Extreme Heat and Workers’ Health in South Australia: Association, perceptions, and adaptations in the workplace

Jianjun Xiang, MBBS, MMedSci

Discipline of Public Health
School of Population Health
Faculty of Health Sciences
The University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy

October 2014
Table of Contents

LIST OF TABLES .. VIII
LIST OF FIGURES .. XI
PUBLICATIONS DURING CANDIDATURE .. XIII
AWARDS RECEIVED DURING CANDIDATURE .. XV
LIST OF ABBREVIATIONS .. XVI
THESIS ABSTRACT .. XVII
DECLARATION .. XX
ACKNOWLEDGEMENT ... I
INTRODUCTION .. 1

SECTION I: LITERATURE REVIEW AND STUDY DESIGN .. 6

Chapter 1 Literature review .. 8
 1.1 Effects of heat exposure on OH&S .. 8
 1.2 Health impacts of workplace heat exposure on selected susceptible occupations: an
 epidemiological review ... 10
 1.2.1 Overview of published epidemiological studies on workplace heat exposure 11
 1.2.2 Characteristics of heat exposure in selected relatively high risk occupations 12
 1.2.2.1 Agricultural workers ... 16
 1.2.2.2 Construction workers .. 16
 1.2.2.3 Miners .. 18
 1.2.2.4 Armed forces personnel .. 20
 1.2.2.5 Fire-fighters and other emergency workers .. 21
 1.2.2.6 Manufacturing workers ... 22
 1.3 Personal vulnerability factors of workplace heat exposure ... 23
 1.3.1 Age ... 23
 1.3.2 Gender ... 24
 1.3.3 The use of certain medications, drugs, and alcohol during extremely hot periods 25
 1.3.4 Acclimatization level ... 26
1.3.5 Pre-existing diseases ... 27
1.3.6 Hydration state .. 27
1.4 Awareness and knowledge of workplace heat exposure ... 28
1.4.1 Perceptions of heat among physical workers .. 29
1.4.2 Awareness of workplace management personnel and relevant stakeholders 31
1.5 Workplace heat exposure prevention ... 33
1.5.1 Administrative management .. 33
1.5.2 Heat training and education .. 34
1.5.3 Heat indices, policies and regulations for working in hot environments 35
 1.5.3.1 Heat indices ... 35
 1.5.3.2 Heat-related regulations in Australia .. 37
1.6 Discussion .. 45
1.7 Summary and research gaps ... 49

Chapter 2 Study design and methodology .. 51
2.1 Introduction .. 51
2.2 The study region .. 51
2.3 Aims and objectives of the study ... 53
2.4 Research questions ... 53
2.5 Framework of the study ... 54
2.6 Methodology used in the study ... 57
 2.6.1 Analysis of occupational surveillance data .. 57
 2.6.1.1 Data collection .. 57
 2.6.1.2 Data analysis .. 58
 2.6.2 Questionnaire survey ... 62

SECTION II HEAT EXPOSURE AND WORK-RELATED INJURY .. 63

Chapter 3 Epidemiological characteristics of work-related injury claims in South Australia, 2001-2010 .. 65
3.1 Introduction .. 65
3.2 Materials and methods .. 65
3.3 Results .. 66
 3.3.1 Age and gender .. 67
Occupational Heat Illness in South Australia, 2001-2010

Chapter 4

Materials and methods

- **4.2.1 Workers’ compensation claim data** .. 83
- **4.2.2 Identification of compensation claims due to heat illnesses in workplaces** 84
- **4.2.3 Meteorological data** ... 85
- **4.2.4 Statistical analyses** ... 86

Results

- **4.3.1 Characteristics of heat illness claims in South Australia** 87
 - **4.3.1.1 Age and gender** .. 89
 - **4.3.1.2 Season, month, and injury time** .. 90
 - **4.3.1.3 Medical expenditure and time lost** ... 91
 - **4.3.1.4 Industry** .. 91
 - **4.3.1.5 Occupation** .. 92
- **4.3.2 Analyses focusing on Adelaide metropolitan area** 93
 - **4.3.2.1 Association between temperature and heat illness claims in Adelaide** 93
 - **4.3.2.2 Impact of heatwaves on heat illness claims in Adelaide** 94

Discussion

- **4.4.1 Incidence of occupational heat illness** .. 96
Chapter 5 The association between high temperature and work-related injuries

