Emu Oil Promotes Intestinal Repair in Rat Models of Enteric Inflammation

SUZANNE MASHTOUB ABIMOSLEH

Discipline of Physiology, School of Medical Sciences The University of Adelaide

A thesis submitted to The University of Adelaide in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY

December 2012

TABLE OF CONTENTS

Abstract	viii
Declaration	X
Acknowledgements	. xii
Publications arising from this thesis	. xiv
Thesis structure	xviii
Chapter 1. Review of the Literature	1
Abstract	4
Introduction	4
Fatty acids and intestinal inflammation	4
Ratites	5
Emu Oil	5
Emu Oil composition	5
Therapeutic properties of Emu Oil	5
Potential mechanisms of action	6
Emu Oil and gastrointestinal disorders	6
Conclusions	6
Acknowledgements	6
References	7
Chapter 2. Emu Oil Increases Colonic Crypt Depth in a Rat Model	
of Ulcerative Colitis	9
Abstract	14
Introduction	14

Materials and methods	15
General experimental procedures	15
Disease activity index and daily metabolic data	16
¹³ C-sucrose breath test	17
Tissue collection	17
Histological analyses	17
Statistical analyses	17
Results	17
Disease activity index and daily metabolic data	17
Visceral and gastrointestinal organ weights and lengths	17
¹³ C-sucrose breath test	18
Colonic histology	19
Discussion	19
Acknowledgments	22
References	22
Chapter 3. Emu Oil Expedites Small Intestinal Repair Following	
5-Fluorouracil-Induced Mucositis in Rats	24
Title Page	28
Abstract	29
Introduction	30
Materials and methods	33
General experimental procedures	33
Animal studies	33
Emu Oil and Olive Oil preparation	33
Daily metabolic data and disease activity index	34

35
35
35
36
36
36
37
38
39
39
40
40
41
42
44
44
44
45
51
52
58
75

Abstract	79			
Introduction				
Materials and methods	83			
General experimental procedures	83			
Animal studies	83			
Emu Oil and Olive Oil preparation	84			
Daily metabolic data and disease activity index	84			
¹³ C-sucrose breath test	85			
Tissue collection	85			
Intestinal damage severity scoring	85			
Biochemical analysis	86			
Myeloperoxidase activity	86			
Statistical analyses	87			
Results	88			
Daily metabolic data	88			
Disease activity index	89			
¹³ C-sucrose breath test	89			
Visceral and gastrointestinal organ weights and lengths	89			
Intestinal damage severity scoring	90			
Myeloperoxidase activity	90			
Discussion	91			
Conclusions	96			
Acknowledgments				
References	98			
Figure Legends	104			

Chantar	5 Dr	ococcina	of Dotite	· Oile	A ffoots	Drimory	Oxidation	Ctatue
CHADICE.	-7-	OR C22HIS	UI IXALIIG	- 1/115/	411613	1 1 1111A1 V	v / x iu a i iu ii	

Resulting in Greater Radical Scavenging Properties for Emu Oil Compared to
--

a and Ostrich Oils	121
Title Page	125
Abstract	126
Introduction	127
Materials and methods	130
Oil samples	130
2,2-diphenyl-1-picryl hydracyl radical (DPPH) assay	131
Oxidation analysis	131
Statistical analyses	132
Results	133
Free radical scavenging activity (RSA)	133
Primary oxidation	133
Correlation between primary oxidation and RSA	134
Discussion	135
Ratite Oil comparisons	135
Time period since oil render	136
Emu Oil inter-batch variations and manufacturer comparisons	137
Storage Procedure	137
Conclusions	138
Acknowledgments	140
References	141
pter 6. Conclusions and Future Directions	149

Appen	ndices	156
	Appendix 1	157
	Grape Seed Extract Reduces Selected Disease Markers in the Proximal	
	Colon of Dextran Sulphate Sodium-Induced Coltits in Rats	160
	Appendix 2	168
	Microbial fingerprinting detects unique bacterial communities in the	
	faecal microbiota of rats with experimentally-induced colitis	171
	Appendix 3	179
	Current and Novel Treatments for Ulcerative Colitis	181
	Appendix 4	215
	Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-	
	induced inflammation, osteoclast formation, and bone loss	218

