Emu Oil Promotes Intestinal Repair in Rat Models of Enteric Inflammation

SUZANNE MASHTOUB ABIMOSLEH

Discipline of Physiology, School of Medical Sciences
The University of Adelaide

A thesis submitted to The University of Adelaide in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2012
TABLE OF CONTENTS

Abstract... viii

Declaration.. x

Acknowledgements.. xii

Publications arising from this thesis... xiv

Thesis structure... xviii

Chapter 1. Review of the Literature.. 1

- Abstract .. 4
- Introduction ... 4
- Fatty acids and intestinal inflammation ... 4
- Ratites .. 5
- Emu Oil ... 5
- Emu Oil composition ... 5
- Therapeutic properties of Emu Oil ... 5
- Potential mechanisms of action .. 6
- Emu Oil and gastrointestinal disorders .. 6
- Conclusions .. 6
- Acknowledgements ... 6
- References .. 7

Chapter 2. Emu Oil Increases Colonic Crypt Depth in a Rat Model of Ulcerative Colitis... 9

- Abstract .. 14
- Introduction ... 14
Chapter 3. Emu Oil Expedites Small Intestinal Repair Following 5-Fluorouracil-Induced Mucositis in Rats

5-Fluorouracil-Induced Mucositis in Rats

Title Page
Abstract
Introduction
Materials and methods
General experimental procedures
Animal studies
Emu Oil and Olive Oil preparation
Daily metabolic data and disease activity index
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13C-sucrose breath test</td>
<td>34</td>
</tr>
<tr>
<td>Tissue collection</td>
<td>35</td>
</tr>
<tr>
<td>Histological analyses</td>
<td>35</td>
</tr>
<tr>
<td>Mucosal measurements</td>
<td>35</td>
</tr>
<tr>
<td>Neutral mucin-secreting goblet cell count</td>
<td>36</td>
</tr>
<tr>
<td>Biochemical analyses</td>
<td>36</td>
</tr>
<tr>
<td>Myeloperoxidase activity</td>
<td>36</td>
</tr>
<tr>
<td>Cytokine analyses</td>
<td>37</td>
</tr>
<tr>
<td>Statistical analyses</td>
<td>38</td>
</tr>
<tr>
<td>Results</td>
<td>39</td>
</tr>
<tr>
<td>Daily metabolic data</td>
<td>39</td>
</tr>
<tr>
<td>Disease activity index</td>
<td>40</td>
</tr>
<tr>
<td>13C-sucrose breath test</td>
<td>40</td>
</tr>
<tr>
<td>Visceral and gastrointestinal organ weights and lengths</td>
<td>41</td>
</tr>
<tr>
<td>Villus height and crypt depth measurements</td>
<td>42</td>
</tr>
<tr>
<td>Neutral mucin-secreting goblet cells</td>
<td>44</td>
</tr>
<tr>
<td>Myeloperoxidase activity</td>
<td>44</td>
</tr>
<tr>
<td>Cytokine analyses</td>
<td>44</td>
</tr>
<tr>
<td>Discussion</td>
<td>45</td>
</tr>
<tr>
<td>Statement of author contributions and acknowledgments</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
<tr>
<td>Figure legends</td>
<td>58</td>
</tr>
</tbody>
</table>

Chapter 4. Emu Oil Reduces Small Intestinal Inflammation in the Absence of Clinical Improvement in a Rat Model of Indomethacin-Induced Enteropathy……. 75

Title page ... 78
Chapter 5. Processing of Ratite Oils Affects Primary Oxidation Status, Resulting in Greater Radical Scavenging Properties for Emu Oil Compared to Rhea and Ostrich Oils

Title Page .. 125
Abstract ... 126
Introduction ... 127
Materials and methods ... 130
 Oil samples .. 130
 2,2-diphenyl-1-picryl hydracyl radical (DPPH) assay 131
Oxidation analysis .. 131
Statistical analyses ... 132
Results ... 133
 Free radical scavenging activity (RSA) 133
 Primary oxidation .. 133
 Correlation between primary oxidation and RSA 134
Discussion .. 135
 Ratite Oil comparisons 135
 Time period since oil render 136
 Emu Oil inter-batch variations and manufacturer comparisons 137
 Storage Procedure ... 137
 Conclusions ... 138
Acknowledgments .. 140
References .. 141

Chapter 6. Conclusions and Future Directions................................. 149
ABSTRACT

Several disorders of the gastrointestinal (GI) tract including ulcerative colitis, chemotherapy-induced mucositis and non-steroidal anti-inflammatory drug (NSAID)-induced enteropathy, are characterised by inflammation, ulceration, mucosal damage and malabsorption. Treatment options are variably effective, highlighting the need to broaden therapeutic approaches, including adjunctive strategies. Emu Oil, derived from subcutaneous and retroperitoneal Emu adipose tissue, is a rich source of fatty acids (FA). Despite limited rigorous scientific studies, topically applied Emu Oil has demonstrated potent anti-inflammatory properties \textit{in vivo}. Previously, orally administered Emu Oil improved intestinal architecture in a rat model of mucositis, with early indications of enhanced intestinal repair. Accordingly, this thesis investigated the effects of orally administered Emu Oil in rat models of colitis (colonic damage), NSAID-enteropathy (small intestinal [SI] damage) and on the time course of SI repair in chemotherapy-induced mucositis.