5.1 Introduction ... 102
5.2 Materials and methods .. 103
 5.2.1 Workers’ compensation claim data 103
 5.2.2 Meteorological data ... 103
 5.2.3 Statistical analyses ... 104
5.3 Results ... 106
 5.3.1 Threshold temperature ... 108
 5.3.2 Total effects .. 108
 5.3.3 Age and gender ... 109
 5.3.4 Business size ... 109
 5.3.5 Industry and occupation .. 109
5.4 Discussion ... 112
 5.4.1 Association between temperatures and work-related injuries 113
 5.4.2 Vulnerable sub-groups ... 114
 5.4.3 Limitations .. 116
5.5 Conclusion .. 117

Chapter 6 The effects of heatwaves on work-related injuries

6.1 Introduction ... 119
6.2 Materials and methods .. 120
 6.2.1 Workers’ compensation claim data 120
 6.2.2 Meteorological data ... 120
 6.2.3 Heatwave definition .. 120
 6.2.4 Statistical analyses ... 121
6.3 Results ... 122
 6.3.1 Effect estimates by gender, age, occupation and industry 122
 6.3.2 Types of work-related illnesses and injuries 125
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3</td>
<td>Injury mechanisms</td>
<td>127</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Comparison of the two heatwave definitions</td>
<td>127</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussion</td>
<td>128</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Vulnerable sub-groups during heatwaves</td>
<td>129</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Diseases and injuries associated with heatwaves</td>
<td>131</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Limitations</td>
<td>132</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusion</td>
<td>133</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>7.2</td>
<td>Materials and methods</td>
<td>138</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Questionnaire design</td>
<td>138</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Participant recruitment</td>
<td>139</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Data analyses</td>
<td>141</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
<td>142</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Demographic characteristics</td>
<td>142</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Heat illnesses and injuries occurring during hot weather</td>
<td>145</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Risk perceptions of workplace heat exposure</td>
<td>146</td>
</tr>
<tr>
<td>7.3.3.1</td>
<td>Concerns about heat exposure</td>
<td>146</td>
</tr>
<tr>
<td>7.3.3.2</td>
<td>Attitudes towards more heat-related training</td>
<td>147</td>
</tr>
<tr>
<td>7.3.3.3</td>
<td>Attitudes towards more heat-related policies</td>
<td>147</td>
</tr>
<tr>
<td>7.3.3.4</td>
<td>Attitudes towards the adjustment of work habits</td>
<td>148</td>
</tr>
<tr>
<td>7.3.3.5</td>
<td>Satisfaction degree of current heat-related prevention measures</td>
<td>149</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Personal behaviours during hot days</td>
<td>150</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Current heat prevention measures</td>
<td>154</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td>155</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Heat exposure concern in Australia</td>
<td>156</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Heat-related training</td>
<td>158</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Individual behavioural response</td>
<td>160</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Heat prevention measures</td>
<td>161</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Limitations</td>
<td>163</td>
</tr>
</tbody>
</table>
Chapter 8 Workplace heat exposure and OH&S: Perceptions from occupational hygienists

8.1 Introduction .. 165
8.2 Materials and methods .. 166
 8.2.1 Questionnaire design ... 166
 8.2.2 Participant recruitment .. 167
 8.2.3 Data analyses .. 167
8.3 Results .. 168
 8.3.1 Concern and awareness .. 169
 8.3.2 Preparedness and management .. 171
 8.3.3 Preventive measures and adaptation barriers ... 173
 8.3.4 Relationship between heat concern, satisfaction and heat prevention efforts 175
8.4 Discussion ... 175
 8.4.1 Heat exposure concern ... 176
 8.4.2 Heat exposure preparedness .. 177
 8.4.3 Current heat prevention measures ... 178
 8.4.4 Heat prevention barriers .. 179
 8.4.5 Limitations .. 180
8.5 Conclusion .. 180