ABSTRACT

Several disorders of the gastrointestinal (GI) tract including ulcerative colitis, chemotherapy-induced mucositis and non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy, are characterised by inflammation, ulceration, mucosal damage and malabsorption. Treatment options are variably effective, highlighting the need to broaden therapeutic approaches, including adjunctive strategies. Emu Oil, derived from subcutaneous and retroperitoneal Emu adipose tissue, is a rich source of fatty acids (FA). Despite limited rigorous scientific studies, topically applied Emu Oil has demonstrated potent anti-inflammatory properties *in vivo*. Previously, orally administered Emu Oil improved intestinal architecture in a rat model of mucositis, with early indications of enhanced intestinal repair. Accordingly, this thesis investigated the effects of orally administered Emu Oil in rat models of colitis (colonic damage), NSAID-enteropathy (small intestinal [SI] damage) and on the time course of SI repair in chemotherapy-induced mucositis.

In the current study, Emu Oil improved colonic tissue damage associated with dextran sulphate sodium-induced colitis in Sprague Dawley rats and facilitated the repair process (Chapter 2). Improvements were indicated histologically by reduced intestinal damage severity scores and enhanced crypt compensatory elongation in the colon. These findings suggested the potential for Emu Oil to augment conventional treatment approaches for colitis. The effectiveness of Emu Oil in the colon provided impetus to further investigate Emu Oil action proximally, in the SI. In a rat model of chemotherapy (5-Fluorouracil; 5-FU)-induced mucositis, Emu Oil maintained SI villus height and crypt depth during the phase of maximal damage (Chapter 3). This was followed by an enhanced compensatory mucosal thickening, suggesting an acceleration of the repair process. Furthermore, Emu

Oil significantly decreased myeloperoxidase (MPO) activity, indicative of acute inflammation, in the jejunum and ileum of 5-FU-injected rats. Potent anti-inflammatory properties of Emu Oil were reaffirmed in NSAID (Indomethacin)-induced enteropathy, whereby MPO activity in the jejunum and ileum of Indomethacin-treated rats was markedly decreased following Emu Oil administration (Chapter 4).

Treatments for diseases such as coronary artery disease and GI disorders seek to minimise oxidative damage by free radicals through the use of antioxidants. Oils derived from ratites (flightless birds) predominantly comprise FA varying in composition between ratite species. The influence of farm location, rendering method, duration and storage mode was investigated for free radical scavenging activity (RSA) against 2,2-diphenyl-1-picryl hydracyl and primary oxidation status of Ratite Oils (Chapter 5). Emu Oil conferred the greatest RSA compared to Ostrich and Rhea Oil, potentially attributed to its high unsaturated FA: saturated FA ratio and non-triglyceride fraction minor constituents. Rendering and storage variables impacted on Emu Oil RSA and primary oxidation.

This thesis identified Emu Oil as a safe, renewable and economical means to augment pharmaceutical options for GI disorders. A new mechanism of action for Emu Oil could represent a promotion of repair from injury together with decreased SI inflammation. This suggests potential for Emu Oil as an adjunct to conventional treatment approaches for colitis, cancer management and long-term NSAID usage.

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

(1) SM Abimosleh, CD Tran, GS Howarth. Emu Oil: a novel therapeutic for disorders of the gastrointestinal tract? *Journal of Gastroenterology and Hepatology* 2012 May;27(5):857-61

Copyright: © Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

(2) SM Abimosleh, RJ Lindsay, RN Butler, AG Cummins, GS Howarth. Emu oil increases colonic crypt depth in a rat model of ulcerative colitis. *Digestive Diseases and Sciences* 2012 Apr;57(4):887-96

Copyright: © 2011, Springer Science+Business Media, LLC

Appendices

(3) KY Cheah, SEP Bastian, TMV Acott, SM Abimosleh, KA Lymn, GS Howarth. Grape

Seed Extract Reduces Selected Disease Markers in the Proximal Colon of Dextran

Sulphate Sodium-Induced Coltits in Rats. Digestive Diseases and Sciences 2012 Nov

(epub ahead of print) DOI 10.1007/s10620-012-2464-1

Copyright: © 2012, Springer Science+Business Media New York

(4) AK Samanta, VA Torok, NJ Percy, SM Abimosleh, GS Howarth. Microbial

fingerprinting detects unique bacterial communities in the faecal microbiota of rats

with experimentally-induced colitis. *Journal of Microbiology* 2012 Apr;50(2):218-2

Copyright: © 2012, The Microbiological Society of Korea

(5) CD Tran, R Katsikeros, SM Abimosleh. Current and Novel Treatments for Ulcerative

Colitis. Ulcerative Colitis from Genetics to Complications. InTech 2012: 189-211

Copyright: © 2004-2012, *InTech − Open Access Company*

(6) R Raghu Nadhanan, SM Abimosleh, YW Su, MA Scherer, GS Howarth, CJ Xian.

Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced

inflammation, osteoclast formation, and bone loss. American Journal of Physiology

Endocrinology and Metabolism 2012 Jun;302(11):E1440-9

Copyright: © 2012 the American Physiological Society

Suzanne Mashtoub Abimosleh

Date

ACKNOWLEDGMENTS

I am sincerely grateful to my principal supervisor, Professor Gordon Howarth, for his outstanding mentorship, wisdom, encouragement, friendship and spirit of adventure throughout my exciting PhD journey. It has been a true privilege to work with Professor Howarth who has the substance of pure genius, an unimaginable wealth of knowledge and a fantastic sense of humour. I am also extremely grateful to Professor Howarth for providing me with the opportunity to publish and present my work extensively around the world.

I would like to thank my co-supervisor Dr Cuong Tran who has provided invaluable research input and encouraged me throughout my PhD candidature.

I wish to extend my deepest appreciation to the Gastroenterology Department, Women's and Children's Hospital including the Head of Department, Dr David Moore. I will forever treasure the support, fun times and company provided by the Gastroenterology family.

A special thanks to Kerry Lymn, "World's Fastest Gavage Expert", for her friendship, support and significant assistance with animal trials. I would also like to acknowledge my dear friend and colleague Dr Amy Cheah for her great company and help with animal trials. Sincere thanks to Chris Gregory from Emu Tracks Pty Ltd for supplying the Emu Oil used throughout my PhD and for assisting with oil oxidation analyses.

I would like to acknowledge the Discipline of Physiology, School of Medical Sciences, The University of Adelaide, in particular, the Postgraduate Coordinator, Dr David O'Carroll.

I wish to extend my heartfelt gratitude and deepest love to my wonderful husband, soul mate and best friend, Walid Abimosleh. I am extremely grateful for his endless love, support and fantastic company throughout my PhD journey.

My beautiful mum, Ann Asma Mashtoub, to whom I am eternally indebted; without her unconditional love, continual encouragement to strive for the best, strength (and delicious food!), I would be forever lost. To my dad, Steve Zouhair Mashtoub, my amazing siblings Nawal, Joanne, Kamahl, Leanne, brother-in-law Samir and my niece, princess Eva; their love, support and friendship have been my guiding light.

I gratefully acknowledge the funding sources of my PhD Scholarships; The Australian Postgraduate Award and the Rural Industries Research and Development Corporation. I appreciate the generous travel support provided by The 2010 Trevor Prescott Freemasons Memorial Scholarship, Nutrition Society of Australia, Gastroenterological Society of Australia, AstraZeneca Junior Travel Award, Healthy Development Adelaide and Rural Industries Research and Development Corporation.

~ In loving memory of my dear friend Pat ~

"If we never had a cloudy day with wind and rain and thunder, we would never see a rainbow and rejoice in all its wonder..." Pat Westin

PUBLICATIONS ARISING FROM THIS THESIS

SM Abimosleh, CD Tran, GS Howarth. Emu Oil: a novel therapeutic for disorders of the gastrointestinal tract? *Journal of Gastroenterology and Hepatology* 2012 May;27(5):857-61

SM Abimosleh, RJ Lindsay, RN Butler, AG Cummins, GS Howarth. Emu oil increases colonic crypt depth in a rat model of ulcerative colitis. *Digestive Diseases and Sciences* 2012 Apr;57(4):887-96

R Raghu Nadhanan, **SM Abimosleh**, YW Su, MA Scherer, GS Howarth, CJ Xian. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss. *American Journal of Physiology Endocrinology and Metabolism* 2012 Jun;302(11):E1440-9

AK Samanta, VA Torok, NJ Percy, **SM Abimosleh**, GS Howarth. Microbial fingerprinting detects unique bacterial communities in the faecal microbiota of rats with experimentally-induced colitis. *Journal of Microbiology* 2012 Apr;50(2):218-2

KY Cheah, SEP Bastian, TMV Acott, **SM Abimosleh**, KA Lymn, GS Howarth. Grape Seed Extract Reduces Selected Disease Markers in the Proximal Colon of Dextran Sulphate Sodium-Induced Coltits in Rats. *Digestive Diseases Sciences* 2012 Nov (epub ahead of print) DOI 10.1007/s10620-012-2464-1

