Vascular reactivity in sepsis and platelet dysfunction in septic shock

Benjamin Reddi

Discipline of Physiology
School of Medical Science
University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy
October 2014
THESIS DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed,

Benjamin Reddi
I am grateful to Dr David Wilson for his unstinting guidance and support, an inspiring teacher and scientist. Thank you to Prof. John Beltrame for his expert advice and A/Prof. Robert Young for his encouragement and practical support.

I would also like to acknowledge the financial support of a National Health and Medical Research Council postgraduate award and a Maurice Sando grant.
THESIS ABSTRACT

Sepsis remains an important global cause of morbidity and mortality. Sepsis can be complicated by pathological vasodilation causing cardiovascular septic shock. The present study identifies that dysfunction of the RhoA/Rho-kinase (ROK) signaling pathway in vascular smooth muscle cells contributes to vasomotor dysfunction in sepsis. ROK inhibits myosin light chain phosphatase (MLCP) through Thr855 phosphorylation of MYPT, the 130 kDa myosin binding regulatory subunit of MLCP. MLCP dephosphorylates myosin light chain (LC20) inhibiting the acto-myosin cross-bridge cycling underpinning vasoconstriction or platelet contraction. ROK dependent MLCP inhibition therefore favours vasoconstriction and can be indexed by Thr855-MYPT phosphorylation. Western blot analysis identified that Thr855 phosphorylation of MYPT was reduced in arterial segments isolated from a murine caecal ligation and puncture model of sepsis. Wire myography yielded data consistent with reduced contractile responses to thromboxane A2 receptor stimulation, high [K+] mediated depolarisation and direct PKC stimulation. α1-adrenergic receptor mediated vasoconstriction was similar in septic and non-septic animals, possibly reflecting the multiple mechanisms by which α1- adrenergic agonists elicit vasoconstriction. Certain bacterial toxins and inflammatory mediators have the potential to attenuate ROK signaling; our data suggest therapeutic benefit of agents that promote MLCP inhibition or which vasoconstrict independent of the RhoA/ROK pathway.

Current vasopressor strategies for septic shock primarily rely upon catecholamine therapy. However, there is interest in administration of vasopressin, an
endogenous vasopressor inappropriately suppressed in septic shock. It is proposed that vasopressin mediates Ca$^{2+}$ sensitisation through ROK mediated inhibition of MLCP, however, neither vasopressin dependent Ca$^{2+}$ sensitisation nor Thr855 MYPT phosphorylation have been directly identified. In permeabilised rat caudal artery Ca$^{2+}$ sensitisation was observed and found to depend at least partly upon PKC signaling. In contrast, stimulation with arginine vasopressin (AVP) was not associated with Thr855 MYPT phosphorylation despite the ROK inhibitor Y27632 attenuating vasopressin dependent vasoconstriction. These data support clinical evaluation of vasopressin therapy targeted to cases of septic shock arising from organisms capable of producing toxins, which neutralise RhoA/ROK. Furthermore, the data suggest either an MLCP independent vasoconstrictor role for ROK or ROK independent action of Y27632.

Sepsis is also complicated by coagulopathy promoting both thrombosis and haemorrhage. Data regarding platelet function in sepsis is equivocal and absent in the specific subset of patients with septic shock. Recognising the importance of platelet contraction in thrombus formation and suggested similarities between vascular smooth muscle and platelet contraction we aimed to identify whether platelet contractile dysfunction contributed to impaired platelet aggregation in septic shock. Whole blood impedance aggregation was impaired in patients suffering from septic shock; deficits in aggregation correlated with illness severity. Impaired platelet aggregation was not associated with biochemical evidence of contractile dysfunction: neither Ser19-LC$_{20}$ nor Thr855-MYPT phosphorylation differed between septic shock and non-septic patients. These data indicate that
therapeutic strategies to restore platelet function in septic shock might more profitably focus on platelet adhesion and secretion.