SECTION IV DISCUSSION AND CONCLUSION ... 181

Chapter 9 Discussions and conclusions .. 182
9.1 Introduction .. 182
9.2 Key findings of this thesis .. 182
 9.2.1 Analyses of workers’ compensation claim data .. 182
 9.2.2 Workers’ perceptions on workplace heat exposure .. 186
 9.2.3 Occupational hygienists’ perceptions on heat exposure .. 187
9.3 Significance of this Thesis .. 187
9.4 Strengths and limitations ... 189
9.5 Implications and recommendations for workplace heat prevention .. 191
 9.5.1 Heat policy implications ... 191
9.5.2 Establishment of workplace heat alert system ... 193
9.5.3 Real time health surveillance .. 198
9.5.4 The combination of self-regulated and mandatory heat management 199
9.5.5 Heat education, training, and individual capacity building 200
9.5.6 Establishment of collaborative mechanisms ... 202
9.6 Further research directions ... 203
9.6.1 Heat exposure and occupational disease/injury burden ... 203
9.6.2 Heat exposure and productivity loss .. 203
9.6.3 Heat risk perceptions among employers, policy-makers and relevant stakeholders 204
9.6.4 Heat exposure and workers’ reproductive health .. 205
9.6.5 The development of heat standards for different climatic conditions and local use 205
9.7 Conclusion .. 206

APPENDICES .. 208
Appendix A: Overseas heat-related regulations and standards .. 209
Appendix B1: Ethical approval letter for the analysis of workers’ compensation claim data 222
Appendix B2: Renewal of the ethical approval for the workers’ compensation claim data 223
Appendix C: SafeWork SA Research Dataset Confidentiality Agreement 224
Appendix D: Research invitation letter for employers ... 234
Appendix E: Information sheet for workers ... 235
Appendix F: Survey questionnaires for workers .. 237
Appendix G: Survey questionnaires for TAFE students .. 242
Appendix H: Ethical approval for questionnaire surveys .. 247
Appendix I: Survey questionnaires for hygienists ... 248
Appendix J: Information sheets for hygienists ... 252
Appendix K: Abstracts of published manuscripts .. 253
Appendix L: Journal commentary on a published manuscript based on Chapter 5 256

REFERENCES .. 256
List of Tables

Table 1.1 Summary of findings from surveillance data analysis articles on workplace heat exposure published during January 1997-January 2014 .. 13

Table 1.2 Summary of epidemiological studies of workplace heat exposure published during January 1997-January 2014 .. 14

Table 1.3 Review of studies on perceptions and behavioural responses of workplace heat exposure in January 1997- January 2014 .. 32

Table 1.4 Australian legal regulations and codes for occupational heat stress .. 39

Table 3.1 The number of claims, percentages and claim rates by gender, South Australia, 2001-2010 .. 68

Table 3.2 Claims, percentages, and claim rates by age group and gender, South Australia, 2001-2010 .. 69

Table 3.3 Claims by season, South Australia, 2001-2010 ... 70

Table 3.4 Claims by month, South Australia, 2001-2010 .. 70

Table 3.5 The number of claims, percentage, time-loss days, medical costs, and deaths by industry, South Australia, 2001-2010 .. 74

Table 3.6 The number of claims, percentage, time-loss days, medical costs, and deaths by occupation, South Australia, 2001-2010 .. 75

Table 3.7 The number of claims, percentage, time-loss days, medical costs, and deaths by nature of injury or illness, South Australia, 2001-2010 .. 76

Table 3.8 The number of claims, percentage, time-loss days, medical costs, and deaths by mechanism of injury or illness, South Australia, 2001-2010 .. 77

Table 4.1 Characteristics of heat illness compensation claims and all compensation claims reported in South Australia, 2001-2010 .. 88

Table 4.2 The number, percentage and claim rate of all and heat illness compensation claims by South Australia WorkCover Industrial Classification System (SAWICS) in South Australia, 2001-2010 .. 92

Table 4.3 The number, percentage and claim rate of heat illness compensation claims and all claims by occupation in South Australia, 2001-2010 .. 93
Table 4.4 The odds ratios (OR) of occupational heat illness claims during heatwave periods compared with non-heatwave periods in different control groups, Adelaide, South Australia, 2001-2010

Table 5.1 Summary statistics for meteorological indicators in Adelaide, South Australia, 2001-2010

Table 5.2 Number and percentage of workers' injury claims in Adelaide, South Australia, 2001-2010

Table 5.3 Daily injury claims, thresholds, and IRR estimates of T_{max} (lag 0) on daily injury claims by gender, age group, industry and occupation in warm seasons (October-March), Adelaide, South Australia, 2001-2010

