity of the array increases, i.e.
when the spacing between antennas become longer. In the ideal unambiguous case, the
50λ aperture in Example 5.3 will be formed using 100 antennas with a uniform spacing
of λ/2. However, in the example, only 8 antennas are used to form an array of the
same aperture and so the spatial data is effectively undersampled by a factor of 12.5
and ultimately resulted in high sidelobes appearing in the array beampattern.
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Figure 5.12: CBF array output using an 8-antenna non-uniform linear array with a 50λ
aperture when θ = 23.42◦. Simulation parameters: η = 15 dB, f = 16 GHz, N = 2048
samples, W = 1 snapshot, and ∆θ = 1.146◦.
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Figure 5.13: MUSIC array output using an 8-antenna non-uniform linear array with a 50λ
aperture when θ = 23.42◦. Simulation parameters: η = 15 dB, f = 16 GHz, N = 2048
samples, W = 1 snapshot, and ∆θ = 1.146◦.
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Figure 5.14: CBF array output using an 8-antenna non-uniform linear array with a 50λ
aperture when θ = 23.42◦. Simulation parameters: η = 15 dB, f = 16 GHz, N = 2048
samples, W = 1 snapshot, and ∆θ = 0.573◦.
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Figure 5.15: MUSIC array output using an 8-antenna non-uniform linear array with a 50λ
aperture when θ = 23.42◦. Simulation parameters: η = 15 dB, f = 16 GHz, N = 2048
samples, W = 1 snapshot, and ∆θ = 0.573◦.
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Many studies have attempted to investigate “optimal” non-uniform array geometries
that exhibit an unambiguous main lobe with good sidelobe behaviour [78–83]. Further-
more, in an analogous manner to spectral analysis, it is possible to use spatial windowing
functions to further control the sidelobe behaviour [2]. However, these studies are be-
yond the intended scope of this thesis. Instead, in the subsequent section it will be
shown that the second-order processing introduced in the previous chapter can be ex-
ploited to provide unambiguous AOA estimation in the presence of high sidelobes for
sparse SODA geometries.

5.3 Array Processing with SODA Geometries

5.3.1 SODA-Cued Array Processing

In the previous section, it was shown that a sparse large aperture non-uniform linear
array has an unambiguous main lobe in its array beampattern but also exhibits high
sidelobe levels which can be problematic when scalloping losses occur. In order to avoid
incorrect AOA estimation, a very fine grid search resolution as specified by (5.27) should
be used. For large apertures, the null-to-null beamwidth, BWNN, is very small and so
the number of steering angles that need to be searched is very large. This can lead to
computationally intensive grid searches.

On the other hand, it was established in Section 4.2 that a SODA interferometer can
provide a coarse AOA estimate in a computationally fast manner. The SODA inter-
ferometer can therefore be used to reduce the search space of the array processor in
a similar manner to the SODA-cued correlative interferometer as described in Section
4.3.2. For a linear array, the search interval of the array processor will typically be
[−90◦, 90◦]. As a rule of thumb, the SODA AOA estimate can be used to reduce the
search interval to [θ̂SODA − 3δθRMS,SODA, θ̂SODA + 3δθRMS,SODA]. While the full search

interval spans 180◦, the reduced interval only spans 6δθ̂RMS,SODA.

In this implementation, the SODA interferometer acts as an independent technique that
reduces the search space of the array processor. This has the benefit of ignoring side-
lobes outside the search space as well as reducing the number of computations that
need to be performed for each AOA estimation. However, the independent use of the
SODA interferometer does not change the array beampattern or array output and so
AOA estimation errors can still occur if the array beampattern exhibits high sidelobes
within the reduced search space.

Example 5.4
Consider the array output of the CBF algorithm when applied to the same
8-antenna non-uniform linear array as illustrated in Figure 5.8. In this ex-
ample, it is assumed that the SNR is η = 15 dB, signal frequency is f = 16
GHz, AOA is θ = 23.42◦, N = 2048 samples and W = 1 snapshot.

The first three antennas of this array, positioned at 0, 3.1429λ and 6.7857λ re-
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Figure 5.16: The SODA AOA estimate can be used to reduce the search range of the
conventional beamformer.

spectively, satisfy the SODA baseline requirements specified by (4.11), since

d21 = 3.1429λ, (5.29)

d31 = 6.7857λ = 2d21 + λ/2. (5.30)

With this array geometry, (4.29) suggests that the SODA interferometer will
be able to estimate the AOA of the signal with a RMS error of approximately
0.14◦. Figure 5.16 shows one realisation of this scenario. In this particular
example, the SODA interferometer estimated the AOA of the signal to be
θ̂SODA = 23.26◦ and so the SODA-cued beamformer only needs to search grid
points in the interval [22.84◦, 23.68◦]. For a grid search resolution of ∆θ =
0.573◦, this means that only 1 − 2 grid points need to be considered. This
is in contrast to the 315 grid points that need to be considered to conduct
a full search in the interval [−90◦, 90◦]. In other words, when cued by the
SODA AOA estimate, less than 0.63% of the total search space needs to be
considered and so the computation time of the CBF algorithm is significantly
improved.

In a similar manner to the SODA-cued correlative interferometer, the grid search esti-
mate of the SODA-cued array processor will still need to be refined using an optimisation
algorithm, such as Newton’s Method, to further improve the AOA estimation. At high
SNR, it is reasonable to expect that the RMS error of the SODA AOA estimate is suf-
ficiently small that the AOA estimate lies within the main lobe of the array output. If
this is the case, an alternative implementation of the SODA-cued array processor is to
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bypass the grid search altogether and simply use the SODA AOA estimate as the initial
estimate to the optimisation algorithm of the array processor.

Algorithm Complexity

The algorithm complexity of the SODA-cued CBF algorithm is the sum of the algo-
rithm complexities for the SODA interferometer and the CBF algorithm and is given
by O(WΦ + K2(W + G′ + Γ) + G′K + G′ + 1), where Φ = KN log2N represents the
number of operations to perform the FFT on each antenna output, K is the number
of antennas, N is the number of samples and W is the number of snapshots, G′ is the
number of angles in the reduced search space and Γ is the number of iterations used by
Newton’s Method. If the grid search is not performed, the algorithm complexity of the
SODA-cued CBF optimisation algorithm reduces to O(WΦ +K2(W + Γ) + 1).

Similarly, the algorithm complexity for the SODA-cued MUSIC algorithm is the sum of
the algorithm complexities for the SODA interferometer and the MUSIC algorithm and
is given by O(WΦ + K3 + K2(W + G′ + Γ) + G′K + G′ + 1). If the grid search is not
performed, the algorithm complexity of the SODA-cued MUSIC optimisation algorithm
reduces to O(WΦ +K3 +K2(W + Γ) + 1).

5.3.2 SBI-Cued Array Processing

In Section 4.3.1, it was shown that the SBI interferometer is a computationally fast
algorithm that can exploit the SODA AOA estimate to provide higher accuracy AOA
estimates. Thus, the higher accuracy SBI AOA estimate can be used to cue the array
processing for better performance. Since the SBI interferometer can exploit auxiliary
antennas to improve its ambiguity resolution at low SNRs, the SBI-cued array processors
are expected to have a better AOA estimation performance than the SODA-cued array
processors at low SNRs and when auxiliary antennas are available.

Algorithm Complexity

The algorithm complexity of the SBI-cued CBF algorithm is the sum of the algo-
rithm complexities for the SBI interferometer and the CBF algorithm and is given by
O(WΦ +K2(W +G′+ Γ) +G′K +G′+ 2M), where M is the number of interferometer
baselines. If the grid search is not performed, the algorithm complexity of the SBI-cued
CBF optimisation algorithm reduces to O(WΦ +K2(W + Γ) + 2M).

Similarly, the algorithm complexity for the SBI-cued MUSIC algorithm is the sum of
the algorithm complexities for the SBI interferometer and the MUSIC algorithm and is
given by O(WΦ + K3 + K2(W + G′ + Γ) + G′K + G′ + 2M). If the grid search is not
performed, the algorithm complexity of the SODA-cued MUSIC optimisation algorithm
reduces to O(WΦ +K3 +K2(W + Γ) + 2M).
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5.3.3 SODA Array Processing

The exploitation of the second-order processing to create a virtual pair for SODA in-
terferometry can be generalised to an arbitrary number of antennas to create a virtual
uniform linear array. Any beamforming and array processing algorithm can then be
applied to the virtual array outputs to perform AOA estimation.

In this thesis, the terms “first-order” and “physical” will be used interchangeably to
describe the parameters associated with the first-order physical array. Similarly, the
terms “second-order” and “virtual” will be used to describe the parameters associated
with the second-order virtual array.

Antenna Positions

The SODA interferometer takes a linear combination of the phases of three appropriately
positioned antennas to generate the equivalent phase delay of two virtual antennas. For
three antennas, this is achieved with the following constraint on the physical antenna
separations,

d32 − d21 = d∆, (5.31)

where d21 and d32 are the first-order physical baselines and d∆ is the baseline for the
virtual antenna pair. Unambiguous AOA estimation can then be performed using inter-
ferometry by ensuring that d∆ ≤ λmin/2, where λmin is the wavelength of the highest
frequency of interest.

Synthesis of the virtual antenna pair can be generalised to a greater number of antennas
to create a virtual uniform linear array. While many combinations of the first-order
phase delays are possible to generate a virtual array output, this chapter shall specifically
focus on an array design that generalises the antenna positions of the 3-antenna SODA
interferometer to a larger number of antennas as depicted in Figure 5.17 and Figure 5.18.
The advantage of such an array geometry is that the first three antennas can be used
as a 3-antenna SODA interferometer for coarse AOA estimation. For K ≥ 3 antennas,
this is achieved with the following constraint on the physical antenna separations,

d∆,k−1,1 = dk,k−1 − dk−1,k−2 = (k − 2)d∆, (5.32)

where k = 3, 2, . . . ,K and d∆ is the uniform inter-element spacing between the virtual
antennas. Unambiguous AOA estimation can then be performed by using any beam-
forming or array processing technique by ensuring that d∆ ≤ λmin/2.

For the purposes of designing SODA geometries, it is convenient to rewrite (5.32) in
terms of antenna positions. The antenna separation between the k-th and (k − 1)-th
antennas can be written as follows

dk,k−1 = uk − uk−1, (5.33)

where uk and uk−1 are the physical antenna positions of the k-th and (k−1)-th antennas
respectively. Using this notation, the antennas for a K-antenna SODA geometry can
then be re-written as

uk = 2uk−1 − uk−2 + (k − 2)d∆, (5.34)

where u1 = 0 and u2 is an arbitrarily chosen length.
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Figure 5.17: The second-order differences between the physical antenna positions of a sparse
large aperture array can be used to synthesise the baselines of an unambiguous virtual
uniform linear array.
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Figure 5.18: The antenna positions of a virtual uniform linear array formed from the second-
order differences of the physical antenna positions.

k 2uk−1 uk−2 (k − 2)d∆ uk

1 − − − 0
2 − − − 3.1429λ
3 6.2858λ 0 0.5λ 6.7858λ
4 13.5716λ 3.1429λ λ 11.4287λ
5 22.8574λ 6.7858λ 1.5λ 17.5716λ
6 35.1432λ 11.4287λ 2λ 25.7145λ
7 51.429λ 17.5716λ 2.5λ 36.3574λ
8 72.7148λ 25.7145λ 3λ 50λ

Table 5.1: Antenna positions for an 8-antenna SODA geometry with d∆ = λ/2, u1 = 0 and
u2 = 3.1429λ.

Example 5.5
Consider the design of an 8-antenna SODA geometry with d∆ = λ/2. In this
example, u1 = 0 and u2 is arbitrarily chosen to be u2 = 3.1429λ. The an-
tenna positions for all remaining antennas can be computed from (5.34) and
are listed in Table 5.1. These antenna positions correspond to the antenna
array depicted in Figure 5.8.

Second-Order Signal Model

In order to apply the conventional array processing algorithms to the virtual array, a
vector representation of the virtual array signal model is required. This can be achieved
by deriving a “second-order signal model” as described below.

Consider the first-order signal model of the k-th antenna of a physical K-antenna linear
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array, xk1[n], as follows,

xk1[n] = Aej(2πfnts+ϕ+ψk1(θ)) + εk[n] = s[n]ejψk1(θ) + εk[n], (5.35)

where k = 1, 2, . . . ,K, s[n] = Aej(2πfnts+ϕ) represents the time-varying signal waveform,
ejψk1(θ) represents the propagation phase delay and εk[n] represents the independent re-
ceiver noise in the k-th channel.

The corresponding second-order signal model can be formed from the outputs of each
consecutive triplet of physical antennas. The second-order signal model of the v-th
antenna of the V -antenna virtual array, χv1[n], can be written as

χv1[n] = xv+1,1[n]x∗v,1[n]x∗v,1[n]xv−1,1[n], (5.36)

= A4ej(ψv+1,1(θ)−2ψv,1(θ)+ψv−1,1(θ)) + ε′v[n], (5.37)

= A4ejψ∆,v1 + ε′v[n], (5.38)

where the second-order phase delay, ψ∆,v1, is given by

ψ∆,v1 = ψv+1,v − ψv,v−1 =
2πf(v − 1)d∆

c
sin θ, (5.39)

and V = K−1, v = 2, . . . , V , ψ∆,v1(θ) is the second-order phase delay which corresponds
to the virtual antenna separation, d∆,v1, and ε′v[n] represents the “noise” component of
the v-th virtual antenna which consists of the first-order receiver noise components from
the (v−1)-th, v-th and (v+1)-th physical antennas and their corresponding cross-terms
with the first-order signals, xv−1[n], xv[n] and xv−1[n]. The phase delay of the first
(reference) virtual antenna is expected to be ψ∆,11 = 0 and so the signal model for the
first virtual antenna can be written as χ11[n] = |x11[n]|4 = A4 + ε′1[n].

Following (5.6), the n-th sample from all V = K − 1 virtual antennas can be expressed
more compactly in vector notation as follows

χ [n] = A4


ejψ∆,11(θ)

ejψ∆,21(θ)

...

ejψ∆,V 1(θ)

+


ε′1[n]
ε′2[n]

...
ε′V [n]

 = s′[n]ν (θ) + ε ′[n], (5.40)

where χ [n] is a V × 1 vector representing the V virtual antenna outputs, s′[n] = A4

is a non-time-varying component that is only related to the signal amplitude, ε ′ is
a V × 1 vector representing the noise in each virtual channel, and ν (θ) is a V × 1
vector representing the propagation phase delays of the signals with respect to the first
(reference) virtual antenna and is defined as

ν (θ) =


ejψ∆,11(θ)

ejψ∆,21(θ)

ejψ∆,31(θ)

...

ejψ∆,V 1(θ)

 =


e0×j2πfd∆ sin θ/c

e1×j2πfd∆ sin θ/c

e2×j2πfd∆ sin θ/c

...

e(V−1)×j2πfd∆ sin θ/c

 . (5.41)
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Figure 5.19: Beampattern of a 7-antenna virtual uniform linear array derived from an 8-
antenna physical SODA geometry with a 50λ aperture.

Since the second-order array signal model described by (5.40) has the same functional
form as the first-order signal model described by (5.6), the conventional beamforming
and array processing algorithms can be applied to the second-order signal model for
AOA estimation. However, the second-order signal, s′[n] = A4, no longer contains the
signal waveform component. Furthermore, while the first-order signal has a magnitude
of A, the second-order signal has a magnitude of A4. This suggests that the output
power of a beamformer applied to the virtual array will be a factor of A6 higher than
the equivalent array processor applied to the physical first-order array.

Example 5.6
The 8-antenna non-uniform linear array illustrated in Figure 5.8 is an 8-
antenna SODA geometry which has antenna positions tabulated in Table
5.1. With this array geometry, a 7-antenna virtual uniform linear array can
be formed with an inter-element spacing of λ/2 at 16 GHz. In this example,
it is assumed that the SNR is η = 15 dB, signal frequency is f = 16 GHz,
AOA is θ = 23.42◦, N = 2048 digital samples and W = 1 snapshot.

Figure 5.19 shows the array beampattern for the first-order 8-antenna phys-
ical non-uniform linear array (with a 50λ aperture) and the second-order
7-antenna virtual uniform linear array (with a 3λ aperture) respectively.
This figure shows that the physical array beampattern has a very narrow
null-to-null beamwidth of approximately BWNN,first-order ≈ 2.292◦ but also
exhibits very high sidelobes. The magnitude of the highest sidelobe peak is
only 2.675 dB below the mainlobe peak. This beampattern suggests that
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high precision AOA estimation can be performed using the physical array,
however, the AOA estimation may be erroneous due to the high sidelobes.
In contrast, the virtual array beampattern has a much wider beamwidth
of BWNN,second-order ≈ 38.94◦ but also exhibits much lower sidelobes. The
magnitude of the highest sidelobe peak is 12.65 dB below the mainlobe peak.
This beampattern suggests that while the precision of the AOA estimation
is lower than the physical array, the virtual array is also less prone to AOA
estimation errors associated with high sidelobes. In order to reduce the num-
ber of computations but also avoid scalloping losses, (5.27) suggests that grid
search resolution of the array processors be set to ∆θfirst-order = 0.573◦ and
∆θsecond-order = 9.736◦ for the physical and virtual arrays respectively.

Figure 5.20 shows the array output of the CBF algorithm for the physical
and virtual arrays respectively. Due to the discrete search resolution, neither
arrays have a peak at the true AOA at θ = 23.42◦. The first-order array has
an unambiguous peak at θ̂first-order = 23.49◦, while the second-order virtual
array has an unambiguous peak at θ̂second-order = 19.47◦. Using Newton’s
Method to optimise the grid search estimate, the AOA estimates can be re-
fined to θ̂first-order = 23.4088◦ and θ̂second-order = 23.3874◦ respectively and so
the estimation errors are therefore −0.0112◦ and −0.0326◦ respectively.

Similarly, Figure 5.21 shows the array output of the MUSIC algorithm for the
physical and virtual arrays. In this case, the MUSIC grid search estimates
the AOA as θ̂first-order = 23.38◦ and θ̂second-order = 19.47◦ respectively. Using
Newton’s Method to optimise the grid search estimate, the AOA estimates
can be refined to θ̂first-order = 23.4088◦ and θ̂second-order = 23.3845◦ respec-
tively and so the estimation errors are therefore −0.0112◦ and −0.0355◦

respectively.