In the current study, Emu Oil improved colonic tissue damage associated with dextran sulphate sodium-induced colitis in Sprague Dawley rats and facilitated the repair process (Chapter 2). Improvements were indicated histologically by reduced intestinal damage severity scores and enhanced crypt compensatory elongation in the colon. These findings suggested the potential for Emu Oil to augment conventional treatment approaches for colitis. The effectiveness of Emu Oil in the colon provided impetus to further investigate Emu Oil action proximally, in the SI. In a rat model of chemotherapy (5-Fluorouracil; 5-FU)-induced mucositis, Emu Oil maintained SI villus height and crypt depth during the phase of maximal damage (Chapter 3). This was followed by an enhanced compensatory mucosal thickening, suggesting an acceleration of the repair process. Furthermore, Emu
Oil significantly decreased myeloperoxidase (MPO) activity, indicative of acute inflammation, in the jejunum and ileum of 5-FU-injected rats. Potent anti-inflammatory properties of Emu Oil were reaffirmed in NSAID (Indomethacin)-induced enteropathy, whereby MPO activity in the jejunum and ileum of Indomethacin-treated rats was markedly decreased following Emu Oil administration (Chapter 4).

Treatments for diseases such as coronary artery disease and GI disorders seek to minimise oxidative damage by free radicals through the use of antioxidants. Oils derived from ratites (flightless birds) predominantly comprise FA varying in composition between ratite species. The influence of farm location, rendering method, duration and storage mode was investigated for free radical scavenging activity (RSA) against 2,2-diphenyl-1-picryl hydracyl and primary oxidation status of Ratite Oils (Chapter 5). Emu Oil conferred the greatest RSA compared to Ostrich and Rhea Oil, potentially attributed to its high unsaturated FA: saturated FA ratio and non-triglyceride fraction minor constituents. Rendering and storage variables impacted on Emu Oil RSA and primary oxidation.

This thesis identified Emu Oil as a safe, renewable and economical means to augment pharmaceutical options for GI disorders. A new mechanism of action for Emu Oil could represent a promotion of repair from injury together with decreased SI inflammation. This suggests potential for Emu Oil as an adjunct to conventional treatment approaches for colitis, cancer management and long-term NSAID usage.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

Copyright: © Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

(2) SM Abimosleh, RJ Lindsay, RN Butler, AG Cummins, GS Howarth. Emu oil increases colonic crypt depth in a rat model of ulcerative colitis. *Digestive Diseases and Sciences* 2012 Apr;57(4):887-96

Copyright: © 2011, Springer Science+Business Media, LLC
Appendices

(3) KY Cheah, SEP Bastian, TMV Acott, SM Abimosleh, KA Lymn, GS Howarth. Grape Seed Extract Reduces Selected Disease Markers in the Proximal Colon of Dextran Sulphate Sodium-Induced Colitis in Rats. Digestive Diseases and Sciences 2012 Nov (epub ahead of print) DOI 10.1007/s10620-012-2464-1

Copyright: © 2012, The Microbiological Society of Korea

Copyright: © 2004-2012, InTech – Open Access Company

Copyright: © 2012 the American Physiological Society

Suzanne Mashtoub Abimosleh Date
I am sincerely grateful to my principal supervisor, Professor Gordon Howarth, for his outstanding mentorship, wisdom, encouragement, friendship and spirit of adventure throughout my exciting PhD journey. It has been a true privilege to work with Professor Howarth who has the substance of pure genius, an unimaginable wealth of knowledge and a fantastic sense of humour. I am also extremely grateful to Professor Howarth for providing me with the opportunity to publish and present my work extensively around the world.

I would like to thank my co-supervisor Dr Cuong Tran who has provided invaluable research input and encouraged me throughout my PhD candidature.

I wish to extend my deepest appreciation to the Gastroenterology Department, Women’s and Children’s Hospital including the Head of Department, Dr David Moore. I will forever treasure the support, fun times and company provided by the Gastroenterology family.

A special thanks to Kerry Lymn, “World’s Fastest Gavage Expert”, for her friendship, support and significant assistance with animal trials. I would also like to acknowledge my dear friend and colleague Dr Amy Cheah for her great company and help with animal trials. Sincere thanks to Chris Gregory from Emu Tracks Pty Ltd for supplying the Emu Oil used throughout my PhD and for assisting with oil oxidation analyses.

I would like to acknowledge the Discipline of Physiology, School of Medical Sciences, The University of Adelaide, in particular, the Postgraduate Coordinator, Dr David O’Carroll.
I wish to extend my heartfelt gratitude and deepest love to my wonderful husband, soul mate and best friend, Walid Abimosleh. I am extremely grateful for his endless love, support and fantastic company throughout my PhD journey.