These studies identify MLCP inhibition as a potential therapeutic avenue to ameliorate vascular smooth muscle, but not platelet, function in septic shock. Vasopressin might provide particularly effective vasoconstriction when targeted to cases of septic shock associated with disrupted ROK/MLCP integrity.
LIST OF COMMON ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)AMP</td>
<td>(cyclic) adenosine monophosphate</td>
</tr>
<tr>
<td>(c)GMP</td>
<td>(cyclic) guanosine monophosphate</td>
</tr>
<tr>
<td>[Ca^{2+}]</td>
<td>calcium concentration</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine trisphosphate</td>
</tr>
<tr>
<td>AVP</td>
<td>arginine vasopressin</td>
</tr>
<tr>
<td>CaM</td>
<td>calmodulin</td>
</tr>
<tr>
<td>CLP</td>
<td>caecal ligation and puncture</td>
</tr>
<tr>
<td>CPI-17</td>
<td>PKC-potentiated inhibitory protein of 17 kDa</td>
</tr>
<tr>
<td>DAG</td>
<td>diacylglycerol</td>
</tr>
<tr>
<td>EC_{50}</td>
<td>effective concentration for 50% response</td>
</tr>
<tr>
<td>Emax</td>
<td>maximal effective concentration</td>
</tr>
<tr>
<td>GPCR</td>
<td>G-protein coupled receptor</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine trisphosphate</td>
</tr>
<tr>
<td>IP_{3}(R)</td>
<td>inositol trisphosphate (receptor)</td>
</tr>
<tr>
<td>L-NAME</td>
<td>N\textsubscript{ω}-Nitro-L-arginine methyl ester</td>
</tr>
<tr>
<td>LC_{20}</td>
<td>20kDa myosin light chain</td>
</tr>
<tr>
<td>LTCC</td>
<td>L-type (Ca\textsubscript{v}1.2) calcium channel</td>
</tr>
<tr>
<td>MAP</td>
<td>mean arterial pressure</td>
</tr>
<tr>
<td>MLCK</td>
<td>myosin light chain kinase</td>
</tr>
<tr>
<td>MLCP</td>
<td>myosin light chain phosphatase</td>
</tr>
<tr>
<td>MYPT</td>
<td>myosin phosphatase targeting protein</td>
</tr>
<tr>
<td>NO(S)</td>
<td>nitric oxide (synthase)</td>
</tr>
<tr>
<td>NSCC</td>
<td>non-selective cation channel</td>
</tr>
<tr>
<td>PKA/B/C</td>
<td>protein kinase A/B/C</td>
</tr>
<tr>
<td>PLC</td>
<td>phospholipase C</td>
</tr>
<tr>
<td>ROK</td>
<td>Rho kinase</td>
</tr>
<tr>
<td>SDS PAGE</td>
<td>sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>Ser</td>
<td>serine</td>
</tr>
<tr>
<td>SERCA</td>
<td>sarco-endoplasmic reticulum calcium ATPase</td>
</tr>
<tr>
<td>SR</td>
<td>sarcoplasmic reticulum</td>
</tr>
<tr>
<td>TBS (- T)</td>
<td>tris buffered saline (with Tween 20)</td>
</tr>
<tr>
<td>Thr</td>
<td>threonine</td>
</tr>
<tr>
<td>TRAP</td>
<td>thrombin receptor activating protein</td>
</tr>
<tr>
<td>TxA\textsubscript{2}</td>
<td>thromboxane A\textsubscript{2}</td>
</tr>
<tr>
<td>VSM(C)</td>
<td>vascular smooth muscle (cell)</td>
</tr>
</tbody>
</table>
STATEMENT OF AUTHORSHIP

Calcium desensitisation is associated with loss of vasopressor sensitivity in a murine model of polymicrobial sepsis
Submitted to Intensive Care Medicine Experimental

Principal author
Benjamin Reddi
Conceptualisation
Realisation
Signature
Analysis
Documentation

Co-author
John Beltrame
Supervised development
of work and assistance
with study design
Signature

Co-author
Richard Young
Contributed to study
design, development of
animal model and editing
of manuscript
Signature

Co-author
David Wilson
Contributed to study
design, supervised data
acquisition, analysis of
results and editing of
manuscript
Signature
Vasopressin elicits calcium sensitisation in vascular smooth muscle in a PKC dependent manner, but independent of Rho kinase mediated Thr-855 phosphorylation of MYPT