While the AOA estimation error of the CBF and MUSIC algorithms are
about three times higher using the virtual array than using the physical
array, it should be noted that the performance degradation is small in an
absolute sense. Furthermore, the number of computations required to es-
timate the AOA using the virtual array is significantly less than using the
physical array. Since the virtual array only requires a grid search resolu-
tion of ∆θsecond-order = 9.736◦, the algorithms only need to search through
19 possible angles within the interval [−90◦, 90◦]. On the other hand, the
physical array requires a a search resolution of ∆θfirst-order = 0.573◦ and so
the algorithms need to search through 315 possible angles in the same inter-
val. Thus, by using second-order processing, the algorithms exploiting the
virtual array are able to reduce the number of computations by a factor of
approximately 16.6 compared to using the physical array at the expense of
a small performance degradation.
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Figure 5.20: Comparison of the first-order and second-order array outputs for a 8-antenna
SODA geometry using the CBF algorithm. Simulation parameters: θ = 23.42◦, η = 15 dB,
f = 16 GHz, N = 2048 samples, W = 1 snapshot, ∆θfirst-order = 0.573◦ and ∆θsecond-order =
9.736◦.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Array Output (8−Antenna SODA Geometry, 50λ Aperture)

M
ag

ni
tu

de
 (

dB
)

Azimuth (deg)

 

 

First−Order (∆θ = 0.573°)

Second−Order (∆θ = 9.736°)
Second−Order with Newton’s Method

Figure 5.21: Comparison of the first-order and second-order array outputs for a 8-antenna
SODA geometry using the MUSIC algorithm. Simulation parameters: θ = 23.42◦, η =
15 dB, f = 16 GHz, N = 2048 samples, W = 1 snapshot, ∆θfirst-order = 0.573◦ and
∆θsecond-order = 9.736◦.
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Algorithm Complexity

The algorithm complexity for the second-order CBF and MUSIC algorithms are similar
to the complexities for first-order algorithms with the difference that an additional K
operations are required to generate the outputs of the virtual array and that the number
of angles in the grid search is reduced. The algorithm complexity for the second-order
CBF algorithm can therefore be written as O(WΦ+K2(W +G′′+Γ)+K(G′′+1)+G′′),
where G′′ represents the reduced number of steering angles. Similarly, the algorithm
complexity for the second-order MUSIC algorithm is O(WΦ +K3 +K2(W +G′′+ Γ) +
K(G′′ + 1) +G′′).

5.4 Performance Comparison

In this section, the AOA estimation performance of the CBF and MUSIC algorithms will
be evaluated using the physical and virtual arrays of the SODA geometry described in
Section 3.8.2. These algorithms will also be evaluated using the 8-antenna SODA geome-
try described in Example 5.5 designed for 16 GHz. For comparison, the AOA estimation
performance of these algorithms will be compared against some of the interferometric
algorithms described in the previous chapters.

5.4.1 Array Beampatterns

Figure 5.22 shows the physical and virtual array beampatterns for the 3-antenna array
geometry (i.e. when Antennas 1, 3 and 4 are used) at 9410 MHz. Due to the sparsity
of the array geometry, the first-order array beampattern exhibits very high sidelobes
and the highest sidelobe is immediately adjacent to the main lobe and is located ap-
proximately 3.9◦ away from the main lobe. These sidelobes are technically not grating
lobes since they have a lower magnitude than the main lobe, however, the difference
between the magnitude of the main lobe and highest sidelobe is extremely small (about
3.811× 10−3 dB) and so it is expected that the 3-antenna physical array geometry may
still exhibit grating lobe like effects. That is, at low SNR, the array output at the side-
lobes may be higher than the mainlobe due to the effects of noise or scalloping losses
and so lead to erroneous AOA estimation.

Figure 5.23 shows the physical and virtual array beampatterns for the 4-antenna array
geometry at 9410 MHz. This array geometry uses the same 3-antenna array geometry
above but also includes an additional auxiliary antenna (Antenna 2) to provide an in-
termediate baseline to reduce the sparsity of the array. The inclusion of the auxiliary
antenna changes the physical array beampattern by suppressing some of the sidelobes
exhibited in Figure 5.22. The highest sidelobe is now located 15.7◦ away from the main
lobe and is no longer immediately adjacent to the main lobe. The difference between
the magnitude of the main lobe and highest sidelobe has increased to about 0.2238 dB.
While this magnitude difference is very small in an absolute sense, it is still two-orders of
magnitude better than the physical array beampattern of the 3-antenna array geometry
and so algorithms using the 4-antenna array geometry are expected to provide better
AOA estimation performance at low SNR. Note that since the position of Antenna 2
does not adhere to the SODA constraint specified by (5.34), this antenna is not used to
form the virtual array and so the virtual array beampattern remains unchanged.
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Figure 5.24 shows the physical and virtual array beampatterns for the 8-antenna array
geometry at 9410 MHz. Note that the first-order array beampattern shown in this figure
differs slightly from Figure 5.19 which shows the first-order array beampattern of the
same array at 16 GHz. Since the 8-antenna array uses more antennas to form the same
aperture (i.e. 29.41λ at 9410 MHz), the sparsity of the 8-antenna array is much lower
than the 3-antenna array. As a result, the first-order beampattern for the 8-antenna
array is expected to have lower sidelobes than the 3-antenna array. For the 8-antenna
array, the highest sidelobe is located 28.1◦ away from the main lobe and the difference
between the magnitude of the main lobe and highest sidelobe is about 2.676 dB. Thus,
it is expected that the 8-antenna array will provide better AOA estimation performance
at low SNR.

5.4.2 Grid Search Resolutions

Since the 3-antenna, 4-antenna and 8-antenna array geometries considered in this section
are all designed to have an aperture of 29.41λ at 9410 MHz, the null-to-null beamwidth
of the physical beampatterns of all three antenna arrays will be approximately the same.
From (5.25), it can be shown that

BWNN,first-order ≈ 2 arcsin

(
λ

aperture

)
= 2 arcsin

(
λ

29.41λ

)
≈ 3.8971◦, (5.42)

and so (5.27) suggests that the search resolution for the first-order CBF and MUSIC
algorithms should be set to ∆θfirst-order = 0.974◦.

For the 3-antenna array geometry, Figure 5.22 suggests that the corresponding 2-antenna
virtual array beampattern has a null-to-null beamwidth of BWNN,second-order,2-Ant =
180◦. This suggests that the search resolution for the virtual array should be less than
45◦, i.e. ∆θsecond-order, 2-Ant ≤ 45◦. Note that since the virtual array aperture is less
than λ, (5.25) cannot be used to estimate BWNN,second-order,2-Ant.

For the 8-antenna physical array, visual inspection of Figure 5.24 suggests that the array
beampattern of the corresponding 7-antenna virtual array has a null-to-null beamwidth
of BWNN,second-order,7-Ant ≈ 58.20◦ and so (5.27) suggests that the search resolution for
the second-order CBF and MUSIC algorithms using the 7-antenna virtual array should
be set to ∆θsecond-order, 7-Ant = 14.55◦. Note that since the 7-antenna virtual array has
a small aperture, (5.25) will tend to overestimate the null-to-null beamwidth.

Since ∆θsecond-order, 2-Ant and ∆θsecond-order, 7-Ant are both rather coarse, this performance
comparison shall arbitrarily choose a finer grid search resolution of ∆θsecond-order = 5◦

for both virtual arrays to improve the performance of the grid search estimation. While
this grid search resolution is smaller than that required by (5.27), the increase in the
number of computations is not significant and is still approximately 5 times less than
the first-order grid search resolutions.

5.4.3 Monte Carlo Simulations

Monte Carlo simulations were used to evaluate the AOA estimation performance of the
CBF and MUSIC algorithms when applied to the physical and virtual arrays of the



CHAPTER 5. SODA ARRAY PROCESSING 135

−100 −80 −60 −40 −20 0 20 40 60 80 100
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
Array Beampatterns (3 Antennas)

M
ag

ni
tu

de
 (

dB
)

Azimuth (deg)

 

 

First−Order
Second−Order

Figure 5.22: Array beampatterns for the physical and virtual arrays using the 3-antenna
array geometry at f = 9410 MHz.
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Figure 5.23: Array beampatterns for the physical and virtual arrays using the 4-antenna
array geometry at f = 9410 MHz.
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Figure 5.24: Array beampatterns for the physical and virtual arrays using the 8-antenna
array geometry at f = 9410 MHz.

discussed SODA geometries. Since it was shown in Section 4.4 that the SBI-cued and
SODA-cued optimisation algorithms have comparable execution times, but the SBI-cued
optimisation algorithms generally have superior AOA estimation performance, these
simulations will not consider the performance of the SODA-cued algorithms. These
algorithms are labelled as “SBI-Cued CBF Opt.” and “SBI-Cued MUSIC Opt.” respec-
tively. For comparison, the AOA estimation performance of the MLE, SODA and SBI
interferometers will also be evaluated.

These simulations assume the same parameters as the comparisons performed in Sec-
tion 3.8.3 and Section 4.4 to allow direct comparison with the previous results. That is,
the intercepted signal is assumed to be a single-tone with a frequency and initial phase
of f = 9410 MHz and ϕ = 0◦ respectively. The signal is assumed to arrive from an
AOA of θ = 23.42◦. The RMS error performance of each algorithm is evaluated using
Q = 10, 000 receiver noise realisations. For each noise realisation, it is assumed that
N = 2048 digital samples are collected at a sample interval of ts = 750 ps. In these
simulations, the phase delays and cross-spectral matrix are estimated in the frequency
domain using a 2048-point FFT and a single snapshot, i.e. W = 1. No scalloping losses
are expected to occur in these simulations. Newton’s Method optimisation of the CBF
and MUSIC algorithms is allowed to perform a maximum of Γmax = 100 iterations and
the convergence tolerance is set to δθtol = 1◦ × 10−5.
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RMS Error Comparison

Figure 5.25 and Figure 5.26 show the RMS error performance of each algorithm when
implemented using the 3-antenna array geometry. In this example, the performance of
the first-order CBF and MUSIC algorithms have an identical performance. The first-
order CBF and MUSIC algorithms, MLE interferometer, and SBI-cued CBF and MUSIC
optimisation algorithms all achieve the 3-antenna root-CRLB. The first-order CBF and
MUSIC algorithms have a SNR threshold of 0 dB, while the MLE interferometer has
a SNR threshold of 3 dB and the SBI-cued CBF and MUSIC optimisation algorithms
have a SNR threshold of 8 dB. It is interesting to note that the first-order CBF and
MUSIC algorithms have a lower SNR threshold than the MLE interferometer. While all
of the algorithms exploit the phase component of the signal, only the array processing
algorithms additionally exploit the amplitude component of the signal and so provides
them with a small, but statistically significant, performance improvement at low SNR.

The SBI-cued optimisation algorithms have a significantly higher SNR threshold com-
pared to the first-order CBF and MUSIC algorithms and the MLE interferometer. This
is because the SBI-cued optimisation algorithms rely on accurate AOA estimates from
the SBI interferometer. Since the SBI interferometer has a SNR threshold of 8 dB, the
performance of the SBI-cued optimisation algorithms will be limited to the same SNR
threshold. Note that it is expected that if the grid search of the CBF and MUSIC al-
gorithms is performed, the SNR threshold is expected to be identical to the first-order
CBF and MUSIC algorithms.

The second-order CBF and MUSIC algorithms approach the same performance as the
SODA interferometer from about 5 dB SNR and achieve the same performance from
about 20 dB SNR. Like the SODA interferometer, the performance of the second-order
array processors is a factor of

√
3 above the d∆-root-CRLB. Interestingly, below the

SNR threshold, the performance of the SODA interferometer is actually better than the
second-order array processors.

Figure 5.27 and Figure 5.28 show that with the inclusion of the fourth auxiliary an-
tenna, the SNR threshold for the first-order CBF and MUSIC algorithms and the MLE
interferometer are reduced to −11 dB and the SNR threshold for the SBI and SBI-cued
algorithms are reduced to −4 dB. Since the position of the auxiliary antenna does not
satisfy the requirements of a SODA geometry, as specified by (5.34), its output cannot
be used by the SODA interferometer and second-order CBF and MUSIC algorithms and
so the performance of these algorithms remain unchanged.

As discussed in Section 3.8.2, with the 3-antenna array, there is no noticeable difference
between the d41-root-CRLB and the 3-antenna root-CRLB. However, there is a small but
statistically significant difference between the d41-root-CRLB and the 4-antenna root-
CRLB. As a result, this example shows that while the AOA estimation performance of
the SBI interferometer is not statistically optimal, the performance of the SBI-cued CBF
and MUSIC algorithms do achieve the 4-antenna root-CRLB and hence are statistically
optimal at high SNR.

Figure 5.29 shows the RMS error performance of each algorithm using the 8-antenna ar-
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Figure 5.25: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 3 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
W = 1 snapshot, ts = 750 ps and Q = 10, 000 realisations.
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Figure 5.26: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 3 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
W = 1 snapshot, ts = 750 ps and Q = 10, 000 realisations.
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Figure 5.27: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 4 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
W = 1 snapshot, ts = 750 ps and Q = 10, 000 realisations.
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Figure 5.28: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 4 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
W = 1 snapshot, ts = 750 ps and Q = 10, 000 realisations.
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Figure 5.29: RMS error performance of each algorithm as a function of SNR. Simulation
parameters: K = 8 antennas, θ = 23.42◦, f = 9410 MHz, ϕ = 0◦, N = 2048 samples,
W = 1 snapshot, ts = 750 ps and Q = 10, 000 realisations.

ray geometry described in Example 5.5. This simulation verifies that SODA geometries
with more than three antennas can be used to synthesise a virtual array with a larger
aperture than can be achieved by a 3-antenna SODA interferometer. With a larger
aperture, the AOA estimation performance of the second-order CBF and MUSIC algo-
rithms is able to exceed the performance of the SODA interferometer from about −5 dB
SNR and is consistently a factor of about 1.16 times higher the 7-antenna root-CRLB of
the virtual array. Again, this performance degradation is the result of using the output
from consecutive triplets of antennas to estimate the second-order phase delays.

This simulation shows that the first-order and SBI-cued CBF and MUSIC algorithms all
achieve the 8-antenna root-CRLB. The SNR thresholds for the first-order and SBI-cued
algorithms are −18 dB and −8 dB respectively.

Relative Execution Time

Table 5.2 shows the average relative execution time of each algorithm to perform a single
AOA estimation using the 4-antenna array geometry. These execution times are nor-
malised to the execution time of the SODA interferometer to allow direct comparison
with the execution times in Table 3.4 and Table 4.1. The algorithms are presented in
the order of increasing execution time, i.e. from fastest to slowest.

This table verifies that the SODA and SBI interferometers are the fastest algorithms in
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Algorithm Algorithm Complexity Execution Time

SODA O(Φ +M + 1) 1.00
SBI O(Φ + 2M) 1.01
SBI-Cued MUSIC Opt. O(WΦ +K2(W + Γ) + 2M) 2.72
SBI-Cued CBF Opt. O(WΦ +K3 +K2(W + Γ) + 2M) 2.73
Second-Order CBF O(WΦ +K2(W +G′′ + Γ)

+K(G′′ + 1) +G′′) 7.82
Second-Order MUSIC O(WΦ +K3 +K2(W +G′′ + Γ)

+K(G′′ + 1) +G′′) 7.87
MLE O(Φ +M(G+ Γ + 1)) 12.55
First-Order CBF O(WΦ +K2(W +G+ Γ) +GK +G) 45.83
First-Order MUSIC O(WΦ +K3 +K2(W +G+ Γ) +GK +G) 48.79

Table 5.2: Relative execution time factor for the array processing and interferometric algo-
rithms.

these simulations. This is followed by the SBI-cued algorithms which are approximately
2.7 times slower and then the second-order CBF and MUSIC algorithms which are ap-
proximately 7.8 times slower. Finally, the first-order CBF and MUSIC algorithms are the
slowest algorithms and are about 45.8−48.8 times slower than the SODA interferometer.

These relative execution times confirm that while the first-order CBF and MUSIC algo-
rithms offer the best performance in terms of the lowest RMS errors and SNR thresh-
olds, they are nearly 50 times slower than the SODA interferometer. For time-critical
applications, such as tactical ES systems, these algorithms are undesirable as they are
computationally slow and only offer a marginal improvement in the AOA estimation
in an absolute sense. It will often be more desirable to implement the SODA or SBI
interferometers to obtain the fastest, but sub-optimal, AOA estimation performance.
Alternatively, the SBI-cued optimisation methods (for either the MLE interferometer or
the first-order CBF or MUSIC algorithm) can provide optimal AOA estimation perfor-
mance at the expense of a marginal increase in the computation time.

5.5 Summary

This chapter presented the AOA estimation problem in the context of a multi-channel
array processor. Two popular array processing methods, namely the conventional phase-
shift beamformer (CBF) and Multiple Signal Classification (MUSIC) algorithms, were
presented. It was also shown that the AOA estimate obtained from each algorithm’s grid
search can be further improved by using an optimisation algorithm, such as Newton’s
Method.

Since the array processing algorithms are grid search algorithms, correct estimation of
a signal’s AOA will require that a distinct peak be detected at the correct search bin.
However, due to the scalloping losses that can occur when the signal’s AOA lies between
two search bins, the magnitude of the main lobe can be significantly attenuated. In the
context of ES applications, it was shown that the requirement to use physically large
wideband antennas in turn requires the use of sparse large aperture arrays for AOA
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estimation. While ambiguities (or grating lobes) can be avoided by using non-uniform
arrays, the sparsity of the antenna array causes high sidelobes to appear in the array
beampattern. If scalloping losses causes the peak of the main lobe to fall below the
magnitude of one or more sidelobes, the AOA of the signal will be incorrectly estimated.
To avoid erroneous AOA estimation, a very small grid search resolution must be used
to minimise the scalloping losses. In general, the grid search resolution should be set
to a value less than or equal to one-half of the null-to-null beamwidth of the array
beampattern. Since large aperture arrays have very narrow beamwidths, the grid search
resolution required by the array processors will be very small and hence translates to a
large number of computations. This will generally mean that the computational speed
of the array processing algorithms is slow in comparison to interferometers.

In order to address the slow computation time of the array processing algorithms, this
chapter proposes to use the AOA estimates from the SODA or SBI interferometer to
reduce the search space of the array processing algorithms. Furthermore, at high SNR,
the AOA estimates from the SODA and SBI interferometers may have sufficient accu-
racy to be directly applied to the array processor’s optimisation algorithm and so further
improvements can be made to the computation time as the grid search is not performed.
While the AOA estimates from the SODA and SBI interferometers are sub-optimal, the
final AOA estimate from the hybrid algorithms come from the optimal first-order array
processors and so the AOA estimation performance of these algorithms are statistically
optimal at high SNR.

Alternatively, it was shown that second-order processing can be used to translate a
sparse large aperture physical antenna array to a non-sparse uniform virtual array with
a smaller unambiguous aperture. Conventional array processing algorithms can then be
applied to the virtual array. By virtue of its smaller aperture, the beampattern of the
virtual array has a wider beamwidth and exhibits lower sidelobes than the beampattern
of the physical array. This suggests that the virtual array can make use of a coarser
grid search resolution and so the computational speed of these so-called second-order
array processors is significantly improved at the expense of a reduced AOA estimation
accuracy. Since it was shown that the SBI-cued array processors are statistically optimal
at high SNR and are computationally faster than the second-order array processors, the
SBI-cued array processors will generally be preferred.



Chapter 6

Calibration

6.1 Introduction

All of the AOA estimation algorithms discussed in the previous chapters have assumed a
perfect signal model with well-behaved independent receiver noise. In practice, a number
of imbalances may disproportionately distort one or more parameters of the measured
signal in each channel of a multi-channel digital receiver. Some common sources of
channel imbalance include:

• Hardware Imperfections - All hardware components, such as antennas, tuners,
filters, amplifiers, and cables, will add some distortion to the signal as the signal
propagates through the component. These distortions will manifest as gain and
phase errors and may be dependent on the signal frequency and operating tem-
perature of the receiver. In the case of antennas, the distortions may also be
dependent on the AOA of the signal.