Table 5.4 Number and percentage of workers' injury claims in Adelaide, South Australia, 2001-2010

Table 6.1 The incidence rate ratio (IRR) of workers' compensation claims by gender, age group, industry and occupation during heatwave periods compared with non-heatwave periods in the warm season, Adelaide, South Australia, 2001-2010

Table 6.2 Specific injury risk estimates (IRR) stratified by gender and age groups for industrial sectors significantly related to heatwaves in the warm season, Adelaide, South Australia, 2001-2010

Table 6.3 The incidence rate ratio (IRR) of workers' compensation claims by the type of injuries and illnesses during heatwave periods compared with non-heatwave periods in the warm season, Adelaide, South Australia, 2001-2010

Table 6.4 The IRR of workers' compensation claims by the mechanism of injury during heatwave periods compared with non-heatwave periods in the warm season, Adelaide, South Australia, 2001-2010

Table 7.1 Sampling framework: the number of employers invited to provide assistance in the distribution of questionnaires to workers

Table 7.2 Perceptions of workplace heat exposure: prevalence estimates and 95% CI by different subgroups

Table 7.3 Factors associated with attitude and perception for workplace heat exposure, more heat-related training and regulations, the change of work habits, and satisfaction for prevention measures: bivariate analysis and multiple stepwise logistic regression analysis

Table 8.1 Demographic information of the participants

Table 8.2 Number and percentage of respondents' concern and awareness on workplace extreme heat exposure
Table 8.3 Comparison of heat concern, attitudes toward future heat challenge, and satisfaction level of heat prevention measures by occupation and area..........................170

Table 8.4 Number and percentage of extreme heat preparedness and management........172

Table 8.5 Relationship of heat concern and satisfaction level on the attitudes towards more training and regulations, and the adjustment of heat prevention recommendations.............175

Table A1 Outdoor temperature action levels ...210

Table A2 Two-hour time-weighted average permissible heat exposure limits210

Table A3 Legal requirements relating to workplace heat exposure in some European Union countries ...215

Table A4 High temperature allowance standards in major municipalities/provinces, China220
LIST OF FIGURES

Figure 1.1 Conceptual framework of the relationship between workplace heat exposure and its impact ... 9

Figure 1.2 Process of selection of articles for reviewing health impacts of workplace heat exposure .. 11

Figure 2.1 Location of metropolitan Adelaide, Adelaide, South Australia ... 52

Figure 2.2 Flowchart outlining the framework of the study ... 56

Figure 3.1 Spatial distribution of workers’ compensation claims in South Australia, 2001-2010 by postcode .. 67

Figure 3.2 Claim rates by gender, South Australia, 2001-2010 ... 68

Figure 3.3 Distribution of claims by injury time and gender, South Australia, 2001-2010 71

Figure 4.1 Flowchart: identification of heat-related compensation claims, South Australia, 2001-2010 .. 85

Figure 4.2 Spatial distribution of heat-related injury claims in South Australia, 2001-2010 89

Figure 4.3 Distribution of heat illness compensation claims by month in South Australia, 2001-2010 .. 90

Figure 4.4 Distribution of heat illness compensation claims by injury time in South Australia, 2001-2010 .. 90

Figure 4.5 Association between daily maximum temperature and daily occupational heat illness claims in Adelaide, South Australia, 2001-2010 .. 94

Figure 5.1 Characteristics of daily injury claims in 2001–2010, Adelaide, South Australia 106

Figure 5.2 (A-E) Exposure–response relationships between daily maximum temperature and daily injury claims for (A) total effects, (B) outdoor industries, (C) agriculture, forestry and fishing, (D) construction and (E) electricity, gas and water. Data were smoothed using a LOWESS (locally weighted scatter plot smoothing) smoother, bandwidth=0.8 .. 111

Figure 7.1 Heat-related illnesses experienced by participants: number and percentage 145
Figure 7.2 Type of injuries experienced by participants during hot weather: number and percentage..145

Figure 7.3 Type of injuries witnessed by participants during hot weather: number and percentage..146

Figure 7.4 Reasons why there is no need for more heat-related regulations and guidelines ...148

Figure 7.5 Reasons why workers did not consider adjusting work habits during hot weather .149

Figure 7.6 Participants' drinking habits during hot weather ..150

Figure 7.7 Main sources of information about heat prevention ...153

Figure 7.8 Reasons that some workers did not work in their own pace during very hot weather ..154