CD Tran, R Katsikeros, **SM Abimosleh**. Current and Novel Treatments for Ulcerative Colitis. *Ulcerative Colitis from Genetics to Complications* InTech 2012: 189-211

SM Abimosleh, DC Bennett, CD Tran, GS Howarth. Processing of Ratite Oils Affects Primary Oxidation Status, Resulting in Greater Radical Scavenging Properties for Emu Oil Compared to Rhea and Ostrich Oils. *Journal of Food Science* 2012; Under review

SM Abimosleh, CD Tran, GS Howarth. Emu Oil Expedites Small Intestinal Repair Following 5-Fluorouracil-Induced Mucositis in Rats. *Experimental Biology and Medicine* 2012; Under review

SM Abimosleh, CD Tran, GS Howarth. Emu Oil Reduces Small Intestinal Inflammation in the Absence of Clinical Improvement in a Rat Model of Indomethacin-Induced Enteropathy. *Evidence-Based Complementary and Alternative Medicine* 2012; Under review

Publications arising from conferences

SM Abimosleh, Z Lotfollahi, J Papini, L Hoyle, D Stomaci, E Penascoza, CD Tran, KA Lymn, RN Butler and GS Howarth. Orally-administered Emu Oil maintains intestinal goblet cell numbers and improves barrier function in a rat model of chemotherapy-induced mucositis.

- Multinational Association of Supportive Care in Cancer (MASCC), New York,
 USA. Supportive Care in Cancer 2012; 20(1):627
- 2. Australian Gastroenterology Week (AGW), Adelaide, South Australia. *Journal of Gastroenterology and Hepatology* 2012; 27(4):17

AK Samanta, VA Torok, NJ Percy, **SM Abimosleh** and GS Howarth. Microbial fingerprinting detects unique bacterial communities in the faecal microbiota of rats with experimentally-induced colitis. AGW, Adelaide, South Australia. *Journal of Gastroenterology and Hepatology* 2012; 27(4):28

SM Abimosleh, CD Tran and GS Howarth. Emu Oil enhances histological repair in a rat model of chemotherapy-induced intestinal mucositis. Joint Annual Scientific Meeting of the Nutrition Society of New Zealand and the Nutrition Society of Australia, Queenstown, New Zealand. *Australasian Medical Journal* 2011; 4(12):104-716

2nd Prize for Best Oral Presentation

SM Abimosleh, CD Tran, GS Howarth. Emu Oil Promotes Repair From Chemotherapy-Induced Intestinal Mucositis In Rats

- 1. MASCC, Athens, Greece. Supportive Care in Cancer 2011; 19(2):67-370
- AGW, Brisbane, Queensland. Journal of Gastroenterology and Hepatology 2011;
 26:15-21

SM Abimosleh, RN Butler, GS Howarth. Effects of emu oil during the recovery phase of chemotherapy-induced intestinal mucositis in rats.

- 1. AGW, Gold Coast, Queensland. *Journal of Gastroenterology and Hepatology* 2010; 25:A2-A17
- 2. Nutrition Scoiety of Australia, Perth, WA. Australasian Medical Journal 2010; 3

S Mashtoub, RJ Lindsay, KA Lymn, MS Geier, RN Butler, GS Howarth. Emu Oil Improves Parameters of Intestinal Integrity in Rat Models of Inflammatory Bowel Disease and Intestinal Mucositis. MASCC, Rome, Italy. *Supportive Care in Cancer* 2009; 17(7):857-1039

M Vu, B Hoang, XD Ding, M Sultani, **S Mashtoub**, RJ Lindsay, KA Lymn, RN Butler, GS Howarth. A safety study of emu oil as a potential adjunctive treatment for ulcerative colitis and mucositis. AGW, Sydney, NSW. *Journal of Gastroenterology and Hepatology* 2009; 24:A239-A247

Poster of Merit Prize

S Mashtoub, RJ Lindsay, KA Lymn, TWV Acott, R Yazbeck, AG Cummins, RN Butler, GS Howarth. Emu oil increases crypt depth but only minimally affects other indicators of colonic integrity in a rat model of colitis. AGW, Sydney, NSW. J Gastro Hepatol 27: A239-A247 (2009)

THESIS STRUCTURE

This thesis is presented as a 'Thesis by Publication' and includes a combination of published manuscripts and papers under review. Each manuscript is formatted according to the journal specifications.

Furthermore, additional publications arising from the research described in this thesis are included as Appendices.