• Imperfect Antenna Separations - The antenna separation between two an-
tennas is often assumed to be the distance between the physical (geometric) centre
of the antenna. However, in general, the electrical phase centre (where the signal
frequency actually resonates on the antenna) may differ from the antenna’s physi-
cal centre. This is particularly true for wideband antennas, such as cavity-backed
spiral antennas, where different parts of the antenna are designed to resonate at
different frequencies. The effect of a mismatch between the physical and electrical
phase centres of antennas is that the effective interferometer baselines may differ
from the physical antenna separations. This means that the effective interferome-
ter baselines will differ from the physical baselines and so will introduce an AOA
dependent error.

• Mutual Coupling - Mutual coupling is a phenomenon that occurs when a signal
received at an antenna is re-radiated to adjacent antennas. The extent of mutual
coupling is dependent on the received signal power, antenna directivity and the
antenna separations. In general, mutual coupling may introduce gain, frequency
and AOA dependent imbalances to the received signals.

• Crosstalk - Crosstalk is a form of electromagnetic interference which occurs when
a strong signal in one channel induces a current in other channels. The extent of
crosstalk depends on the received signal power, proximity of RF paths and the
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effectiveness of any electromagnetic shielding between the channels. Crosstalk
may introduce gain, frequency and phase imbalances to the received signals.

Hardware developers will generally attempt to minimise channel imbalances through
careful engineering design, such as using the same types of components in each channel
and ensuring identical signal path lengths. However, the nature of imperfect hardware
will mean that channel imbalances cannot be completely eliminated. Fortunately, these
imbalances behave in a consistent and repeatable manner and so calibration methods
can be applied to mitigate their effects.

In this chapter, the effect of the channel imbalances on interferometric AOA estima-
tion will be considered. Some calibration methods that are suited for long baseline
interferometers will also be presented.

6.2 Effect of Channel Imbalances

While there may be many different sources of channel imbalances, their combined effect
on the output signals of the multi-channel digital receiver can be aggregated into four
distinct sources of error, namely,

• phase imbalance,

• frequency imbalance,

• baseline errors, and

• gain imbalance.

These are systematic errors in the sense that they are consistent and repeatable imbal-
ances that arise from the specific hardware implementation. The presence of systematic
errors will introduce bias errors to the AOA estimation and must be mitigated to allow
high accuracy and unbiased AOA estimation to be performed. Since this thesis is fo-
cused on interferometry, this section will discuss the systematic errors in the context of a
two-channel interferometer, however, the results can also be generalised to multi-channel
interferometry and array processing.

6.2.1 Phase, Frequency and Baseline Errors

In Chapter 3, it was shown that the AOA estimate of an interferometer is given by

θ̂ = arcsin

(
cψ̂

2πfd

)
. (6.1)

This expression suggests that accurate AOA estimation depends on accurate measure-
ments of the phase delay between the channels, ψ, signal frequency, f , and antenna
separation, d. Any errors in the measurement of these parameters will manifest as bias
errors in the AOA estimation. These bias errors can be quantified through a pertur-
bation analysis where the AOA estimate obtained from an ideal, noiseless signal model
is subtracted from the AOA estimate obtained from an uncalibrated, noiseless signal
model, θ̂u. The uncalibrated signal model is obtained by introducing an imbalance
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of δψ, δf and δd to the measured values for the phase delay, frequency, and baseline
respectively. The AOA bias errors can be respectively written as

δθδψ = θ̂u(ψ + δψ, f, d)− θ(ψ, f, d), (6.2)

δθδf = θ̂u(ψ, f + δf, d)− θ(ψ, f, d), (6.3)

δθδd = θ̂u(ψ, f, d+ δd)− θ(ψ, f, d), (6.4)

where theˆaccent denotes an estimated parameter and the subscript on the AOA bias
error, δθ, keeps track of the parameter causing the error. Several authors [5, 36, 41] have
attempted to approximate the error contributions by performing a differential analysis
on (6.1) as follows,

δθδψ,diff ≈ δψ

ψ
· cψ

2πfd cos θ
=
δψ

ψ
· ε, (6.5)

δθδf,diff ≈ −δf
f
· cψ

2πfd cos θ
= −δf

f
· ε, (6.6)

δθδd,diff ≈ −δd
d
· cψ

2πfd cos θ
= −δd

d
· ε, (6.7)

where ε = cψ/2πfd cos θ. In fact, (6.5) is the expression for the error contributions of
the phase delay error and is identical to the approximate expression for the RMS error
of the AOA estimation obtained by taking the square-root of the Cramér-Rao Lower
Bound, i.e. (3.27). However, it will be shown by example that the differential analysis
is only a good approximation of the AOA bias errors when the AOA is approximately
broadside to the array (i.e. θ ∼ 0◦) and can differ significantly from the true errors (ob-
tained through perturbation analysis) when the AOA approaches endfire (i.e. θ ∼ ±90◦).

Example 6.1
Figure 6.1 to Figure 6.3 show the AOA bias error obtained using both per-
turbation and differential analysis for some typical systematic errors that
may be encountered by a modern digital microwave radar intercept receiver,
namely a phase error of δψ = 5◦, frequency error of δf = 1 MHz, and a
baseline error of δd = 1 mm. To avoid confusion with noise errors and phase
ambiguities, these plots assume an ideal, noiseless signal model with a sig-
nal frequency of f = 18 GHz and an unambiguous antenna separation of
d = λ/2 = 8.3333 mm, where λ is the signal wavelength.

The perturbation curves show that the systematic errors introduce AOA-
dependent bias errors to the AOA estimation. These bias errors are low-
est about broadside and rise exponentially towards endfire. This angle-
dependency suggests that the extent of the AOA bias error can be reduced
by limiting the field-of-view of the interferometer to a smaller angular region
about broadside.

These figures also show that the frequency imbalance has the least significant
effect on the AOA estimation. In this example, a 1 MHz frequency imbalance
introduces a maximum AOA bias error of 0.60◦ at endfire. In comparison, a
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1 mm baseline error has the most significant effect on the AOA estimation
with a maximum AOA bias error of 26.77◦ at endfire. A 5◦ phase delay error
has an intermediate effect on the AOA estimation with a maximum AOA
bias error of 13.54◦ at endfire.

These figures also illustrate the difference between the perturbation and dif-
ferential methods of computing the bias errors. While the differential method
is insightful and can be useful for quick and approximate calculations, they
can differ significantly from the true errors obtained through perturbation
analysis. This is particularly true at endfire where the differential analysis
calculates the AOA error to be infinite (although, in practice, the AOA error
will be limited to 180◦ due to phase wrapping).

While the differential analysis of the AOA bias errors may not be accurate
in an absolute sense, the differential method is still useful to understand the
relative extent of the AOA bias errors. Given that δψ = 5◦, δf = 1 MHz
and δd = 1 mm, the corresponding AOA bias errors, given by (6.5) - (6.7),
are approximately

δθδψ,diff ≈ 5◦

360◦
× ε ≈ 1.39%× ε, (6.8)

δθδf,diff ≈ − 1 MHz

18000 MHz
× ε ≈ −0.0056%× ε (6.9)

δθδd,diff ≈ − 1 mm

8.3333 mm
× ε ≈ −12.00%× ε. (6.10)

These calculations confirm that the baseline error introduces the most sig-
nificant AOA bias errors because a 1 mm error is relatively large compared
to the antenna separation. On the other hand, the frequency error intro-
duces the least significant AOA bias errors because a 1 MHz error is small
compared to the signal frequency.

6.2.2 Gain Imbalance

Gain imbalances cause the signal power, and hence signal-to-noise ratio (SNR), of the
measured signal in each channel to be different. These imbalances manifest as a perfor-
mance degradation in the AOA estimation in the presence of independent receiver noise.
In Section 3.8.1, the Cramér-Rao Lower Bound (CRLB) for the AOA estimation using
a linear array was shown to be inversely proportional to the SNR as follows

CRLB(θ) ∝ 1

η
, (6.11)

where η = A2/2σ2 represents the SNR of the signal, A represents the signal amplitude,
A2 represents the signal power and 2σ2 represents the receiver noise power of the real
and imaginary components. This expression implicitly assumes that the SNR of the
signal is identical in all channels.

Under the assumption that the receiver noise is white and that all channels are designed
to have the same noise power, it is reasonable to assume that any differences in the SNR
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Figure 6.1: AOA bias error due to a 5◦ bias error in the phase delay estimate. The signal
frequency is assumed to be f = 18 GHz and the antenna separation is d = λ/2.
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Figure 6.2: AOA bias error due to a 1 MHz bias error in the frequency estimate. The signal
frequency is assumed to be f = 18 GHz and the antenna separation is d = λ/2.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−200

−150

−100

−50

0

50

100

150

200
AOA Bias Error Due to a 1 mm Baseline Error

P
ea

k 
E

rr
or

 (
de

g)

Azimuth (deg)

 

 
Perturbation Method
Differential Method

Figure 6.3: AOA bias error due to a 1 mm bias error in the interferometer baseline. The
signal frequency is assumed to be f = 18 GHz and the antenna separation is d = λ/2.
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of each channel is entirely due to amplitude (or gain) imbalances. The amplitude of the
signal in the k-th channel, Ak, can be modelled as a gain imbalance applied to the true
signal amplitude as follows

Ak = αkA, (6.12)

where αk represents the scaling effect of the gain imbalance. This suggests that the SNR
of the k-th channel can be written as

ηk =
Ak
2σ2

= α2
kη. (6.13)

From (A.61), when the SNR of the signal differs in each channel, the CRLB can be
shown to be proportional to

CRLB(θ) ∝ K 1∑K
k=1 ηk

=

(
K

1∑K
k=1 αk

)
· 1

η
. (6.14)

Comparing (6.14) with (6.11) shows that in the presence of amplitude imbalances, the

CRLB is scaled by a factor of K
(∑K

k=1 αk

)−1
. This suggests that amplitude imbalances

do not introduce a bias error to the AOA estimation but rather scales the RMS error of

the AOA estimation performance in noise by a factor of

√
K
(∑K

k=1 αk

)−1
.

6.3 Signal Models

In this section, the signal models that will be used to discuss the calibration methods
will be established.

6.3.1 Calibrated Signal Model

From Section 3.2.2, the ideal, noiseless narrowband signal can be modelled as

sc(t) = Aej(2πft+ϕ). (6.15)

Since the purpose of calibration methods is to attempt to recover the ideal signal from
the uncalibrated signal, the above expression can also be considered the calibrated signal
model. The superscript c will be used to distinguish the calibrated signal model and its
parameters from the uncalibrated signal.

For an array of K antennas, the propagation time delay between the k-th and l-th
antennas, τkl, is given by

τ ckl =
dkl
c

sin θ. (6.16)

The calibrated signal received at the k-th antenna relative to the l-th antenna can
therefore be expressed as

sckl(t) = Aej(2πf(t+τckl)+ϕ) = Aej(2πft+ϕ+ψc
kl), (6.17)

where ψckl = 2πfdkl sin θ/c represents the ideal phase delay of the calibrated signal mea-
sured at the k-th antenna with respect to the l-th antenna.
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6.3.2 Uncalibrated Signal Model

For an array of K antennas, the uncalibrated signal from the k-th antenna relative to
the l-th antenna can be modelled as

sukl(t) = αklAe
j(2π(f+δfkl)(t+τ

c
kl+δτkl)+(ϕ+δϕkl)), (6.18)

where αkl, δfkl and δϕkl represent the aggregated amplitude, frequency and phase im-
balances of the k-th channel relative to the l-th channel respectively. A propagation
time delay error, δτkl, is also introduced to the uncalibrated signal model as a result of
the additional time required to travel from the k-th antenna to the l-th antenna due to
a baseline error, δdkl. The propagation time delay error and baseline error are related
by

δτkl =
δdkl
c

sin θ. (6.19)

The superscript u is used to distinguish the uncalibrated signal model and its parameters
from the calibrated signal.

The uncalibrated signal model can be written in terms of the calibrated signal model as

sukl(t) = αkls
c
kl(t)e

jβ′kl(A,f,θ,T,t), (6.20)

where β′kl(A, f, θ, T, t) represents a time-varying phase delay bias error that arises due
to the channel imbalances and is defined as

β′kl(A, f, θ, T, t) = 2πδfklt+ 2π(f + δfkl)δτkl + 2πδfklτ
c
kl + δϕkl, (6.21)

= β′′kl(A, f, θ, T, t) + βkl(A, f, θ, T ), (6.22)

where β′′kl(A, f, θ, T, t) = 2πδfklt is the time-varying component and βkl(A, f, θ, T ) =
2π(f + δfkl)δτkl + 2πδfklτ

c
kl + δϕkl is a constant phase offset. The arguments to the

phase delay error components, A, f , θ and T , represent the dependency of the system-
atic errors on the signal’s amplitude, carrier frequency, AOA, and receiver operating
temperature respectively.

In practice, frequency imbalances arise mainly due to the use of independent local os-
cillators to down-convert the radio frequency (RF) signals in each channel to a more
manageable intermediate frequency (IF). This major source of frequency imbalance can
be mitigated by using a single common local oscillator for all channels. While hardware
components may also introduce frequency imbalances, these imbalances are often small
compared to the operating frequency. Furthermore, from Section 6.2.1, it was shown
that the bias error introduced by a small frequency imbalance is small and so the effects
of the frequency imbalance can be considered negligible. This assumption implies that
β′′kl(A, f, θ, T, t) ≈ 0, and so the phase delay error, β′kl(A, f, θ, T, t), will be dominated
by βkl(A, f, θ, T ), i.e.,

β′kl(A, f, θ, T, t) ≈ βkl(A, f, θ, T ). (6.23)

In other words, the combined effect of phase and baseline errors introduces a constant
offset to the phase delay estimation. For phase-based AOA estimation algorithms, such
as interferometry and array processing, this phase delay offset must be removed prior
to, or incorporated into, the AOA estimation algorithm.
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6.4 Calibration Methodology

6.4.1 Calibration Tables

Calibration techniques attempt to remove the effects of channel imbalances from the
uncalibrated signals. To facilitate this process, calibration look-up-tables are used to
store the difference between the measured, uncalibrated signals and the theoretical sig-
nals derived from the signal model. Sometimes, it may be possible to represent the
calibration data more efficiently as a mathematical function.

For phase-based AOA estimation algorithms, the phase delay errors, βkl(A, f, θ, T ), must
be quantified for all possible signal amplitudes, carrier frequencies, AOAs and receiver
operating temperatures that are of interest. However, in practice, the calibration tables
will be generated at discrete intervals and interpolation methods will be used to derive
the calibration data at intermediate values.

The calibration data needs to be captured using the full antenna array structure con-
nected to the microwave digital receiver and a known transmission source. This data
must be collected in a “quiet” RF environment, such as an anechoic chamber or an
isolated RF environment, to ensure that no other RF signals or multi-path interferences
affect the data.

Since this thesis is primarily concerned with AOA estimation, it is the AOA-dependency
of the phase delay error that is of most interest. The calibration look-up-tables can
therefore be arranged as a number of one-dimensional, AOA-dependent phase delay
errors that belong to a specific combination of signal amplitude, carrier frequency and
receiver operating temperature. Since the signal amplitude and carrier frequency can
be estimated from the output of a single uncalibrated channel, and since the operating
temperature can be directly measured at the receiver, the appropriate look-up-table can
be readily determined for a given intercept. When the calibration data is arranged in
this way, the AOA-dependent phase delay errors can simply be written as βkl(θ) and so
the the calibrated phase delay, ψckl(θ), can be obtained by simply removing the phase
delay error as follows

ψ̂ckl(θ) = ψ̃ukl(θ)− βkl(θ). (6.24)

In practice, fielded direction finding systems often need to be re-calibrated regularly to
adapt to changing signal environments, such as a change in physical location or temper-
ature variations over time. Since it is often not practical to perform a full calibration
in the field, practical systems often utilise a built-in, partial calibration process where
a RF signal is directly injected into the RF chain after the antennas. This allows the
calibration algorithm to characterise the digital receiver chain and remove any channel
imbalances immediately after the antennas. This method also allows the temperature
dependency of the calibration data to be ignored since the calibration data is generated
dynamically at the current receiver operating temperature. However, this partial cali-
bration method cannot be used to characterise the channel imbalances from the antenna
array. These distortions can only be characterised prior to deployment using over-the-air
transmissions from a source with a known AOA.
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Figure 6.4: A simple calibration method. The signals are calibrated prior to AOA estima-
tion.

6.4.2 Simple Calibration

A simple calibration method would be to subtract the appropriate channel imbalance,
βk(A, f, θ, T ), from the phase delay of the uncalibrated signal, ψ̃ukl(θ), as described by
(6.24), prior to the AOA estimation. This simple calibration method is illustrated in
Figure 6.4.

However, in order to apply this simple calibration method, the signal’s amplitude, carrier
frequency, AOA and the receiver operating temperature must first be known so that the
appropriate compensation values can be determined from the calibration tables. While
the signal amplitude, carrier frequency and receiver operating temperature can be read-
ily measured, the requirement to know the AOA prior to determining the appropriate
compensation values presents a circular dependency problem. That is, the AOA of the
signal must be known prior to determining the appropriate calibration values that need
to be applied, however, the AOA of the signal can only be estimated after the system
has been calibrated. Thus, this simple calibration method cannot be used to calibrate a
multi-channel phase-based direction finding system when the AOA of the signal is not
known in advance.

6.4.3 Joint Calibration and AOA Estimation

The circular dependency problem described above can be overcome by modifying the
AOA estimation algorithms to directly operate on the uncalibrated data. This method
effectively incorporates the calibration process into the AOA estimation algorithm. This
joint calibration and AOA estimation methodology is illustrated in Figure 6.5 and will
be described in more detail in the subsequent section.

While this integrated calibration methodology is sufficient for AOA estimation, the
channel outputs remain uncalibrated. If calibrated signal outputs are desired for subse-
quent processing, the estimated AOA can be used to cue the simple calibration method
discussed in the previous section.

6.5 Short-Baseline Calibration

Unambiguous AOA estimation using a single short-baseline interferometer requires a
unique relationship between the measured (calibrated or uncalibrated) phase delays and
the AOA. This in turn requires that the relationship be monotonic and that the phase
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Figure 6.5: The AOA estimation algorithms can be modified to allow AOA estimation
directly from the uncalibrated data.

delays lie entirely in the interval ψ ∈ [−π, π].

For the calibrated case, the relationship between the calibrated phase delay, ψckl, and
the AOA is given by (3.10). For short baselines, i.e. dkl ≤ λmin/2, the limits of the
measured phase delays will be monotonic lie wholly within the interval ψckl(θ) ∈ [−π, π]
and so unambiguous AOA estimation can be performed.

For the uncalibrated case, the additive phase delay bias error, βkl(θ), can affect the
uniqueness and monotonicity of the relationship between the measured phase delay and
the AOA as follows

• ψukl(θ) remains monotonic and unique for all θ,

• ψukl(θ) remains monotonic but is not unique for all θ,

• ψukl(θ) is neither monotonic nor unique for all θ.

In the first case, where ψukl(θ) maintains a monotonic and unique relationship with all
θ, unambiguous AOA estimation can still be performed using a single baseline. Such
scenarios can occur when the phase delay errors are a constant value or when the actual
interferometer baseline is shorter than the assumed interferometer baseline. However,
in the latter two cases, the relationship between ψukl and θ is no longer unique and so
unambiguous AOA estimation cannot be performed for all angles using a single baseline.
Such scenarios can occur when the interferometer’s electrical baseline is longer than its
physical baseline or when the antenna elements have a non-monotonic phase response
with respect to θ. The following examples will further illustrate these behaviours in
more detail.