Publication style for Microcirculation Journal

<table>
<thead>
<tr>
<th>Principal author</th>
<th>Benjamin Reddi</th>
<th>Conceptualisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Realisation</td>
</tr>
<tr>
<td></td>
<td>Signature</td>
<td>Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Documentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Co-author</th>
<th>David Wilson</th>
<th>Contributed to study design, supervised data acquisition, analysis of results and editing of manuscript</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

ix
Attenuated platelet aggregation in patients with septic shock is independent from the activity state of myosin light chain phosphorylation or a reduction in the Rho kinase-dependent inhibition of myosin light chain phosphatase

Submitted to Intensive Care Medicine Experimental

Principal author: Benjamin Reddi

Signature

Conceptualisation
Realisation
Analysis
Documentation

Co-author: Samantha Iannella

Signature

Contributed to sample acquisition and aggregometry

Co-author: Stephanie O'Connor

Signature

Contributed to patient data acquisition and documentation

Co-author: Adam Deane

Signature

Contributed to study design and editing of manuscript

Co-author: Scott Willoughby

Signature

Contributed to study design and editing of manuscript. Technical advice for functional platelet analysis

Co-author: David Wilson

Signature

Contributed to study design, supervised data acquisition, analysis of results and editing of manuscript
TABLE OF CONTENTS

THESIS DECLARATION ... ii

ACKNOWLEDGMENTS ... iii

THESIS ABSTRACT .. iv

LIST OF COMMON ABBREVIATIONS ... vii

STATEMENT OF AUTHORSHIP .. viii

Chapter 1: Research background .. 3

The clinical problem of septic shock ... 3
 Epidemiology and Definitions .. 3
 Initiating events in septic shock .. 4
 Clinical physiology of septic shock .. 5

Mechanisms of pathological vasodilation and vasopressor insensitivity in septic shock 8
 Excess circulating vasodilators ... 9
 Relative insufficiency of endogenous vasoconstrictors ... 11
 Insensitivity to endogenous / administered vasopressors ... 13

Current and tested therapies for the restoration of vascular tone and vasopressor responsiveness in septic shock .. 17
 Vasopressors .. 17
 Adjunctive therapies to vasopressors .. 21
 Why aren’t current and trialed therapies more effective? .. 27

Vasomotor regulation in health ... 28
 Control of vasomotor tone (i) calcium dependent mechanisms of vascular smooth muscle contraction ... 28
 Control of vasomotor tone (ii) calcium independent mechanisms of vascular smooth muscle contraction ... 39
 Control of vasomotor tone (iii) mechanisms of smooth muscle relaxation 46
 Control of vasomotor tone (iv) the endothelium ... 48
 Control of vasomotor tone (v) mechanisms of action of selected vasoconstrictors 52
 Evidence that Ca2+ desensitisation contributes to septic shock ... 56

Regulation of platelet aggregation in health .. 61
 Platelet activation ... 61
 Platelet contraction .. 64
 Platelet aggregation and secretion ... 69

Platelet dysfunction in sepsis ... 69

Research questions addressed in this thesis ... 71
 Study 1 Does Ca2+ desensitisation contribute to loss of vasopressor insensitivity in a murine model of polymicrobial sepsis ... 71
 Study 2 Does vasopressin elicit Rho kinase dependent Ca2+ sensitisation in vascular smooth muscle? ... 72
Chapter 2: Calcium desensitisation is associated with loss of vasopressor sensitivity in a murine model of polymicrobial sepsis.......................... 76
 Introduction ... 76
 Materials and Methods .. 79
 Results .. 84
 Discussion .. 97

Chapter 3: Vasopressin elicits calcium sensitisation in vascular smooth muscle in a PKC dependent manner, but independent of Rho kinase mediated Thr-855 phosphorylation of MYPT ... 105
 Introduction .. 105
 Materials and methods .. 108
 Results .. 113
 Discussion .. 122

Chapter 4: Attenuated platelet aggregation in patients with septic shock is independent from the activity state of myosin light chain phosphorylation or a reduction in Rho kinase-dependent inhibition of myosin light chain phosphatase .. 130
 Introduction .. 130
 Materials and Methods .. 132
 Results .. 139
 Discussion .. 154

Chapter 5: Discussion ... 160
 Main findings .. 160
 Study 1 Does Ca2+ desensitisation contribute to loss of vasopressor insensitivity in a murine model of polymicrobial sepsis .. 160
 Study 2 Does vasopressin elicit Rho kinase dependent Ca2+ sensitisation in vascular smooth muscle? ... 162
 Implications for future therapeutic strategies ... 166
 Conclusions .. 170