My beautiful mum, Ann Asma Mashtoub, to whom I am eternally indebted; without her unconditional love, continual encouragement to strive for the best, strength (and delicious food!), I would be forever lost. To my dad, Steve Zouhair Mashtoub, my amazing siblings Nawal, Joanne, Kamahl, Leanne, brother-in-law Samir and my niece, princess Eva; their love, support and friendship have been my guiding light.

I gratefully acknowledge the funding sources of my PhD Scholarships; The Australian Postgraduate Award and the Rural Industries Research and Development Corporation. I appreciate the generous travel support provided by The 2010 Trevor Prescott Freemasons Memorial Scholarship, Nutrition Society of Australia, Gastroenterological Society of Australia, AstraZeneca Junior Travel Award, Healthy Development Adelaide and Rural Industries Research and Development Corporation.

~ In loving memory of my dear friend Pat ~

“If we never had a cloudy day with wind and rain and thunder, we would never see a rainbow and rejoice in all its wonder...” Pat Westin

SM Abimosleh, RJ Lindsay, RN Butler, AG Cummins, GS Howarth. Emu oil increases colonic crypt depth in a rat model of ulcerative colitis. *Digestive Diseases and Sciences* 2012 Apr;57(4):887-96

KY Cheah, SEP Bastian, TMV Acott, SM Abimosleh, KA Lymn, GS Howarth. Grape Seed Extract Reduces Selected Disease Markers in the Proximal Colon of Dextran Sulphate Sodium-Induced Colitis in Rats. *Digestive Diseases Sciences* 2012 Nov (epub ahead of print) DOI 10.1007/s10620-012-2464-1
CD Tran, R Katsikeros, **SM Abimosleh.** Current and Novel Treatments for Ulcerative Colitis. *Ulcerative Colitis from Genetics to Complications* InTech 2012: 189-211

SM Abimosleh, DC Bennett, CD Tran, GS Howarth. Processing of Ratite Oils Affects Primary Oxidation Status, Resulting in Greater Radical Scavenging Properties for Emu Oil Compared to Rhea and Ostrich Oils. *Journal of Food Science* 2012; Under review

SM Abimosleh, CD Tran, GS Howarth. Emu Oil Expedites Small Intestinal Repair Following 5-Fluorouracil-Induced Mucositis in Rats. *Experimental Biology and Medicine* 2012; Under review

SM Abimosleh, CD Tran, GS Howarth. Emu Oil Reduces Small Intestinal Inflammation in the Absence of Clinical Improvement in a Rat Model of Indomethacin-Induced Enteropathy. *Evidence-Based Complementary and Alternative Medicine* 2012; Under review

Publications arising from conferences

SM Abimosleh, Z Lotfollahi, J Papini, L Hoyle, D Stomaci, E Penascoza, CD Tran, KA Lymn, RN Butler and GS Howarth. Orally-administered Emu Oil maintains intestinal goblet cell numbers and improves barrier function in a rat model of chemotherapy-induced mucositis.

1. Multinational Association of Supportive Care in Cancer (MASCC), New York, USA. *Supportive Care in Cancer* 2012; 20(1):627

2nd Prize for Best Oral Presentation

SM Abimosleh, CD Tran, GS Howarth. Emu Oil Promotes Repair From Chemotherapy-Induced Intestinal Mucositis In Rats

1. MASCC, Athens, Greece. *Supportive Care in Cancer* 2011; 19(2):67-370
2. AGW, Brisbane, Queensland. *Journal of Gastroenterology and Hepatology* 2011; 26:15-21

SM Abimosleh, RN Butler, GS Howarth. Effects of emu oil during the recovery phase of chemotherapy-induced intestinal mucositis in rats.

1. AGW, Gold Coast, Queensland. *Journal of Gastroenterology and Hepatology* 2010; 25:A2-A17

xvi
S Mashtoub, RJ Lindsay, KA Lymn, MS Geier, RN Butler, GS Howarth. Emu Oil Improves Parameters of Intestinal Integrity in Rat Models of Inflammatory Bowel Disease and Intestinal Mucositis. MASCC, Rome, Italy. Supportive Care in Cancer 2009; 17(7):857-1039

M Vu, B Hoang, XD Ding, M Sultani, S Mashtoub, RJ Lindsay, KA Lymn, RN Butler, GS Howarth. A safety study of emu oil as a potential adjunctive treatment for ulcerative colitis and mucositis. AGW, Sydney, NSW. Journal of Gastroenterology and Hepatology 2009; 24:A239-A247

Poster of Merit Prize

S Mashtoub, RJ Lindsay, KA Lymn, TWV Acott, R Yazbeck, AG Cummins, RN Butler, GS Howarth. Emu oil increases crypt depth but only minimally affects other indicators of colonic integrity in a rat model of colitis. AGW, Sydney, NSW. J Gastro Hepatol 27: A239-A247 (2009)
THESIS STRUCTURE

This thesis is presented as a ‘Thesis by Publication’ and includes a combination of published manuscripts and papers under review. Each manuscript is formatted according to the journal specifications.

Furthermore, additional publications arising from the research described in this thesis are included as Appendices.