Example 6.2
Consider a constant phase delay bias error of βkl(θ) = 50◦ for all θ as il-
lustrated in Figure 6.6. Figure 6.7 shows the corresponding relationship
between the uncalibrated phase delay and the AOA. While the uncalibrated
phase delays are now offset and discontinuous due to phase wrapping, its
relationship with the AOA remains unique and so unambiguous AOA esti-
mation can still be performed with the appropriate compensation.
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In this example, the calibration function is not dependent on the AOA and
so the calibrated phase delay can be obtained as follows,

ψ̂ckl(θ) =
[
ψ̃ukl(θ)− 50◦

]
2π
. (6.25)

Unambiguous AOA estimation can then be obtained by applying the short-
baseline interferometric algorithm to the calibrated phase delay.

Example 6.3
Consider the AOA-dependent phase delay errors that arise due to a shorter
than expected interferometer baseline as illustrated in Figure 6.8. Such a
situation can occur due to a mismatch between the electrical and physical
phase centres of the antennas. In this example, Figure 6.9 shows that the
uncalibrated phase delays are a scaled version of the calibrated phase delays
and their limits are within the interval ψukl ∈ [−π, π]. Since the relationship
between the uncalibrated phase delays and AOAs remains unique, unambigu-
ous AOA estimation can be performed with the appropriate unambiguous
compensation.

In this example, the calibration value can be determined directly from the
uncalibrated phase delay and does not require direct knowledge of the AOA.
That is, the unique relationship between the uncalibrated phase delay and
AOA can be exploited to obtain a calibration function to determine the
appropriate phase delay error as follows

f(ψukl) = βkl(θ). (6.26)

The calibrated phase delay can be obtained from

ψ̂ckl(θ) =
[
ψ̃ukl(θ)− f(ψukl)

]
2π
. (6.27)

Unambiguous AOA estimation can then be obtained by applying the short-
baseline interferometric algorithm to the calibrated phase delay.

Example 6.4
Consider the AOA-dependent phase delay errors that arise due to a longer
than expected interferometer baseline as depicted in Figure 6.10. Such a
situation can occur due to a mismatch between the electrical and physical
phase centres of the antennas. In this example, Figure 6.11 shows that the
uncalibrated phase delays are a scaled version of the calibrated phase delays
and their limits exceed the interval [−π, π]. Since there is no longer a unique
relationship between the uncalibrated phase delays and the AOAs, unam-
biguous AOA estimation cannot be performed for all angles.

In other words, due to the ambiguous relationship between the uncalibrated
phase delay and the AOA, the appropriate phase delay compensation may
also be ambiguous. Since the AOA of the signal is not known a priori, the
appropriate phase delay compensation cannot be determined using a single
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Figure 6.6: Example of a constant phase delay error of 50◦.
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Figure 6.7: The relationship between the uncalibrated phase delays and the AOA remains
unique when there is a constant phase delay error.
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Figure 6.8: Example of a monotonically decreasing phase delay error arising from a shorter
than expected interferometer baseline.
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Figure 6.9: The relationship between the uncalibrated phase delays and the AOA remains
monotonic and unique and so unambiguous AOA estimation can be performed.
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baseline and so unambiguous AOA estimation cannot be performed.

In this example, the uncalibrated phase delays can still be uniquely measured
between the interval ψukl ∈ [−144◦, 144◦] which corresponds to the AOA
interval θ ∈ [−42◦, 42◦]. Unambiguous AOA estimation can therefore be
performed within a field-of-view of 85◦.

Example 6.5
Consider a non-monotonic phase delay error that may arise due to non-
linearities in the antenna responses as depicted in Figure 6.12. In this ex-
ample, the limits of the uncalibrated phase delays are entirely within the
interval ψukl ∈ [−π, π], however, due to the non-monotonic behaviour, the
relationship between the uncalibrated phase delays and the AOAs is ambigu-
ous and so unambiguous AOA estimation cannot be performed for all angles.

In this example, the uncalibrated phase delays can still be uniquely measured
between the interval ψukl ∈ [−94◦, 94◦] which corresponds to the AOA interval
θ ∈ [−20◦, 20◦]. Unambiguous AOA estimation can therefore be performed
within a field-of-view of 41◦.

6.5.1 Implementation Using a 1-D Look-Up-Table

The AOA estimation methodology discussed in this section has thus far assumed a
two-step process where calibration is first applied to remove the effects of channel im-
balances, followed by the application of the AOA estimation algorithm on the calibrated
phase delays. However, for digital, short-baseline interferometers, the AOA estimation
can be more efficiently implemented in a single-step using a one-dimensional look-up-
table. Provided that the uncalibrated phase delays maintain a monotonic and unique
relationship with the AOA, the calibration look-up-table (or an equivalent calibration
function) can be used to directly map the uncalibrated phase delays, ψukl, to the appro-
priate AOA, θ. When an uncalibrated phase delay is measured, the look-up-table can
be consulted to give the corresponding AOA estimate. Figure 6.14 depicts such a look-
up-table graphically. The advantage of this technique is that the calibration process and
AOA estimation can be performed in a single step and has an algorithm complexity of
O(1).

6.6 Long-Baseline Calibration

For long baselines, the calibration problem is complicated by the additional ambiguity
in the phase delay measurements. If the phase delay error, βkl(θ), is a constant value in
all channels, and hence independent of AOA, then this phase delay error can readily be
removed prior to applying the AOA estimation algorithm. However, if the phase delay
error varies with the AOA, then each uncalibrated phase delay measurement, ψukl, may
correspond to multiple ambiguous AOAs, e.g. θa1 , θ

a
2 , θ

a
3 , . . . , etc. and each ambiguous

AOA has a different phase delay error, e.g. βkl(θ
a
1), βkl(θ

a
2), βkl(θ

a
3), . . . etc. Without

a unique relationship between the uncalibrated phase delays and the AOA, the short-
baseline calibration methods discussed in the previous section cannot be applied.
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Figure 6.10: Example of a monotonically increasing phase delay error arising from a longer
than expected interferometer baseline.
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Figure 6.11: The relationship between the uncalibrated phase delays and the AOA remains
monotonic but is not unique, and so unambiguous AOA estimation cannot be performed at
all angles.



CHAPTER 6. CALIBRATION 158

−100 −80 −60 −40 −20 0 20 40 60 80 100
−200

−150

−100

−50

0

50

100

150

200
Example of a Non−Monotonic Phase Error

P
ha

se
 E

rr
or

 (
de

g)

Azimuth (deg)

Figure 6.12: Example of a non-monotonic phase delay error.
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Figure 6.13: Relationship between the uncalibrated phase delays and the AOA is ambiguous
if the phase delay error is non-monotonic.
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Address ψu (θ1 ) ψu (θ2 ) ψu (θ3 ) ψu (θ4 ) ψu (θ5 ) ψu (θ6 ) ψu (θ7 ) ψu (θ8 ) ψu (θ9 ) ψu (θ10 ) ψu (θ11 )

LUT Value θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11

Figure 6.14: A look-up-table can be used to map the uncalibrated phase delays to the AOA.

In this section, it will be shown that for two or more long baselines, the set of un-
calibrated phase delays from all interferometric baselines will be unique for each AOA
with appropriate antenna spacings. This allows the long baseline ambiguity resolution
algorithms discussed in Section 3.7 to be adapted to incorporate the channel imbalances.

Relationship Between the Uncalibrated, Ambiguous Phase Delays at θ

Consider the uncalibrated, unambiguous phase delays, ψukl(θ) and ψuml(θ), of two long
interferometric baselines, dkl and dml, such that

ψukl(θ) =
2πfdkl
c

sin θ + βkl(θ) = ψ̃ukl(θ) + ρkl2π, (6.28)

ψuml(θ) =
2πfdml

c
sin θ + βml(θ) = ψ̃uml(θ) + ρml2π, (6.29)

where ψ̃ukl(θ), ψ̃
u
ml(θ) ∈ [−π, π] are the uncalibrated, ambiguous phase delays and ρkl, ρml

are integers representing the ambiguity numbers and are constrained by (3.34). In this
section, all phase delay notations have been explicitly written as a function of θ to
distinguish between the phase delay measurements from different AOAs. The above
expressions can be re-arranged to give the following equality,

2πf

c
sin θ =

ψ̃ukl(θ) + ρkl2π − βkl(θ)
dkl

=
ψ̃uml(θ) + ρml2π − βml(θ)

dml
. (6.30)

This can be further arranged to give an expression that describes the relationship be-
tween the uncalibrated, ambiguous phase delays of each baseline at θ as follows

ψ̃ukl(θ) =
dkl
dml

ψ̃uml(θ) + 2π

(
dkl
dml

ρml − ρkl
)
−
(
dkl
dml

βml(θ)− βkl(θ)
)
. (6.31)

Uncalibrated, Ambiguous Phase Delays at a Different AOA, θ′

Consider the phase delays of the same interferometer baselines at a different AOA, θ′.
The unambiguous phase delays are

ψukl(θ
′) =

2πfdkl
c

sin θ′ + βkl(θ
′) = ψ̃ukl(θ

′) + ρ′kl2π, (6.32)

ψuml(θ
′) =

2πfdml
c

sin θ′ + βml(θ
′) = ψ̃uml(θ

′) + ρ′ml2π, (6.33)

where ψ̃ukl(θ
′), ψ̃uml(θ

′) ∈ [−π, π] are the uncalibrated, ambiguous phase delays and
ρ′kl, ρ

′
ml are integers representing the ambiguity numbers and are constrained by (3.34).

Note that the parameters ψ̃ukl(θ
′), ψ̃uml(θ

′), ρ′kl and ρ′ml for θ′ are generally different from
the parameters ψ̃ukl(θ), ψ̃

u
ml(θ), ρkl and ρml for θ.
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Uniqueness of the Set of Uncalibrated, Ambiguous Phase Delays at Different AOAs

Let Ψ(θ) denote the set of uncalibrated, ambiguous phase delays from each interferom-
eter baseline for an AOA, θ, as follows,

Ψu(θ) = {ψukl(θ), ψuml(θ)} . (6.34)

In order to ensure that the set of ambiguous phase delays from all baselines is unique
for all AOAs, the set of uncalibrated, ambiguous phase delays, Ψu(θ), for θ must not be
the same as the set of measured phase delays, Ψu(θ′), for a different AOA, θ′, i.e.

Ψu(θ) 6= Ψu(θ′). (6.35)

This expression requires that the elements of each set to not be simultaneously pairwise
equal. In other words, uniqueness requires at least one of the following conditions to be
true,

ψukl(θ) 6= ψukl(θ
′), or (6.36)

ψuml(θ) 6= ψuml(θ
′). (6.37)

While the unambiguous phase delays measured at θ and θ′ will be different, it is possible
that the measured, ambiguous phase delays of one baseline to be the same due to phase
wrapping. As an example, consider that an ambiguity exists in the dml baseline such
that the same ambiguous phase delay is measured at θ and θ′. While the unambiguous
phase delays are unique, i.e. ψuml(θ) 6= ψuml(θ

′), it is possible that for this particular pair
of AOAs, the measured phase delays are ambiguous such that

ψ̃uml(θ) ≡ ψ̃uml(θ′). (6.38)

When this occurs, the ambiguity numbers will differ, i.e. ρml 6= ρ′ml, however these
values cannot be directly measured. In this example, (6.37) is not satisfied and so (6.36)
must be satisfied in order to ensure that Ψu(θ) and Ψu(θ′) are unique.

For the dkl baseline, the corresponding uncalibrated, ambiguous phase delay due to θ′

can be determined by substituting θ′, ρ′kl and ρ′ml into (6.31) to give

ψ̃ukl(θ
′) =

dkl
dml

ψ̃uml(θ
′) + 2π

(
dkl
dml

ρ′ml − ρ′kl
)
−
(
dkl
dml

βml(θ
′)− βkl(θ′)

)
. (6.39)

Since it is assumed that ψ̃uml(θ) ≡ ψ̃uml(θ′), the above expression can be re-written as

ψ̃ukl(θ
′) =

dkl
dml

ψ̃uml(θ) + 2π

(
dkl
dml

ρ′ml − ρ′kl
)
−
(
dkl
dml

βml(θ
′)− βkl(θ′)

)
,

= ψ̃ukl(θ) + 2π

(
dkl
dml

(ρ′ml − ρml)− (ρ′kl − ρkl)
)
− Λ(θ, θ′), (6.40)

where

Λ(θ, θ′) =

(
dkl
dml

(βml(θ
′)− βml(θ))− (βkl(θ

′)− βkl(θ))
)
. (6.41)

Inspection of (6.40) suggests that the ambiguous phase delays, ψ̃ukl(θ) and ψ̃ukl(θ
′), will

only be the same if Λ(θ, θ′) is an integer multiple of 2π and either dkl is an integer
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multiple of dml or (ρ′ml − ρml) is an integer multiple of dml. In practice, dml can be
readily chosen to ensure that (ρ′ml − ρml) is not an integer multiple of dml. Thus, if dkl
is also chosen to not be an integer multiple of dml then (6.36) is satisfied and so this
guarantees that the set of phase delays is unique for each AOA, i.e. Ψ(θ) 6= Ψ(θ′). This
unique relationship can be exploited to unambiguously estimate the AOA of the signal
by modifying the ambiguity resolutions methods discussed in Section 3.7 to estimate
the AOA from the uncalibrated data. In contrast to the short-baseline interferometer,
the long-baseline interferometer can perform unambiguous AOA estimation without re-
quiring the uncalibrated phase delays in each channel to have a monotonic and unique
relationship with the AOA for all angles. Finally, note that unlike the ideal (calibrated)
case, a unique relationship between the set of uncalibrated, ambiguous phase delays and
the AOA may still exist if dkl is an integer multiple of dml provided that Λ(θ, θ′) is not
an integer multiple of 2π.

6.6.1 Ambiguity Resolution Using Multiple Baselines and Uncalibrated
Data

In order to perform unambiguous AOA estimation using uncalibrated data, the ambi-
guity resolution methods described in Section 3.7 need to be modified to allow them to
operate directly on the uncalibrated data. This section will show the necessary modifi-
cations for the correlative, common angle search (CAS) and SODA interferometer.

Correlative Interferometers

For correlative interferometers, the required modification involves changing the com-
putation of the cost function, J(θs), to compare the measured, uncalibrated, ambigu-
ous phase delays against the expected uncalibrated, ambiguous phase delays obtained
through the calibration process. For example, for a calibrated system, the maximum
likelihood cost function is

JcMLE(θs) =
M∑
m=1

cos
(
ψ̃cm − ψcm(θs)

)
, (6.42)

where ψ̃cm ∈ [−π, π] is the calibrated, ambiguous phase delay and ψcm(θs) is the cali-
brated, unambiguous phase delay at θs. For an uncalibrated system, the modified cost
function can be written as follows

JuMLE(θs) =
M∑
m=1

cos
(
ψ̃um − ψum(θs)

)
, (6.43)

where ψ̃um ∈ [−π, π] is the uncalibrated, ambiguous phase delay measured using the
hardware and ψum(θs) is the uncalibrated, unambiguous phase delay measured at θs ob-
tained from the calibration data.

Since the above implementation merely swaps the calibrated data with the uncalibrated
data, the performance of the correlative interferometer using uncalibrated data remains
the same. From Section 3.7.5, the algorithm complexity of the uncalibrated correlative
interferometer is O(Φ + M(G + 2Γ + 1)), where Φ = KN log2N , K is the number of
antennas, N is the number of samples, M is the number of baselines, G is the number
of search angles, and Γ is the number of iterations used by Newton’s Method.
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Common Angle Search

For a calibrated system, the CAS algorithm can be written as a search for the combi-
nation of ambiguity numbers that minimise the following cost function,

JcCAS(ρ q) =
M∑
m=1

∣∣∣∣∣ ψ̃cm + ρqm2π

dm
− ψ̃cM + ρqM2π

dM

∣∣∣∣∣, (6.44)

where ψ̃cm ∈ [−π, π] is the calibrated, ambiguous phase delay, ρ q = {ρq1, ρq2, . . . , ρqM} is
a vector representing the q-th combination of ambiguity numbers corresponding to the
AOA, θq, from the set of valid ambiguity numbers, Ωsubset, ρ

q
m represents the ambiguity

number of the dm baseline for the q-th combination, and q = 1, 2, . . . , Qsubset, where
Qsubset is the length of the set Ωsubset. For an uncalibrated system, this cost function
becomes,

JuCAS(ρ q) =

M∑
m=1

G∑
g=1

∣∣∣∣∣ ψ̃um + ρqm2π − βm(θg)

dm
− ψ̃uM + ρqM2π − βM (θg)

dM

∣∣∣∣∣, (6.45)

where ψ̃um ∈ [−π, π] is the uncalibrated, ambiguous phase delay measured using the
hardware, G is the number of possible angles. Since the AOA of the signal is not
known prior to the AOA estimation, (6.45) must search for the global minimum of the
cost function for all possible AOAs. That is, in addition to searching for the correct
combination of ambiguity numbers, the CAS algorithm must also compensate the phase
delay errors for every possible angle for each ambiguity number combination. The
algorithm complexity of the CAS algorithm applied to the uncalibrated phase delays is
therefore O(Φ +M(GQsubset + 1)) and is significantly higher than the calibrated case.

SODA Interferometry

Consider the uncalibrated, unambiguous phase delays of two long interferometer base-
lines, d21 and d32, such that

ψu21 =
2πfd21

c
sin θ + β21(θ), (6.46)

ψu32 =
2πfd32

c
sin θ + β32(θ). (6.47)

The uncalibrated SODA phase delay can be calculated as

ψu∆ = [ψu32 − ψu21]2π = ψc∆ + β32(θ)− β21(θ). (6.48)

This expression shows that the SODA phase delay has the same functional form as
a short baseline interferometer with an additive, AOA-dependent phase delay error.
Hence, the discussion on short-baseline calibration in Section 6.5 is equally applica-
ble to the SODA interferometer and so a simple one-dimensional look-up-table can be
implemented to uniquely map ψu∆ to θ provided that the uncalibrated SODA phase
delay maintains a unique relationship with the AOA, i.e. the SODA phase delay er-
rors β32(θ) − β21(θ) is monotonic and ψu∆ does not exceed the interval [−π, π]. From
Section 4.2.3, the algorithm complexity for the uncalibrated SODA interferometer is
O(Φ +M + 1).
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6.7 Summary

In this chapter, it was shown that practical systems will suffer from a number of non-
idealities, such as hardware imperfections, imperfect antenna separations, mutual coup-
ing, and crosstalk. The aggregated effect of these non-idealities introduces gain, fre-
quency and phase imbalances and baseline errors to the measured phase delays.

The purpose of the calibration process is to remove the channel imbalances to allow un-
ambiguous AOA estimation to be performed. For phase-based AOA estimation methods,
such as interferometry, beamforming and array processing, it is the AOA dependency
of the phase imbalance that is of most concern. A circular dependency exists since the
AOA is required prior to calibration to determine the correct phase compensation to
apply to the uncalibrated data. However, the AOA is not known until it is estimated
after calibration. Fortunately, this circular dependency can be eliminated by modifying
the AOA estimation algorithms to operate directly on the uncalibrated data. In effect,
this latter process integrates the calibration process and AOA estimation into a single
step.

For a single short-baseline interferometer, unambiguous AOA estimation can be per-
formed provided that the additive phase delay bias errors are such that the uncalibrated
phase delays maintain a monotonic and unique relationship with the AOA. For multiple,
long-baseline interferometers, unambiguous AOA estimation can be performed directly
on the uncalibrated data using the ambiguity resolution algorithms discussed in Section
3.7 after modifying their cost functions to exploit the uncalibrated phase delays rather
than the calibrated phase delays.

Finally, a modified correlative and SODA interferometer can be applied to uncalibrated
data with any significant difference in the algorithm complexity and hence computation
time. However, when the modified CAS algorithm is applied to uncalibrated data, the
algorithm complexity increases significantly and so the algorithm is also slower than the
calibrated case.
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Chapter 7

The Electronic Support Testbed

7.1 Introduction

The Electronic Support (ES) Testbed is a digital microwave radar intercept receiver that
was developed in conjunction with the author’s colleagues at the Defence Science and
Technology Organisation (DSTO) of Australia. The ES Testbed exists in single-channel
and multi-channel configurations and was developed to demonstrate and evaluate signal
processing algorithms, such as AOA estimation, for ES and ELINT applications. The
multi-channel configuration of the ES Testbed was developed with the express purpose
of evaluating the AOA estimation algorithms proposed in this thesis.

It is acknowledged that most of the digital receiver design and implementation of the
ES Testbed was performed by DSTO colleagues. The author’s contribution to the
development of the ES Testbed are as follows:

• providing advice about the architecture and implementation of the multi-channel
ES Testbed, particularly in regards to timing and phase coherency between the
channels,

• testing and debugging the multi-channel ES Testbed,

• developing a data alignment method to correct for timing mismatches between the
hardware components,

• phase calibration of the ES Testbed to allow high-accuracy AOA estimation,

• developing the software front-end for data collection and analysis, and

• validating the performance of the ES Testbed through experimentation by organ-
ising and actively participating in a number of field trials and through extensive
analysis of the trial data.

In this chapter, the design objectives and hardware specifications of the ES Testbed will
be presented.

165
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7.2 Hardware Design

7.2.1 Design Objectives

The objective of the ES Testbed is to provide a research and development platform to
implement and evaluate new algorithms and architectures for next-generation microwave
radar intercept receivers. The current implementation of the ES Testbed is designed to
meet the specifications described in Section 1.4.1 as follows,

• be able to intercept radar signals between 2− 18 GHz,

• be able to simultaneously monitor a wide frequency range (up to 500 MHz),

• be able to intercept narrowband and wideband signals (up to 500 MHz)

• be able to exploit multiple, simultaneously illuminating signals,

• maintain near real-time operation in a high signal density environment,

• maintain a high probability of intercept (POI) at all times, and

• be cost effective.

The ES Testbed is implemented in a modular fashion using commercial, off-the-shelf
(COTS) components. A modular architecture was intentionally chosen to allow the
system to be scaled to an arbitrary number of channels for AOA estimation. The use of
COTS components reduces the risk, cost and development time of the system compared
to the development of custom hardware.

7.2.2 Sampling Architecture

The signal models and associated AOA estimation theory discussed in this thesis have
assumed a complex signal model. In practice, the digital representation of the complex
signal consists of an in-phase (real) and a quadrature (imaginary) component. Both com-
ponents must be available prior to the application of the AOA estimation algorithms.
While reception of the in-phase component is straightforward, reception of the quadra-
ture component can either be explicitly performed using quadrature sampling techniques
or generated from the in-phase component using real-signal sampling or bandpass sam-
pling techniques. The sampling architecture of the ES Testbed was chosen to implement
a bandpass sampling architecture to achieve the computational efficiencies in quadrature
generation, filter design and basebanding.

Bandpass Sampling

For a band-limited signal with a non-zero centre frequency of fc and a bandwidth of B
MHz, bandpass sampling recognises that the frequency range of interest only extends
from (fc − B/2) MHz to (fc + B/2) MHz. With appropriate filtering, the Nyquist cri-
terion for bandpass sampling requires a sample rate of at least 2B MSPS [48]. This
sampling architecture is depicted in Figure 7.1.



CHAPTER 7. THE ELECTRONIC SUPPORT TESTBED 167

In-Phase

fLO

Band Pass FilterMixer
ADC

fS > 2B MSPS

Antenna
(B MHz Max.)

QuadratureHilbert
Transform

Figure 7.1: Simplified block diagram of a bandpass sampling architecture.

Greater computational efficiencies can be obtained in the signal processing that typi-
cally occurs immediately after digitisation, such as quadrature generation, filtering and
basebanding, when the signal of interest is centred at fs/4. An efficient signal processing
“trick” that can be used to shift a signal centred at fc to fs/4 is to specifically choose
a sample rate that satisfies the following [48]

fs =
4fc
modd

, (7.1)

where fs is the sample rate, fc is the centre frequency of the signal and modd is an odd in-
teger. At this specific sample rate, aliasing effects are intentionally exploited to shift the
signal from fc to fs/4 without any explicit frequency translation operation. Note that
the choice of modd must still ensure that the Nyquist criterion is satisfied, i.e. fs ≥ 2B
MSPS. While the chosen sample rate in (7.1) is often faster than the minimum necessary
by the Nyquist criterion, the computational advantages offered by this choice of sample
rate is often a good trade-off against the cost of a faster ADC as will be discussed below.

Figure 7.2 illustrates the frequency spectrum of a typical real signal at various stages
of the bandpass sampling process. In this figure, the signal is assumed to be centred at
fc with bandwidth B MHz. The sample rate is chosen to be fs = 4fc/3, i.e. modd = 3.
Figure 7.2(a) depicts the frequency spectrum of the real signal prior to sampling. The
(blue) trapezoid centred at fc represents the signal energy at the positive frequency com-
ponent and the (orange) trapezoid centred at −fc represents the signal energy at the
negative frequency component. Note that the negative frequency component is spec-
trally inverted. After sampling at a rate of fs = 4fc/3, aliasing causes the positive
frequency component to be “copied” to −fs/4 and the negative frequency component to
be copied to fs/4. For illustrative purposes, the aliasing effects are depicted in Figure
7.2(b), however in practice, the frequency spectrum can only be unambiguously observed
within the interval [−fs/2, fs/2] as depicted in Figure 7.2(c).

One of the first operations that needs to be performed immediately after digitisation
of the in-phase signal is to generate the quadrature signal to obtain the complex signal
representation. When the signal is centred at fs/4, the quadrature generation can be
efficiently implemented as a simple finite impulse response (FIR) filter with as little as
6 taps [107]. The frequency spectrum of the complex signal is depicted in Figure 7.2(d).

Next, the spectral inversion of the aliased signal at fs/4 must be corrected. This is gen-
erally achieved by multiplying the digital samples of by a factor (−1)n, where n is the
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eration and filtering.
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(e) Frequency spectrum of the complex signal after spectral inversion.

Figure 7.2: An appropriately selected sampling rate can shift a signal centred at fc to fs/4
without an explicit frequency shift operation.
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sample number. Since this is simply a sign change of every odd sample, the spectral in-
version can be implemented without the use of any multiplications. Since multiplication
operations are generally computationally expensive, it is desirable to avoid multipli-
cation operations where possible. Once the spectral inversion has been corrected, the
frequency spectrum of the signal will be as depicted in Figure 7.2(e).

In signal processing, basebanding of a signal (i.e. frequency translation to 0 MHz) is
a commonly performed operation. Another advantage of centring the signal at fs/4 is
that basebanding can also be performed without the use of any multiplications [48].

Finally, filtering is a common operation that is performed in digital signal processing.
The intention of digital filters is to allow frequencies within the passband of the filter
to pass through the system while rejecting all frequencies outside the passband (i.e.
the stopband). In practice, all digital filter designs require some transition bandwidth
between the passband and the stopband [48, 108]. The sample rate of practical digital
receivers will therefore need to be faster than the Nyquist rate to provide a buffer in
the frequency spectrum to allow for the transition bandwidth of digital filters. Another
advantage of centring the signal at fs/4 is that the maximum transition bandwidth is
available for the digital filters for a given sample rate. In general, a wider transition
bandwidth allows simpler digital filters to be used.

Sampling Architecture of the ES Testbed

The sampling architecture of the ES Testbed was chosen to implement bandpass sam-
pling of the signal centred at fs/4 due to the computational efficiencies it offers in
quadrature generation, filter design and basebanding. Currently, many commercially-
available, microwave (super-heterodyne) tuners exist which are designed to operate be-
tween 2−18 GHz. These tuners commonly down-convert the radio frequency (RF) signal
to an intermediate frequency (IF) of 1 GHz and provide an instantaneous bandwidth of
500 MHz. Using these specifications with (7.1), the sample rate of the ES Testbed was
chosen to be

fs =
4× 1GHz

3
= 1333

1

3
MSPS, (7.2)

where the centre frequency is set to the IF of 1 GHz and modd = 3. For a signal with a
500 MHz instantaneous bandwidth, the Nyquist criterion requires that the sample rate
be at least 1000 MSPS, and so the above sample rate satisfies the Nyquist criterion.
The sample interval of the ES Testbed will therefore be ts = 1/fs = 750 ps. With this
sampling rate and IF, the spectrally-inverted, aliased signal will be centred at 3331

3 MHz.

Note that the down-conversion of the radar signal from RF to IF changes the measured
carrier frequency of the signal, however, the signal’s original RF can still be determined
since the local oscillator frequency is known. The phase of the signal remains unchanged
after down-conversion and so the phase delays will still be directly related to the signal’s
original RF.

7.2.3 Hardware Components

The ES Testbed follows a conventional digital receiver design with a bandpass sampling
architecture and is illustrated in Figure 7.3. Microwave radar signals are received at the
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Figure 7.3: Hardware architecture for the multi-channel ES Testbed.

antennas and down-converted from RF to IF using multi-channel, wideband microwave
tuners. Signal conditioning (i.e. amplification and filtering) is performed at both RF
and IF to improve the fidelity of the down-conversion. The IF signal is digitised using
parallel high-speed ADCs and then transferred to a computer where the calibration and
AOA estimation methods are applied. All components of the ES Testbed are discrete,
commercially-available components that are connected together using RF and IF cables
with SMA connectors.

For the experiments conducted during this research, cavity-backed spiral antennas were
used to provide wideband frequency coverage between 2−18 GHz. These antennas (Part
Number: C390-188) were manufactured by Microwave Engineering Corporation and are
left-hand circularly polarised with a Gaussian-like beampattern with a 3-dB beamwidth
of approximately 80◦.

The microwave tuners used in these experiments was a MA/Com (now Cobham) TU-
6401 SIGINT microwave tuner [109] with multiple TU-6402 slave units [110]. By combin-
ing a single TU-6401 unit with a number of TU-6402 units, a scalable, multi-channel,
wideband tuner can be realised. The TU-6401 and each TU-6402 is a single-channel
super-heterodyne receiver that down-converts RF signals between 2 − 18 GHz with
instantaneous bandwidths of up to 500 MHz to a 1 GHz IF. To facilitate the phase syn-
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chronisation of the receivers, the TU-6401 accepts an external 10 MHz reference signal
and shares this reference, along with its local oscillator frequency, with all slave TU-6402
units in a phase-coherent, daisy-chained fashion.

The digitisation of the IF signal is achieved through the use of multiple Neptune 2 VXS
digitisation boards from TEK Microsystems, Inc [111]. These high performance signal
acquisition boards consist of two independent 10-bit ADCs whose outputs are routed
through a single Xilinx Virtex 2 field-programmable-gate array (FPGA). These boards
are configured to independently digitise the analogue IF signal from two antennas. The
sample rate of the ADCs were set to 13331

3 MSPS and was specifically chosen to produce
an intentionally aliased digital IF recording centred at 3331

3 MHz. Multiple Neptune 2
VXS boards can be used to expand the number of channels. The ADCs from multiple
boards can be synchronised using an external clock input. This external clock is in turn
synchronised using the same 10 MHz reference signal from the MA/Com TU6401 tuner.

Once the IF signal is digitised, the sampled IF data from the Neptune 2 VXS digitisation
boards is transferred to a computer for further processing using fibre optic cables. The
ES Testbed intentionally sign extends the 10-bit ADC outputs to 16-bit words to allow
some bit growth in the subsequent processing or the potential future use of different
ADCs (with up to 16-bit outputs). Aligning each sample to an integer multiple of 8-bits
also facilitates the data transfer using standard computer transmission protocols. At a
sample rate of 13331

3 MSPS and a data size of 16-bits per sample, this translates to a
data rate of over 21 Gbps per channel if the ES Testbed were to continuously record
every sample. However, in theory, the fibre optic cables used by the ES Testbed can
only sustain a rate of about 2.5 Gbps per channel. This means that the ES Testbed
cannot sustain the continuous recording of the IF signal for extended periods of time.
To overcome this limitation, the ES Testbed makes use of an external triggering circuit
so that data is only recorded when a signal is detected. Since most radar signals exhibit
some sort of duty cycle, either due to its signal waveform or a scanning antenna, the use
of a triggering circuit is generally appropriate for ES applications.

7.2.4 Data Encoding

Each channel of the ES Testbed is associated with a single ADC and a FPGA controller
that packages the ADC output for transmission through the fibre optic cables to a com-
puter. When no radar signals are present, the ADC continues to operate but the FPGA
controller does not send any data to the computer. When a radar signal is detected
through the triggering circuit, a control signal is sent to the FPGA controller which
starts the data transmission. The ADC output will continue to be sent to the computer
as long as the trigger signal is active.

Due to the triggered nature of the system design, it is important to keep track of when
a trigger event takes place. This will allow signals from different channels to be associ-
ated, as well as inter-pulse characteristics, such as the pulse repetition interval (PRI),
to be measured. To achieve this functionality, a 48-bit time-of-burst (TOB) value which
identifies the time instance of the first sample of the triggered event is inserted into
the data stream prior to its transmission to the computer. This TOB is the value of
a free-running counter that is incremented at every clock cycle from the moment the
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TOB ADC Data TOB ADC Data ··· TOB ADC Data

Figure 7.4: Typical data stream of one channel from the ES Testbed.

0 0 0 0 0 0 10-bit ADC Value (Positive)

1 1 1 1 1 1 10-bit ADC Value (Negative)

6-bit Sign Extension

4-bit mask identifying the ADC data

Figure 7.5: Encoding of the ADC data.

1 0 1 0 12-bit TOB: (Bits 36 to 47)

1 0 1 0 12-bit TOB: (Bits 24 to 35)

4-bit mask identifying the TOB data

1 0 1 0 12-bit TOB: (Bits 12 to 23)

1 0 1 0 12-bit TOB: (Bits 0 to 11)

Figure 7.6: Encoding of the TOB data.

Mask (Binary) Mask (Hexadecimal) Data Type

1010 A 12-bit TOB Value
0000 0 In-Phase Data (Positive)
1111 F In-Phase Data (Negative)

Table 7.1: Data masks used in the encoding of the ES Testbed data.

FPGA is turned on. Each digitisation board has its own independent TOB counter.

A typical data stream from each channel of the ES Testbed consists of a TOB value
followed by a sequence of in-phase data values as depicted in Figure 7.4. All data from
the ES Testbed are encoded as 16-bit words. The 10-bit ADC outputs are sign extended
to 16-bits as illustrated in Figure 7.5. The 48-bit TOB value is divided into four 12-bit
values. Each 12-bit value is prefixed with a 4-bit binary sequence of ‘1010’ to form a
16-bit word as illustrated in Figure 7.6. Using this encoding scheme, the first four bits of
each 16-bit word can be considered as a mask which identifies the data type as tabulated
in Table 7.1.
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7.3 Data Alignment

7.3.1 Sources of Data Misalignment

A design flaw exists in the current implementation of the ES Testbed where an arbitrary
offset is introduced to each channel of the data stream. This data misalignment problem
is specific to the current implementation of the ES Testbed and is not to be confused
with the synchronisation or calibration of the multi-channel digital receiver. Synchro-
nisation of the system refers to the synchronised timing of the hardware components,
such as the local oscillator and ADCs, to ensure that the components in each channel
operate at the same time and is achieved through the use of an external reference clock.
Calibration of the system refers to the removal of channel imbalances that may arise
due to the use of imperfect hardware. While sychronisation and calibration are general
system design issues, the data misalignment discussed here is more of a “housekeeping”
issue. That is, the data misalignment problem discussed in this section refers to a time
and sample offset in the data stream that arises due to the specific implementation and
custom firmware of the ES Testbed. The data misalignment problem may be mitigated
through a more careful implementation of the ES Testbed.

A number of factors have been identified that contributes to the data misalignment.
These factors include:

• TOB offset,

• trigger offset, and

• ADC sample offset.

In the remainder of this section, each factor and its corresponding correction method-
ology will be discussed. Once the offset in the data stream of each channel is corrected,
the data streams are considered to be “aligned”. Calibration and AOA estimation al-
gorithms can then be applied to the aligned data.

TOB Offset

The ES Testbed makes use of multiple Neptune 2 VXS digitisation boards. Each digi-
tisation board is designed with its own TOB counter this is referenced to the power-up
time of the board. While it is often assumed that all hardware within a chassis will
power on at the same time, in practice, there will inevitably be discrepancies in the
times that each hardware receives enough electrical current from the chassis to power-
up. As a result, the digitisation boards will power up at different times and so the
TOB timestamps from each digitisation board to differ slightly, generally in the order
of milliseconds. Since pulsed radar signals are often repeatedly transmitted at a pulse
repetition interval of the order of microseconds and milliseconds, this difference in the
TOB timestamps can cause different intercepts from each channel to be incorrectly as-
sociated as belonging to the same intercept.

Once the ES Testbed has been powered up, the TOB offset delay remains constant for
the duration of that power cycle. However, the TOB offset delay will differ between
power cycles.
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Trigger Offset

An external triggering signal is used in the ES Testbed to reduce the data rate of the
system by limiting the transfer of the sampled IF to occur only while a signal is detected.
While the triggering circuit is designed to deliver the trigger signal to all digitisation
boards at the same time, it is possible that different boards will still receive the trigger
signal at slightly different times due to hardware imperfections. Furthermore, due to
the asynchronous nature of the trigger signal, it is possible that the trigger event can fall
exactly on the boundary of a clock cycle of the digitisation board. When this happens,
it is possible that one or more digitisation boards will not begin to collect data until
the next clock cycle. This means that the data from multiple channels can be offset by
exactly one clock cycle (which is 16 samples, or 12 ns, in the current implementation).
The trigger offset may occur on an intercept-by-intercept basis.

ADC Sample Offset

The ES Testbed is designed to sample the signal at a rate of 13331
3 MSPS (or 13331

3
MHz). Since the FPGA immediately after the ADC is unable to operate at such a
high frequency, multiplexers (MUX) are used to “slow” the data down to an operating
frequency of 3331

3 MHz.

Since each digitisation board can power-up at different times, the ADCs will also power-
up at different times. This means that a different number of samples may be present in
the MUX once all of the ADCs have powered up. This sample misalignment is constant
once the system has been turned on but will differ between power cycles.

7.3.2 Data Alignment Methodology

The data alignment issues in the ES Testbed can only be corrected by recording a known
number of pulses in a controlled environment prior to normal operation. It is important
that all components in the ES Testbed are fully powered and that no external signals
are collected by the system prior to collecting the control data. The RF input into the
microwave tuners of the ES Testbed is designed to allow switching between a control
signal via direct injection using a signal generator and from over-the-air transmissions
using the antenna array.

When collecting the control data, the output of a signal generator is split among all of
the channels. The control signal must be a pulsed signal to provide a time reference for
alignment. The signal characteristics, i.e. power, frequency, pulse duration and pulse
repetition interval can be arbitrarily chosen, however, the signal power must be high
enough to excite the triggering circuit. In the experiments conducted for this research,
the parameters of the control signal were set according to Table 7.2. Approximately
100− 1000 control pulses should be collected each time the system is power cycled.

The process for collecting the control data is as follows:

1. Turn off the ES Testbed and signal generator.

2. Ensure that the RF switch is set to direct-injection from the signal generator.
(i.e. Ensure no signal enters the system through the antennas)
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Parameter Value

Signal Power -20 dBm
Frequency 9440 MHz

Pulse Duration 1 µs
Pulse Repetition Interval 25 ms

Table 7.2: Parameters for the control signal used for data alignment.

3. Power-up the ES Testbed.
Wait a few seconds to ensure that all components have fully powered-up.

4. Turn on the signal generator.

5. Capture 100− 1000 pulses.

6. Estimate the TOB offsets in each channel.

7. Estimate the trigger offsets in each channel.

8. Estimate the ADC sample offsets in each channel.

In the following discussion, it is assumed that the control data consists of M pulses in
each of the K channels of the ES Testbed. The TOB and in-phase data of the m-th
pulse of the k-th channel will be denoted as TOB(k,m) and xk,m(t) respectively.

TOB Offset Correction

The first step in the data alignment is to estimate the TOB offsets. For each pulse,
the difference in the TOB values of each channel is calculated relative to an arbitrarily
chosen reference channel, typically the first channel. Since the control signal is directly
injected into the ES Testbed, it is expected that all channels have the same TOB value.
Any differences in the TOB value can be attributed to either the power-up delays or the
trigger offsets. Since the trigger offset is not expected to consistently occur, the TOB
offset is estimated as the statistical mode of all of the TOB offsets for each channel.

Assuming that the first channel is the reference channel, the TOB offset of the k-th
channel, τTOB(k), is calculated as follows:

for k = 2:K do
for m = 1:M do

tobOffsets(m) = TOB(k,m)− TOB(1,m)
end
τTOB(k) = mode [tobOffsets]

end

Trigger Offset Correction

Once the TOB offset of each channel has been estimated, the trigger offset events can be
detected by looking for delays between the compensated TOB values that correspond to
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exactly one clock cycle of the FPGA. In the current implementation of the ES Testbed,
this clock cycle corresponds to exactly 12 nanoseconds (or 16 samples). When a trigger
event is detected, the leading 16 samples of each channel without the trigger delay is
discarded.

The trigger sample offsets for the m-th pulse of the k-th channel, δTRIG(k,m), is calcu-
lated as follows:

for k = 2:K do
for m = 1:M do

TOBk = TOB(k,m)− τTOB(k)
TOB1 = TOB(1,m)− τTOB(1)

δTRIG(k,m) = round
[

TOBk−TOB1
ts

]
end

end

ADC Offset Correction

Once the TOB and trigger offsets have been taken into account, the sample offset for a
single pulse can be estimated by correlating the in-phase data from each channel with
the corresponding data from the first (reference) channel. The ADC sample offset for
each channel can then be estimated as the statistical mode of the sample offsets for each
channel.

The ADC sample offset of the k-th channel, δADC(k), is calculated as follows,

for m = 1:M do
for k = 2:K do

TOBk = TOB(k,m)− τTOB(k) + τTRIG(k,m)
xk,m(t) = In-phase data from TOBk until the end of the pulse

end
N = Common number of samples in each channel
for k = 2:K do

[maxValue,maxIndex] = max [|xcorr(xk,m(t), x1,m(t))|]
adcSampleOffsets(k,m) = N −maxIndex

end

end
for k = 2:K do

δADC(k) = mode [adcSampleOffsets(k, :)]
end

7.4 Summary

A significant part of this PhD research is concerned with the experimental validation
of the algorithms discussed in this thesis. In this chapter, the hardware architecture
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of the multi-channel ES Testbed that was used to collect the data for experimental
validation was presented. A significant portion of the author’s time during this PhD
candidature was spent testing, debugging and calibrating the ES Testbed in order to
allow multi-channel, phase-coherent data to be collected. In particular, the alignment
and calibration of the data streams from multiple channels was a critical contribution
to the development of a functional direction finding system.
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Chapter 8

Experimental Results

8.1 Introduction

While the development of signal processing theory is important, the practical value of
any algorithm can only be realised if it can be successfully transitioned into hardware.
In this chapter, the AOA estimation algorithms (Chapter 3 - Chapter 5) and calibration
methods (Chapter 6) will be experimentally validated using data collected from the ES
Testbed (Chapter 7).

During the course of this PhD research, a total of seven separate direction finding
experiments, or “field trials”, were conducted between June 2008 and July 2011. The
initial experiments were conducted to test and debug the ES Testbed and so the collected
data has since become obsolete as the hardware and firmware was upgraded over time
to overcome the errors and limitations observed in the early experiments. Of most
value to this PhD research is the data from the latest experiment held in July 2011.
This experiment was designated the “Gemini Trial” and was specifically conducted to
capture data to experimentally validate the algorithms discussed in this thesis using the
latest and most stable iteration of the ES Testbed. This chapter will therefore focus on
the results obtained from the Gemini Trial.

8.2 Experimental Setup

In this section, the setup of the Gemini Trial will be presented. While this description
will specifically focus on the Gemini Trial, all of the earlier experiments were conducted
in a similar manner.

8.2.1 Experiment Site

The Gemini Trial was conducted at a facility owned by the Defence Science and Tech-
nology Organisation (DSTO) located at St Kilda, South Australia, Australia. The
geographical location of St Kilda is illustrated by Marker A in Figure 8.1. This facility
is located in an open field in a semi-rural environment and is located away from pos-
sible sources of interferences such as cars, ships, aircraft and transmission towers. In
particular, there are little to no interferences at X-Band, which is the frequency band
of interest in this experiment.

179
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Figure 8.1: The Gemini Trial was conducted at St Kilda, South Australia (Marker A) in
July 2011.



CHAPTER 8. EXPERIMENTAL RESULTS 181

Figure 8.2: Location of the transmitting and receiving sites at St Kilda.
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Within the St Kilda facility, two sites were set up to transmit and receive the radar
signals respectively. The transmitting site, or “TX Site”, was located at “Building C”
in Figure 8.2 and the receiving site was located approximately 690 metres away at the
point marked as the “RX Site”. The two sites were chosen to obtain a line-of-sight
between the transmitting and receiving antennas with minimal obstruction. With the
exception of a small building marked as “Building 4” in Figure 8.2, there were no other
significant infrastructure in the vicinity that may potentially cause RF multipath. The
ground between the two sites consists of small and short vegetation and patches of sand
and gravel. To avoid the problem of ground reflections, the transmission radar antenna
was placed on a platform approximately 2 metres above ground level and the receiving
antenna array was placed on a tripod approximately 1 metre above ground level. The
receiving antennas (with directional beampatterns) were pointed away from the ground
and directly towards the transmission antenna. Post-trial analysis of the experimental
data verifies that the effects of ground reflections and multipath are not evident in this
experiment and so may be ignored.

8.2.2 Transmission Source

The transmission source used in this experiment was an arbitrary waveform generator
whose output was connected to a power amplifier and antenna. The signal waveform
was chosen to be a linear FM chirp centred at 9410 MHz with a chirp rate of 510 MHz
per 2.5 ms. This particular signal waveform was chosen to allow the simultaneous cap-
ture of data across the entire 500 MHz instantaneous bandwidth of the ES Testbed.
The signal bandwidth was intentionally chosen to exceed the instantaneous bandwidth
of the ES Testbed to observe its behaviour at the extremities of the collection bandwidth.

Linear FM chirp signals are not truly wideband signals in the sense that the frequency
content of the signal is narrowband at any one instant in time and changes linearly
over time as depicted in Figure 8.3. Over a short observation period of 1.536 µs, or
equivalently 2048 digital samples at a sample interval of 750 ps, the rate of change in
the signal frequency, ∆f , is expected to be

∆f =
1.536 µs

2500 µs
× 510 MHz ≈ 0.3133 MHz. (8.1)

At a nominal operating frequency of 9410 MHz, a signal bandwidth of 0.3133 MHz only
exceeds the centre frequency by about 0.0033% and so may effectively be considered
as a narrowband signal within this observation period. The slow-changing linear FM
chirp signal can therefore be reasonably approximated as a sequence of short-duration,
narrowband, single-tone sinusoids.

Due to the linearity of the frequency change, the instantaneous frequencies observed
within a observation period are odd symmetric about the centre frequency of the obser-
vation period and so the frequency of the narrowband signal can be approximated by the
average of the instantaneous frequencies. Figure 8.4 plots a segment of the instantaneous
frequencies of the linear FM chirp (solid line). The dashed vertical lines represent the
start and end time of each observation period. The circle markers represent the average
instantaneous frequency of each observation period. The sequence of average frequen-
cies closely match the underlying instantaneous frequencies of the linear FM chirp but



CHAPTER 8. EXPERIMENTAL RESULTS 183

0 500 1000 1500 2000 2500
9100

9200

9300

9400

9500

9600

9700
Instantaneous Frequency of a Linear FM Chirp (510 MHz / 2.5 ms)

F
re

qu
en

cy
 (

M
H

z)

Sample Time (usecs)

Figure 8.3: Instantaneous frequency of a linear FM chirp signal with a chirp rate of 510
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suffers from a consistent bias error of −76.5 Hz as shown in Figure 8.5. Figure 8.6 shows
that the corresponding bias error introduced to the AOA estimation is typically less
than 2◦ × 10−5 for most angles and at worst is 0.0075◦ at endfire. Hence, the bias error
introduced to the AOA estimation due to the approximation of a slow-changing linear
FM chirp as a sequence of narrowband single-tone signals is effectively negligible.

In this experiment, the same signal was used for the system calibration and AOA estima-
tion. In practice, the calibration data will generally be collected prior to the deployment
of the system and will differ from the intercepted signal data. However, for the purposes
of this experiment and due to time constraints, the same data is used for both system
calibration and AOA estimation. The signal-to-noise ratio (SNR) of the received signal
collected at the ES Testbed was approximately 5 dB.

8.2.3 Array Geometry

The array geometry of the antennas used in the Gemini Trial is depicted in Figure 8.7.
This geometry was intentionally chosen to realistically reflect a practical ES and ELINT
system where only a small number of independent receivers are available. Antennas 1, 3
and 4 form a 3-antenna SODA geometry with a 50λ aperture at a maximum frequency
of 16 GHz. The design of this array was intentionally chosen to satisfy the objectives
other DSTO experiments conducted outside the scope of this research. Antenna 2 was
included as an auxiliary antenna to improve the performance of the AOA estimation at
low SNR.

Since the transmission signal in this experiment is limited to 9160 MHz - 9660 MHz, and
since similar results are obtained at each frequency within this range, the results pre-
sented in this chapter will only focus on 9410 MHz. At 9410 MHz, the array effectively
has an aperture of 29.41λ and the interferometer baselines are d21 = 3.32λ, d31 = 14.56λ
and d41 = 29.41λ respectively.

This array geometry is identical to the 3-antenna and 4-antenna array geometries used
to evaluate the performance of AOA estimation algorithms in Chapter 3 to Chapter 5.
The array beampatterns for the 3-antenna and 4-antenna configurations are shown in
Figure 5.22 and Figure 5.23.

The antennas used in this experiment were cavity-backed spirals with a 80◦ beamwidth.
The relatively wide antenna spacings and the directionality of the antennas helped to
avoid mutual coupling effects since the antenna beampattern severely attenuates any re-
radiated signals in the direction of the other antennas. Furthermore, since the antennas
only have a 80◦ beamwidth, the experiment was constrained to AOA estimation within
the interval [−45◦, 45◦].

8.2.4 Data Collection Methodology

Due to the cost and safety concerns associated with a moving RF transmission source,
data was collected at different azimuths by rotating the receiving antenna array while
the transmitting antenna was kept stationary. To facilitate this process, the receiving
antenna array was mounted on a tripod with an electronically controlled pan-and-tilt
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Figure 8.7: Array geometry for the Gemini Trial.

system to allow the array to be rotated in azimuth by a remote operator. Due to time
constraints, the antenna array was rotated in 5◦ intervals. At each azimuth, approxi-
mately 48 intercepts of the linear FM chirp signal were collected.

The data was recorded using a frequency-based triggering system with a 15 ms hysteresis.
This is a spectrum-based triggering system that activates a data recording when the
signal energy in one or more chosen frequency bins of a FFT spectrum exceeds a specified
threshold. When a trigger signal is detected, a burst of 15 ms of continuous data
is recorded followed by a period of 2 seconds of inactivity to allow the data to be
streamed to a computer for storage. For this particular transmission source, each trigger
is expected to capture approximately six full linear FM chirp signals.

8.3 Calibration

Figure 8.8 shows the uncalibrated, unambiguous phase delays for the d21, d31 and d41

interferometer baselines. In these diagrams, the 2π ambiguity of the phase delay mea-
surements were resolved using a priori knowledge of the true AOA. Each (blue) dot
in these plots represents the mean uncalibrated phase delay measured at a particular
AOA. Approximately 20 phase delay measurements are available for each AOA. These
figures confirm that the measured uncalibrated phase delays are generally offset from
the theoretical phase delays due to phase imbalances in the hardware.

Figure 8.9 plots the errors between the uncalibrated, ambiguous phase delays and the
theoretical phase delays. In this figure, each (red) dot represents the mean phase delay
error at a particular AOA and the (blue) error bars represent the standard deviation.
The mean phase delay errors may be interpreted as the calibration phase offsets, βkl(θ),
that need to be subtracted from the measured, uncalibrated phase delays to correct for
the channel imbalances. Figure 8.9 can therefore be considered a visual representation
of the calibration tables. These plots show that the phase delay errors vary with the
AOA and so confirms the uncalibrated signal model presented in Section 6.3.2 is valid.

To illustrate the necessity to estimate the AOA directly from the uncalibrated phase de-
lays, Figure 8.10 plots the calibration values as a function of the uncalibrated, ambiguous
phase delays for the d41 baseline. For unambiguous AOA estimation, the relationship
between the uncalibrated phase delays and the calibration values need to be unique.
However, this plot shows that at some uncalibrated phase delay measurements, e.g. at
ψ̃u41 = 85◦, the calibration values are ambiguous. While Figure 8.10 appears to only
exhibit such ambiguities at a small number of phase delays, recall that in this experi-
ment only 19 AOAs are considered in the interval between [−45◦, 45◦]. As more angles
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Figure 8.8: Uncalibrated, unambiguous phase delays.
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Figure 8.9: Calibration values as a function of azimuth.
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Figure 8.10: Calibration values as a function of the ambiguous, uncalibrated phase delays.

are considered, the number of ambiguities are expected to increase. Unambiguous AOA
estimation must therefore be performed directly on the uncalibrated data as described
in Section 6.4.3.

8.3.1 Correlative Calibration

In Section 6.6, it was shown that the set of uncalibrated, ambiguous phase delays is
expected to be unique for each AOA. This claim is visually verified by Figure 8.11
which overlays the mean and standard deviation of the uncalibrated, ambiguous phase
delays for each baseline as a function of AOA as dots and error bars respectively. As
an example, consider that a signal arrives from θ = −30◦. At this AOA, the measured
phase delays for the d31 baseline is approximately ψ̃u31(−30◦) ≈ −42◦. Unfortunately,
the d31 baseline may also measure the same phase delay when θ = −35◦, and so based
on this phase delay measurement alone, it cannot be determined whether the AOA is
θ = −35◦ or θ = −30◦. However, for θ = −30◦, the d21 and d41 baselines are expected
to measure a phase delay of ψ̃u21(−30◦) ≈ 35◦ and ψ̃u41(−30◦) ≈ −116◦ respectively. On
the other hand, for θ = −35◦, the d21 and d41 baselines are expected to measure a phase
delay of ψ̃u21(−30◦) ≈ 108◦ and ψ̃u41(−30◦) ≈ −97◦ respectively. Thus, when the signal
AOA is θ = −30◦, the set of phase delay measurements, Ψ(θ = −30◦), will be

Ψ(θ = −30◦) ≈ {35◦,−42◦,−116◦} . (8.2)

Similarly, when θ = −35◦, the set of phase delay measurements, Ψ(θ = −35◦), will be

Ψ(θ = −35◦) ≈ {108◦,−42◦,−97◦} . (8.3)
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Figure 8.11: Plot of the uncalibrated, ambiguous phase delays as a function of AOA for
each baseline.

Since there is a sufficient difference to distinguish Ψ(θ = −30◦) from Ψ(θ = −35◦),
the set of uncalibrated, ambiguous phase delays is sufficiently unique that unambigu-
ous AOA estimation can be performed using correlative interferometry as described in
Section 6.6.1. The estimated AOA can then be used to determine the corresponding
calibration values from the calibration tables (i.e. Figure 8.9) using the simple calibra-
tion method described in Section 6.4.2.

Figure 8.12 plots the unambiguous phase delays for the d21, d31 and d41 interferom-
eter baselines. The black line represents the expected, theoretical phase delays, the
(blue) dots represent the uncalibrated phase delays and the (red) crosses represent the
calibrated phase delays of each measurement using the correlation-based calibration
method. Figure 8.13 shows that after calibration, the residual error in the phase delays
are centred about zero and so suggests that the phase bias errors have been successfully
removed. This suggests that the correlation-based calibration method is very effective
at correcting the AOA-dependent phase imbalances.

8.3.2 SODA Calibration

In Section 6.6.1, it was shown that the uncalibrated SODA interferometer is equivalent
to an uncalibrated short-baseline interferometer and so unambiguous AOA estimation
can be performed using a one-dimensional look-up-table to map the uncalibrated phase
delays to the estimated AOA as described in Section 6.5.1. Figure 8.14 plots the true
AOA as a function of the uncalibrated SODA phase delays. In this figure, the (blue)
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Figure 8.12: Calibrated phase delays using correlative interferometry.
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Figure 8.13: Residual phase delay offsets after calibration using correlative interferometry.
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Figure 8.14: Look-up-table for SODA AOA estimation using the uncalibrated SODA phase
delays.

dots represent a single uncalibrated SODA phase delay as a function of the AOA. The
(red) line is a “best-fit” calibration function that succinctly describes the relationship
between the uncalibrated phase delays and the estimated AOA. In this plot, the calibra-
tion function is a modified ninth-order polynomial whose end values have been modified
to better reflect the limits of the experiment.

Inspection of Figure 8.14 shows that the SODA phase delays in this experiment are
slightly ambiguous due to two distinct effects. Firstly, while the SODA calibration
function is mostly monotonic, there is a small non-monotonic region in the interval
ψu∆ ∈ [−180◦,−158◦]. This ambiguity can cause the wrong AOA to be estimated when
θ = 40◦. Secondly, an additional ambiguity arises at a number of AOAs, such as
θ = −30◦ and θ = 0◦, because the spread of the SODA phase delays for different AOAs
overlap. This causes one SODA phase delay be to associated with multiple possible
AOAs and so the AOA estimation is ambiguous. Since the variance of the SODA phase
delays is dependent on the SNR of the signal, these ambiguities cannot be removed.

In this experiment, the AOA estimation error at the ambiguous angles is not expected
to exceed 5◦ − 10◦ since the two sources of phase ambiguity described above are only
ambiguous among adjacent AOAs. Despite the phase ambiguities, AOA estimation can
still be performed by simply applying the uncalibrated SODA phase delays to the cali-
bration function. The estimated AOA can then be used to determine the corresponding
phase delay calibration values from the calibration tables (Figure 8.9) using the simple
calibration method described in Section 6.4.2.
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Figure 8.15 plots the unambiguous phase delays for the d21, d31 and d41 interferometer
baselines. The black line represents the theoretical phase delays, the (blue) dots repre-
sent the uncalibrated phase delays and the (red) crosses represent the calibrated phase
delays using the SODA-based calibration method. This figure shows that the SODA-
based calibration method can generally correctly compensate for the AOA-dependent
phase imbalances, however, multiple results are obtained for some AOAs. At these
AOAs, it is possible that the AOA will be incorrectly estimated and so the wrong cal-
ibration value is applied. Figure 8.16 plots the residual error in the phase delay after
calibration. This figure shows that while many of the residual errors are centred about
zero, a large number of phase delay measurements still contain biases due to the incor-
rect AOA estimation. These plots suggest that the performance of the SODA calibration
is not as good as the correlative calibration method and its poorer performance is at-
tributed to the ill-behaved (i.e. overlapping) SODA phase delays.

It should be noted that the performance of SODA calibration is related to the SNR of
the signal and the nature of the phase imbalances of the specific hardware configuration.
In this experiment, when the SODA calibration was applied to the ES Testbed at 5 dB
SNR, the calibration process was only able to partially remove the effects of the phase
imbalances. However, with a different hardware configuration, e.g. different antennas,
and at higher SNR, the performance of the SODA calibration is expected to improve.

8.4 Experimental Results

In this section, the experimental performance of the following AOA estimation algo-
rithms is compared:

• SODA interferometry,

• SBI interferometry,

• MLE interferometry,

• first-order CBF and MUSIC algorithms,

• second-order CBF and MUSIC algorithms, and

• SBI-cued and SODA-cued MLE, CBF and MUSIC algorithms.

Since the correlative calibration was shown to be more effective at removing the effects
of phase imbalances, the correlative calibration method will initially be used to com-
pare the experimental performance of the algorithms to get a sense for the best possible
performance of each algorithm. However, in practice, there is little point in using the
SODA interferometer with correlative calibration since the computational advantages
of the SODA interferometer cannot be realised. In order to fully exploit its computa-
tional speed advantage, the SODA interferometer needs to be coupled with the SODA
calibration method. The second part of this section shall evaluate the experimental
performance of the SODA and SBI interferometers using SODA calibration.
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Figure 8.15: Calibrated phase delays using SODA interferometry.
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Figure 8.16: Residual phase delay offsets after calibration using SODA interferometry.
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8.4.1 Experimental Performance With Correlative Calibration

Figure 8.17 shows the experimental RMS errors of the AOA estimation algorithms as a
function of azimuth using the 3-antenna array geometry. In this experiment, correlative
calibration method is used to remove the phase imbalances. The search resolution of
the correlative interferometer is 5◦ which matches the rotation angle resolution of the
antenna array. In contrast to the simulations in Chapter 5, it was found through trial-
and-error that good AOA estimation using the first-order CBF and MUSIC algorithms
required the grid search resolution to be set to one-eighth of the null-to-null beamwidth,
i.e. 0.2436◦. The grid search resolution of the second-order CBF and MUSIC algorithms
was set to 5◦. Newton’s Method optimisation is used to remove the quantisation errors
of all of the grid search algorithms.

In this experiment, the SODA interferometer has a RMS error of 1.518◦ while the SBI
interferometer offers a slightly better performance with a RMS error of 1.514◦. The
MLE interferometer provides the best AOA estimation performance with a RMS error
of 0.010◦ and is about two-orders of magnitude better than the SODA interferometer.
Surprisingly, the first-order CBF and MUSIC algorithms have the worse performance
with a RMS error of 4.538◦. In this experiment, the second-order CBF and MUSIC al-
gorithms have an identical performance to the SODA interferometer with a RMS error
of 1.518◦. Similarly, the SBI-cued algorithms have an identical performance to the SBI
interferometer with a RMS error of 1.514◦.

The simulations in Figure 5.25 suggests that at 5 dB SNR, the theoretical RMS errors of
the above algorithms should be 0.7229◦, 0.2761◦, 0.0042◦, 0.0042◦, 0.9586◦ and 0.2761◦

respectively when the AOA is 23.42◦. In contrast to the experimental RMS errors which
are evaluated at a number of AOAs, the theoretical RMS errors presented here are only
evaluated at a single AOA. However, the relative magnitude of the theoretical and ex-
perimental RMS errors are still indicative of the performance difference between the
theory and the experiments. These results suggest that the experimental RMS error of
the SODA and MLE interferometers are approximately 2.1 and 2.4 times higher than the
theoretical values. This performance degradation is attributed to the effects of hardware
imperfections that have not been completely eliminated through the calibration process.

In contrast to the simulations, the SBI and SBI-cued algorithms were not able to achieve
a performance that is significantly better than the SODA interferometer. From (3.48),
reliable ambiguity resolution using the SBI interferometer requires that the RMS error
of the SODA interferometer to be

δθSODA ≤
c

6fd31
≈ 0.6560◦, (8.4)

when d31 = 464.1 mm and f = 9410 MHz. Since the experimental RMS error of the
SODA interferometer was shown to be 1.518◦, this RMS error is not sufficiently accurate
to reliably resolve the ambiguities of the first-order baselines of the 3-antenna SODA
geometry and so leads to poor performance in the SBI and SBI-cued algorithms.

Furthermore, the first-order CBF and MUSIC algorithms were not able to achieve a
better performance than the SODA interferometer using the sparse 3-antenna array ge-
ometry. This poor performance is attributed to the fact that the beampattern for the
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3-antenna array geometry exhibits very high sidelobes and that the difference between
the magnitude of the main lobe and highest sidelobe is only 3.811×10−3 dB. This means
that the array is very sensitive to noise errors and any residual bias errors that may still
exist after the calibration process. The result is that one of the adjacent sidelobes is
mistaken for the AOA of the signal. Finally, in constrast to the above, the second-order
CBF and MUSIC algorithms performs slightly better than expected and achieves the
same performance as the SODA interferometer at 5 dB SNR.

Figure 8.18 shows that with the inclusion of the fourth auxiliary antenna, the sparsity
of the array is sufficiently reduced to allow significant improvements in the experimental
performance of the SBI, SBI-cued and first-order CBF and MUSIC algorithms. With
four antennas, the experimental RMS error of the SBI, SBI-cued, first-order array pro-
cessing and MLE algorithms are 0.010◦, 0.009◦, 0.009◦ and 0.009◦ respectively. In con-
strast, the simulation in Figure 5.27 suggests that the RMS errors of the algorithms
should be 0.0042◦, 0.0038◦, 0.0038◦ and 0.0038◦ respectively and so the experimental
RMS errors are approximately 2.4 times higher than the theoretical values. Note that
since the auxiliary antenna does not conform to a SODA geometry, the RMS errors of
the SODA and second-order array processsors are unchanged.

With the 4-antenna array geometry, (3.48) suggests that reliable ambiguity resolution
using the SBI interferometer requires that the RMS error of the SODA interferometer
to be

δθSODA ≤
c

6fd21
≈ 2.8721◦, (8.5)

when d21 = 106.0 mm and f = 9410 MHz. Since the experimental RMS error of the
SODA interferometer was shown to be 1.518◦, this RMS error is sufficiently accurate to
resolve the ambiguities of the first-order baselines of the 4-antenna SODA geometry. As
a result, the SBI interferometer is now able to achieve a significantly lower RMS error of
0.010◦ and the SBI-cued algorithms are all able to further refine the SBI AOA estimate
to give an even lower RMS error of 0.009◦.

Furthermore, with the inclusion of the fourth antenna, the sparsity of the array is suffi-
ciently reduced such that the beampattern of the 4-antenna array geometry suppresses
the adjacent sidelobes. While the magnitude difference between the main lobe and high-
est sidelobe is only 0.2243 dB, in this experiment this is sufficient to allow the correct
AOA to be estimated and so the RMS error of the first-order CBF and MUSIC algo-
rithms are also 0.009◦.

It should be noted that the MLE, SBI-cued and first-order CBF and MUSIC algorithms
have a small, but statistically significant, performance improvement compared with the
SBI interferometer of 0.001◦ RMS. However, this improvement is so small that it will
likely be considered negligible in practice.

A summary of the AOA estimation performance of each algorithm obtained using cor-
relative calibration is tabulated in Table 8.1.
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Algorithm Total RMS Error
3 Antennas 4 Antennas

MLE 0.010◦ 0.009◦

SODA 1.518◦ N/A†

SBI 1.514◦ 0.010◦∗

SBI-Cued MLE / CBF / MUSIC 1.514◦∗ 0.009◦∗

First-Order CBF / MUSIC 4.538◦∗ 0.009◦∗

Second-Order CBF / MUSIC 1.518◦∗ N/A†

Table 8.1: Experimental performance of the AOA estimation algorithms using correlative
calibration at 5 dB SNR. †The fourth auxiliary antenna is unused by this algorithm.

8.4.2 Experimental Performance With SODA Calibration

Figure 8.19 shows the experimental RMS errors of the algorithms as a function of az-
imuth using the 3-antenna array geometry and the SODA calibration method. Since
the point of using SODA calibration is to avoid the computational complexities of the
MLE interferometer and the first-order array processing algorithms, the performance of
these algorithms are not evaluated in this section. Furthermore, since the AOA estima-
tion performance of the SODA interferometer will be shown to be better than the SBI
interferometer in this experiment, the SODA-cued optimisation algorithms will be used
in place of the SBI-cued algorithms.

With 3 antennas, the SODA and SBI interferometers have a RMS error of 3.292◦ and
3.526◦ respectively. The second-order CBF and MUSIC algorithms achieve the same
performance as the SODA interferometer with a RMS error of 3.292◦ while the SODA-
cued MLE, CBF and MUSIC algorithms have a RMS error of 11.409◦. These results
show that the RMS errors of the algorithms are significantly higher when using SODA
calibration compared to correlative calibration. Furthermore, in this experiment, the
SBI and SODA-cued algorithms perform worse than the SODA interferometer. This
poor performance is attributed to the fact that the SODA calibration is not as effective
as the correlative calibration in removing the phase imbalances between the channels
and so residual bias errors cause significant errors in the AOA estimation. Furthermore,
with a RMS error of 3.292◦, the SODA interferometer does not have the required accu-
racy (i.e. 0.6560◦) to resolve the ambiguities in the first-order baselines at 5 dB SNR
and so the SBI interferometer performs poorly. Furthermore, due to the poor initial
estimate, the SODA-cued algorithms also perform poorly.

Figure 8.20 shows the experimental RMS errors of the algorithms when all 4 antennas
are used. This figure shows that with the inclusion of the fourth auxiliary antenna, the
RMS error of the SBI and SODA-cued algorithms are in fact worse than the 3-antenna
scenario with a RMS error of 6.845◦ and 16.154◦ respectively. Again, since the auxil-
iary antenna does not conform to a SODA geometry, the RMS errors of the SODA and
second-order array processors are unchanged. Furthermore, with a RMS error of 3.292◦,
the SODA interferometer does not have the required accuracy (i.e. 2.8721◦) to resolve
the ambiguities in the first-order baselines at 5 dB SNR and so the SBI interferometer
still performs poorly.
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Algorithm Total RMS Error
3 Antennas 4 Antennas

SODA 3.292◦ N/A†

SBI 3.437◦ 6.845◦∗

SODA-Cued MLE / CBF / MUSIC 11.409◦∗ 16.154◦∗

Second-Order CBF / MUSIC 3.292◦∗ N/A†

Table 8.2: Experimental performance of the AOA estimation algorithms using SODA cali-
bration at 5 dB SNR. †The fourth auxiliary antenna is unused by this algorithm.

In light of the good experimental performance obtained from the same experimental
data in the previous section using correlative calibration, the poor performance of the
algorithms in this section is purely attributed to the poorer performance of the SODA
calibration. A summary of the AOA estimation performance of each algorithm obtained
using SODA calibration is tabulated in Table 8.2.

8.5 Summary

This chapter has experimentally validated that the second-order AOA estimation al-
gorithms, namely the SODA and SBI interferometers, the SODA-cued and SBI-cued
ambiguity resolution algorithms and the second-order CBF and MUSIC algorithms, can
all be used to perform unambiguous AOA estimation. The performance of these algo-
rithms were quantified at 5 dB SNR with a 3-antenna and 4-antenna array geometry and
their experimental performance was compared to conventional AOA estimation meth-
ods, such as the MLE interferometer and first-order CBF and MUSIC algorithms.

The experimental results showed that with correlative calibration and the 3-antenna ar-
ray geometry, the SODA, SBI, SBI-cued and second-order CBF and MUSIC algorithms
can achieve a RMS error of approximately 1.5◦. Using this array geometry, the first-
order CBF and MUSIC algorithms were unable to achieve a better performance than
SODA interferometer with a RMS error of about 4.5◦, and the MLE interferometer of-
fered the best performance with a RMS error of 0.010◦ and is approximately two-orders
of magnitude better than the SODA interferometer. With the 4-antenna geometry, the
RMS errors of the MLE, SBI, SBI-cued and first-order CBF and MUSIC algorithms
were significantly improved and all algorithms achieve a RMS error of about 0.009◦.

The experimental results also showed that with the current configuration of the ES
Testbed, the SODA calibration method was not as effective as the correlative calibration
method at 5 dB SNR. While the SODA calibration method was significantly faster, it was
also significantly less effective at removing the phase imbalances between the channels.
As a result, the SODA interferometer and second-order CBF and MUSIC algorithms
were shown to achieve a RMS error of about 3.3◦. However, in contrast to the correlative
calibration, none of the other algorithms were able to achieve a better performance than
the SODA interferometer. As discussed in Section 8.3.2, the performance of the SODA
calibration is related to the SNR of the signal and the nature of the phase imbalances
of the specific hardware configuration. While the performance of the SODA calibration
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was rather poor in this particular experiment, it is expected that at higher SNR, or
with different hardware configurations, such as different antennas, the performance of
the SODA calibration will improve and so the AOA estimation algorithms will be able
to achieve higher performance.
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Figure 8.17: RMS errors of the AOA estimation with correlative calibration using the 3-
antenna array geometry. The angular values in the labels represent the total RMS error for
the algorithms.
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Figure 8.18: RMS errors of the AOA estimation with correlative calibration using the 4-
antenna array geometry. The angular values in the labels represent the total RMS error for
the algorithms.
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Figure 8.19: RMS errors of the AOA estimation with SODA calibration using the 3-antenna
array geometry. The angular values in the labels represent the total RMS error for the
algorithms.
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Figure 8.20: RMS errors of the AOA estimation with SODA calibration using the 4-antenna
array geometry. The angular values in the labels represent the total RMS error for the
algorithms.
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Chapter 9

Concluding Remarks

9.1 Summary

This thesis has considered the problem of estimating the angle-of-arrival (AOA) of inter-
cepted radar signals using digital, microwave radar intercept receivers for near real-time
surveillance (Chapter 1). Due to the tactical and operational requirements of radar
intercept receivers, the AOA estimation algorithms need to be computationally fast and
highly accurate. The requirement for wide frequency surveillance often means that phys-
ically large wideband antennas are required which implies the use of array geometries
with wide antenna spacings. Furthermore, due to the cost of wideband hardware, the
number of independent channels is often limited to 2 − 4 channels per quadrant of a
360◦ field-of-view.

Of all of the contemporary direction finding methods, interferometry is often cited as a
suitable AOA estimation technique that satisfies all of the above requirements (Chapter
2). Contemporary phase-based interferometric algorithms are computationally fast and
offer high accuracy AOA estimation using a small number of antennas. However, the
requirement to use physically large wideband antennas for electronic surveillance appli-
cations introduces a significant ambiguity problem to the AOA estimation. In order to
perform unambiguous AOA estimation, the antenna positions must be carefully chosen
and coupled with ambiguity resolution algorithms (Chapter 3).

In Chapter 4, it was shown that the ambiguity problem can be completely avoided
by using a second-order difference array (SODA) to create a virtual short-baseline in-
terferometer. This algorithm was shown to be computationally efficient and operates
effectively over the entire microwave frequency range between 2− 18 GHz. The perfor-
mance of this algorithm was also shown to be limited to the smaller aperture but is also
independent of the physical antenna spacings. While the conventional theory prefers
longer baseline interferometers over shorter baselines for improved AOA accuracy, the
SODA interferometer reverses this situation to derive a shorter baseline interferometer
from longer baselines for the sake of unambiguous AOA estimation using physically large
antennas.

The unambiguous SODA AOA estimate can also be used to cue the conventional first-
order ambiguity resolution methods to obtain higher accuracy AOA estimates from the

205
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first-order baselines with a reduced number of computations. One of the more efficient
methods proposed is the SODA-Based Inference (SBI) interferometer (Section 4.3.1).
The SBI interferometer was shown to be a near optimal estimator as it achieves the
two-antenna Cramér-Rao Lower Bound (CRLB) corresponding to the widest antenna
pair at high SNR. The SBI AOA estimate can also be used to further cue a correlative
interferometer to obtain optimal performance. At high SNR, a computationally fast
implementation is to use the SBI AOA estimate to directly cue to the optimisation al-
gorithm of the correlative interferometer (i.e. bypassing the grid search).

In Chapter 5, it was shown that the concept of using second-order processing could
be generalised to a larger number of antennas to create a virtual uniform linear ar-
ray. Conventional beamforming and array processing algorithms can then be applied to
the virtual uniform linear array to perform unambiguous AOA estimation. Like SODA
interferometry, the performance of the second-order array processor is limited to the
aperture of the virtual array. With three antennas, the SODA array processor has a
performance that is comparable to SODA interferometry since the two algorithms effec-
tively have the same virtual aperture. However, the second-order array processor can
exploit additional antennas to form a larger virtual aperture and so can achieve a better
performance than SODA interferometry if more antennas are available.

Since the SODA geometry is inherently a non-uniform linear array, the conventional
first-order array processing algorithms are also able to provide unambiguous AOA esti-
mates and are generally asymptotically efficient estimators as they achieve the CRLB
at high SNR. While it is possible to apply second-order array processing to a SODA
geometry, better results are usually obtained by using the equivalent first-order array
processing. An exception to this occurs when using sparse large aperture arrays which
tend to exhibit high sidelobes in the first-order array beampattern and so can lead to
incorrect AOA estimates in the presence of noise and scalloping losses. On the other
hand, since the second-order array processor synthesises the array beampattern of an un-
ambiguous uniform linear array, the second-order array beampattern generally exhibits
lower sidelobes for the same physical array geometry and so is able to correctly estimate
the AOA. However, the advantage of the second-order array processor diminishes as the
sparsity of the array aperture is reduced.

In Chapter 6, two calibration methods were presented to remove the effects of phase im-
balance between the channels of practical hardware. The correlative calibration method
was shown to be very effective at removing the phase imbalances but is computation-
ally intensive as it requires the AOA to be estimated using correlative interferometry.
The SODA calibration method was shown to be significantly faster as it uses SODA
interferometry to estimate the AOA. However, in Chapter 8, it was shown that the the
SODA calibration method was not able to remove the phase imbalances for all intercepts.

In Chapter 8, the calibration methods and the AOA estimation performance of the
SODA interferometer, SBI interferometer and a second-order array processors were ex-
perimentally validated using the hardware developed in Chapter 7.
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9.2 Future Work

This thesis has presented a number of computationally fast AOA estimation algorithms
and evaluated their theoretical and experimental performance. However, a number of
areas of this work may warrant further investigation. These areas will be briefly discussed
below.

• Experimental Validation at Other Frequencies - Due to time constraints
and the safety and licensing of transmitting RF signals, the experimental valida-
tion of the algorithms in this these was only performed between 9160 MHz and
9660 MHz. Since the objective is to have a radar intercept receiver that can op-
erate between 2 − 18 GHz, it would be desirable to experimentally validate the
performance of algorithms at other frequencies.

• Experimental Validation Using Different Transmitters - Due to time
constraints, the calibration signal was used to calibrate the system and to perform
its AOA estimation. In order to fully validate the experimental performance of the
algorithms, it would be desirable to use one transmitter for the calibration signal
and a different transmitter for the AOA estimation.

• Experimental Validation Using Moving Sources - Due to time, costs and
safety constraints, it was not possible to use a moving transmitting source to
obtain data from different angles. In order to obtain data from different azimuths,
the transmitting source was kept stationary while the receiving antenna array was
rotated in azimuth. While such a collection method is reasonable in an isotropic
noise environment, the rotation of the receiving antenna array may potentially
expose the system to directional noise sources in a non-isotropic noise environment.
While this did not appear to affect the experimental results in this thesis, it would
be desirable for future experiments to utilise moving transmitting sources.

• Wideband Signals - This thesis assumed that the signal observed by the radar
intercept receiver was narrowband. While this assumption is generally valid for
the types of signals considered in this thesis, radars with wideband characteristics,
such as fast chirps, do exist. It would be desirable to extend the SODA and
SODA-based algorithms to operate against wideband signals.

• Compressive Sampling - This thesis assumed that digital radar intercept re-
ceivers sample radar signals with a uniform sampling rate that satisfies the Nyquist
criterion. For modern wideband radar signals, sampling at the Nyquist rate can
lead to a significant amount of data that needs to be stored, processed and trans-
ferred. In recent years, considerable work has been undertaken in the area of
compressive sampling which allow so-called “sparse signals” to be sampled below
the Nyquist rate with minimal distortion. Digital radar intercept receivers that
use compressing sampling techniques have the potential to significantly reduce the
amount of data that is generated and so can help to alleviate hardware design
problems associated with the high-speed transfer and storage of large volumes of
data. A reduced data rate may also offer improvements to the computational
speed of the signal processing algorithms. In the context of this thesis, it would be
interesting to investigate the performance and computational speeds of unambigu-
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ous AOA estimation algorithms using data obtained from compressive sampling
methods.



Appendix A

Derivations

A.1 Signal Model

Consider the signal model for a single-tone narrowband signal. For a digital collection
of N samples, the digital model for the n-th sample of the k-th antenna output of a K
antenna non-uniform linear array is given by

xk[n] = Ake
j[2πfnts+ϕ+ψk1(θ)] + εk[n], (A.1)

where k = 1, 2, . . . ,K and n = 0, 1, . . . , N − 1. The parameters Ak, f and ϕ are the
signal’s peak amplitude, carrier frequency and initial phase respectively. In this model,
the peak amplitude is allowed to differ in each channel. The parameter ts represents the
sample interval of the receiver and

ψk1(θ) =
2πfdk1

c
sin θ, (A.2)

is the spatial phase delay of the signal measured at the k-th antenna with respect to the
first antenna. Note that with this definition, the baseline and spatial phase delay of the
first antenna are d11 = 0 and ψ11(θ) = 0.

The additive term, εk[n] ∼ N (0, σ2
ε ), represents random noise and is modelled as an

independent, and identically distributed, complex-valued, zero-mean, white Gaussian
random variable with variance, σ2

ε . The receiver noise is also assumed to be indepen-
dent for each receiver.

The noisy complex signal, xk[n], can be re-written in terms of a real, rk[n], and imagi-
nary, ik[n], component using Euler’s formula as follows,

xk[n] = rk[n] + jik[n], (A.3)

where

rk[n] = µk[n] + <{εk[n]}, (A.4)

ik[n] = νk[n] + ={εk[n]}, (A.5)

µk[n] = Ak cos(2πfnts + ϕ+ ψk1(θ)), (A.6)

νk[n] = Ak sin(2πfnts + ϕ+ ψk1(θ)), (A.7)
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where <{εk[n]} and ={εk[n]} are the real and imaginary components of εk[n] and have
an equal variance of σ2 = σ2

ε /2.

Let x k represent the time series of the signal in the k-th channel, such that

x k = [xk[0], xk[1], . . . , xk[N − 1]]T , (A.8)

where k = 1, 2, . . . ,K and T denotes the matrix transpose operation.

The joint probability density function, p(x 1, . . . , xK |α ), is given by

p(x 1, . . . , xK |α ) =

(
1

2πσ2

)NK
exp

{
− 1

2σ2

K∑
k=1

N−1∑
n=0

(rk[n]− µk[n])2 + (ik[n]− νk[n])2

}
(A.9)

where
α =

[
ω ϕ θ A1 A2 · · · AK

]T
, (A.10)

represents a vector of parameters that characterise the signal model and ω = 2πf is the
angular frequency. The log-likelihood function of the signal model, L(α ), is defined as

L(α ) = ln (p(x 1, . . . , xK |α )) . (A.11)

A.2 Maximum Likelihood Estimation

A.2.1 Maximum Likelihood Estimator for a Non-Uniform Linear Ar-
ray

The derivation of the maximum likelihood estimator (MLE) of the AOA for a non-
uniform linear array has been considered many times in the literature [56, 112]. The
derivation presented below generalises the derivation of the two-antenna interferometer
in [112].

The log-likelihood function of the signal model is given by (A.11). Since this derivation
is only concerned with AOA estimation, the log-likelihood function may be written as
only being a function of θ. Hence, the log-likelihood function, L(θ), is given by

L(θ) = L0 +
1

σ2

K∑
k=1

N−1∑
n=0

Akrk[n] cos (2πfnts + ϕ+ ψk1(θ))

+
1

σ2

K∑
k=1

N−1∑
n=0

Akik[n] sin (2πfnts + ϕ+ ψk1(θ)) (A.12)

where

L0 = NK ln

(
1

2πσ2

)
− 1

2σ2

K∑
k=1

N−1∑
n=0

(
r2
k[n] + i2k[n] +A2

k

)
. (A.13)
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Expanding the sine and cosine functions gives

L(θ) = L0 +
1

σ2

K∑
k=1

N−1∑
n=0

Akrk[n] cos(2πfnts) cos(ϕ+ ψk1(θ))

− 1

σ2

K∑
k=1

N−1∑
n=0

Akrk[n] sin(2πfnts) sin(ϕ+ ψk1(θ))

+
1

σ2

K∑
k=1

N−1∑
n=0

Akik[n] sin(2πfnts) cos(ϕ+ ψk1(θ))

+
1

σ2

K∑
k=1

N−1∑
n=0

Akik[n] cos(2πfnts) sin(ϕ+ ψk1(θ)). (A.14)

The log-likelihood function can be simplified by recognising that the Fourier coefficient
at the signal frequency, f , is defined as

Xk(f) =
N−1∑
n=0

xk[n]e−j2πfnts (A.15)

≡
N−1∑
n=0

rk[n] cos(2πfnts) + ik[n] sin(2πfnts)

+j
N−1∑
n=0

{ik[n] cos(2πfnts)− rk[n] sin(2πfnts)}, (A.16)

and that the magnitude, |Xk(f)|, and phase, ∠Xk(f), of the Fourier coefficient at the
signal frequency f are given by

|Xk(f)| =
√
<{Xk(f)}2 + ={Xk(f)}2 = AkN, (A.17)

∠Xk(f) = arctan

(={Xk(f)}
<{Xk(f)}

)
= ϕ+ ψk1(θ). (A.18)

Using the following trigonometric identity

α cos γ + β sin γ =
√
α2 + β2 cos(γ − arctan(β/α)), (A.19)

the log-likelihood function can be further simplified as follows

L(θ) = L0 +
1

σ2

K∑
k=1

Ak<{Xk(f)} cos(ϕ+ ψk1(θ)) +Ak={Xk(f)} sin(ϕ+ ψk1(θ)),

= L0 +
1

σ2

K∑
k=1

Ak|Xk(f)| cos (ϕ+ ψk1(θ)− ∠Xk(f)),

= L0 +
N

σ2

K∑
k=1

A2
k cos (ϕ+ ψ(θ)− ∠Xk(f)). (A.20)

In this signal model, the phase delay between the first antenna (k = 1) and itself is
ψ11(θ) = 0◦ by definition. Hence, from (A.18), the angle of the Fourier coefficient of the
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first antenna is ∠X1(f) = ϕ. Thus, the log-likelihood function can be written as

L(θ) = L0 +
N

σ2

K∑
k=1

A2
k cos (ψk1(θ)− (∠Xk(f)− ∠X1(f))), (A.21)

= L0 +
N

σ2

K∑
k=1

A2
k cos (ψk1(θ)− ∠Xk(f)X∗1 (f)), (A.22)

= L0 +
N

σ2

K∑
k=1

A2
k cos (∠Xk(f)X∗1 (f)− ψk1), (A.23)

= L0 +
N

σ2

K∑
k=1

A2
k cos

(
ψ̃MLE,k1 − ψk1(θ)

)
, (A.24)

(A.25)

where ψ̃MLE,k1 = ∠Xk(f)X∗1 (f) can be considered the maximum likelihood estimate
of the phase delay. This derivation is shown in the Appendix A.2.2. The maximum
likelihood estimate for the AOA can then be obtained by performing a grid search to find
the value of θs that maximises the log-likelihood function. By ignoring the components
and scalar values that are not AOA-dependent, the maximum likelihood estimator can
be described as follows,

θ̂ = argmax
θs

K∑
k=1

cos
(
ψ̃MLE,k1 − ψk1(θs)

)
, (A.26)

where ψ̃MLE,k1 = ∠Xk(f)X∗1 (f) is the maximum likelihood estimate of the phase delay
and ψk1(θs) is the true phase delay that is expected at θs. This expression shows that,
in general, the maximum likelihood estimator for the AOA is a grid search algorithm.

A.2.2 Maximum Likelihood Estimator for Two Antennas

The maximum of the log-likelihood function can be explicitly calculated by setting the
first derivative of L(θ) with respect to θ to zero, i.e.

∂L(θ)

∂θ
= −N

σ2

K∑
k=1

A2
k sin (∠Xk(f)X∗1 (f)− ψk1(θ))

∂ψk1(θ)

∂θ
= 0. (A.27)

For the special case of two antennas, i.e. K = 2, and recalling that ψ11(θ) = 0 by
definition, it can be shown that

A2
2 sin (∠X2(f)X∗1 (f)− ψ21(θ))

∂ψk1(θ)

∂θ
= 0, (A.28)

A2
2 sin (∠X2(f)X∗1 (f)− ψ21(θ))

2πfd

c
cos θ = 0, (A.29)

A2
2 sin (∠X2(f)X∗1 (f)− ψ21(θ)) cos θ = 0, (A.30)

ψ21(θ) = ∠X2(f)X∗1 (f) for θ 6= π

2
. (A.31)

Thus, the maximum likelihood estimate for the phase delay between the two antennas
is given by

ψ̂MLE,21(θ) = ∠X2(f)X∗1 (f). (A.32)
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From invariance property of maximum likelihood estimators [56], the maximum likeli-
hood estimate of the AOA using two antennas can be obtained by re-arranging (A.2) to
give

θ̂MLE = arcsin

(
cψ̂MLE,21

2πfd21

)
. (A.33)

A.3 Cramér-Rao Lower Bounds

A.3.1 Cramér-Rao Lower Bounds for a Non-Uniform Linear Array

The Cramér-Rao Lower Bound (CRLB) specifies the minimum variance that can be
obtained for any unbiased estimator and is often used as a benchmark for optimal per-
formance [56]. The derivation of the CRLB for AOA estimation using a non-uniform
linear array has been considered many times in the literature [2, 45, 56, 93, 113, 114].
The derivation presented below applies the methodology used by Rife and Boorstyn
[17, 115] in their derivation of the CRLB for frequency estimation to the AOA estima-
tion case.

The CRLB for a set of parameters α are the diagonal elements of the inverse of the
Fisher Information Matrix, J , where α = [α1, α2, . . . , αQ] is a vector of Q parameters
characterising the random process. Given a random process with a probability density
function, p(x 1, . . . , xK |α ), and log-likelihood function, L(α ), the elements of the
Fisher Information Matrix are given by

Jij(α ) = −E
{
∂L(α )

∂αi∂αj

}
, (A.34)

where E{·} is the expectation operator, i, j = 1, 2, . . . , Q, and αi and αj are the i-th
and j-th parameter of α respectively. The Fisher Information Matrix is a Q×Q matrix.

Given the signal model specified in Section A.1, the elements of the Fisher Information
Matrix can be written as

Jij =
1

σ2

N−1∑
n=0

K∑
k=1

[
∂µk[n]

∂αi
· ∂µk[n]

∂αj
+
∂νk[n]

∂αi
· ∂νk[n]

∂αj

]
, (A.35)

where i, j = 1, 2, . . . ,K + 3.

The partial derivatives for µk[n] are given by

∂µk[n]

∂ω
= −Ak

(
nts +

dk1

c
sin θ

)
sin

(
ω

(
nts +

dk1

c
sin θ

)
+ ϕ

)
, (A.36)

∂µk[n]

∂ϕ
= −Ak sin

(
ω

(
nts +

dk1

c
sin θ

)
+ ϕ

)
, (A.37)

∂µk[n]

∂θ
= −Ak

dk1

c
ω cos θ sin

(
ω

(
nts +

dk1

c
sin θ

)
+ ϕ

)
, (A.38)

∂µk[n]

∂Aγ
=

{
cos
(
ω
(
nts + dk1

c sin θ
)

+ ϕ
)

if k = γ

0 if k 6= γ
, (A.39)
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where γ = 1, 2, . . . ,K. Similarly, the partial derivatives for νk[n] are given by

∂νk[n]

∂ω
= Ak

(
nts +

dk1

c
sin θ

)
cos

(
ω

(
nts +

dk1

c
sin θ

)
+ ϕ

)
, (A.40)

∂νk[n]

∂ϕ
= Ak cos

(
ω

(
nts +

dk1

c
sin θ

)
+ ϕ

)
, (A.41)

∂νk[n]

∂θ
= Ak

dk1

c
ω cos θ cos

(
ω

(
nts +

dk1

c
sin θ

)
+ ϕ

)
, (A.42)

∂νk[n]

∂Aγ
=

{
sin
(
ω
(
nts + dk1

c sin θ
)

+ ϕ
)

if k = γ

0 if k 6= γ
. (A.43)

The elements of the Fisher Information Matrix are therefore

J11 =
N

σ2

K∑
k=1

A2
k

{
(N − 1)(2N − 1)t2s

6
,

+
dk1

c
sin θ(N − 1)ts +

d2
k1

c2
sin2 θ

}
(A.44)

J12 =
N

σ2

K∑
k=1

A2
k

{
(N − 1)ts

2
+
dk1

c
sin θ

}
, (A.45)

J13 =
N

σ2

K∑
k=1

A2
k

dk1

c
ω cos θ

{
(N − 1)ts

2
+
dk1

c
sin θ

}
, (A.46)

J22 =
N

σ2

K∑
k=1

A2
k, (A.47)

J23 =
N

σ2

K∑
k=1

A2
k

{
dk1

c
ω cos θ

}
, (A.48)

J33 =
N

σ2

K∑
k=1

A2
k

{
d2
k1

c2
ω2 cos2 θ

}
, (A.49)

Jγ1+3,γ2+3 =

{
N
σ2 γ1 = γ2

0 γ1 6= γ2
, (A.50)

where γ1, γ2 = 1, 2, . . . ,K.

Using the above elements, the Fisher Information Matrix has the following form

J =



J11 J12 J13 0 0 · · · 0
J12 J22 J23 0 0 · · · 0
J13 J23 J33 0 0 · · · 0

0 0 0 N
σ2 0 · · · 0

0 0 0 0 N
σ2 · · · 0

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · N
σ2


. (A.51)

The determinant of J will be required to calculate the inverse of the Fisher Information
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Matrix, i.e. J −1. The determinant of J is given by

det(J ) =

(
N

σ2

)K ∣∣∣∣∣∣
J11 J12 J13

J12 J22 J23

J13 J23 J33

∣∣∣∣∣∣ . (A.52)

With some algebra, it can be shown that

det(J ) =

(
N

σ2

)K+3 ω2(N2 − 1)t2s
12c2

cos2 θ

(
K∑
k=1

A2
k

)(
K∑
k=1

K∑
m=1

A2
kA

2
mdm1(dm1 − dk1)

)
.

(A.53)
The CRLB for the AOA estimation is given by the third diagonal element of the inverse
of the Fisher Information Matrix, i.e.

CRLB(θ) = J−1
33 =

1

det(J )

∣∣∣∣ J11 J12

J12 J22

∣∣∣∣ (Nσ2

)K
(A.54)

With some algebra, it can be shown that

CRLB(θ) =

(
σ2∑K
k=1A

2
k

)
1

Kd̄2

K∑
k=1

K∑
m=1

c2

Nω2 cos2 θ
+
dm1(dm1 − dk1)12 sin2 θ

N(N2 − 1)t2sω
2 cos2 θ

, (A.55)

where

d̄2 =

K∑
k=1

d2
k1 +

1

K

(
K∑
k=1

dk1

)2

=
1

K

K∑
k=1

K∑
m=1

dm1(dm1 − dk1). (A.56)

Inspection of (A.55) shows that the first term inside the double summation is inversely
proportional to N while the second term is inversely proportional to N3. For large N ,
the second term is negligible, and so the CRLB can be approximated by

CRLB(θ) ≈
(

σ2∑K
k=1A

2
k

)
1

Kd̄2

K∑
k=1

K∑
m=1

c2

Nω2 cos2 θ
, (A.57)

≈
(

σ2∑K
k=1A

2
k

)
1

Kd̄2

K∑
k=1

K∑
m=1

1

N

(
c

2πf cos θ

)2

, (A.58)

≈ K

(
σ2∑K
k=1A

2
k

)
1

d̄2

1

N

(
c

2πf cos θ

)2

, (A.59)

≈ K

(
2σ2∑K
k=1A

2
k

)
1

N

(
c

2πf cos θ

)2

· 1

2d̄2
, (A.60)

≈ K
1∑K

k=1 ηkN
·
(

c

2πf cos θ

)2

· 1

2d̄2
, (A.61)

where ηk = A2
k/2σ

2 is the signal-to-noise ratio (SNR) of the signal in the k-th channel.

Under the assumption that the SNR of the signal is the same for each channel, i.e.
η = η1 = η2 = · · · , ηK , the CRLB can be further simplified to give

CRLB(θ) ≈ 1

ηN
·
(

c

2πf cos θ

)2

· 1

2d̄2
. (A.62)
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A.3.2 Cramér-Rao Lower Bounds for Two Antennas

For the special case of two antennas, i.e. K = 2, it can be shown that

d̄2 =
1

2
d2

21, (A.63)

and so the CRLB for two antennas is given by

CRLB(θ) ≈ 1

ηN
·
(

c

2πfd21 cos θ

)2

. (A.64)
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