Figure 7.9 Heat prevention measures currently adopted in the workplace155

Figure 8.1 Number and percentage of different hygienist categories ...169

Figure 8.2 Heat-related preventive measures currently adopted in the workplace173

Figure 8.3 Heat prevention and adaptation barriers existing in the workplace174

Figure 9.1 The Construction, Forestry, Mining and Energy Union (CFMEU) hot weather guideline ..197

Figure A1 Evaluating heat stress and strain...213
PUBLICATIONS DURING CANDIDATURE

Peer-reviewed Journals

Published

Manuscript in draft

5. Xiang J, Bi P, Pisaniello D, Hansen A. Workers’ perceptions on workplace heat exposure in South Australia.

Conference presentations

2. Xiang J, Bi P, Pisaniello D, Hansen A. Association between high temperature and work-related injuries in Adelaide, South Australia, 2001–2010 (*Poster presentation*). The
Faculty of Health Science Postgraduate Research Conference, The University of Adelaide, SA, 2013.

AWARDS RECEIVED DURING PhD CANDIDATURE

- The University of Adelaide – China Scholarship Council Joint Postgraduate Scholarships Program, 2010-2014.

- Postgraduate Travelling Fellowship, funded by the Freemasons Foundation. Faculty of Health Sciences Research Committee, the University of Adelaide, 2013.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>ACGIH</td>
<td>American Conference of Governmental Industrial Hygienists</td>
</tr>
<tr>
<td>AIOH</td>
<td>Australian Institute of Occupational Hygienists</td>
</tr>
<tr>
<td>ASCO</td>
<td>Australian Standard Classification of Occupation</td>
</tr>
<tr>
<td>AT</td>
<td>Apparent Temperature</td>
</tr>
<tr>
<td>BOM</td>
<td>Bureau of Meteorology</td>
</tr>
<tr>
<td>CEN</td>
<td>European Committee for Standardization</td>
</tr>
<tr>
<td>CFMEU</td>
<td>Construction, Forestry, Mining and Energy Union</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>FIFO</td>
<td>Fly-in/fly-out</td>
</tr>
<tr>
<td>GEE</td>
<td>Generalized Estimating Equation</td>
</tr>
<tr>
<td>H/W</td>
<td>Heatwave</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>IRR</td>
<td>Incidence Rate Ratio</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>OH&S</td>
<td>Occupational Health & Safety</td>
</tr>
<tr>
<td>OLS</td>
<td>Ordinary Least Square</td>
</tr>
<tr>
<td>OR</td>
<td>Odd Ratio</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SAWIC</td>
<td>South Australia WorkCover Industrial Classification</td>
</tr>
<tr>
<td>SWSA</td>
<td>SafeWork South Australia</td>
</tr>
<tr>
<td>TAFE</td>
<td>Technical and Further Education</td>
</tr>
<tr>
<td>TLV</td>
<td>Threshold Limit Value</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Maximum Temperature</td>
</tr>
<tr>
<td>TOOCS</td>
<td>Type of Occurrence Classification System</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USG</td>
<td>Urine Specific Gravity</td>
</tr>
<tr>
<td>UTCI</td>
<td>Universal Thermal Climate Index</td>
</tr>
<tr>
<td>WBGT</td>
<td>Wet Bulb Globe Temperature</td>
</tr>
<tr>
<td>WHS</td>
<td>Workers’ health and safety</td>
</tr>
</tbody>
</table>
Background

Occupational heat exposure may lead to adverse health effects and contribute to work-related injury, illness or even death. With the predicted increase in the frequency and intensity of extremely hot weather in South Australia, workplace heat exposure is presenting a growing challenge to workers’ health and safety. This thesis aims to examine the effects of workplace heat exposure on workers’ health and safety in Adelaide, South Australia, to investigate perceptions of risks associated with workplace heat exposure, and to provide scientific evidence for the development of heat necessary heat prevention and adaptation strategies particularly in a warming climate.

Methods

This study can be broadly divided into two parts. The first part is the analyses of workers’ compensation claim data and weather data, obtained from the SafeWork South Australia and the Bureau of Meteorology, respectively for 2001-2010. Time-series analysis approach was used to quantify the effects of heat exposure on workers’ health and safety. Heat-related claims were identified according to the Type of Occurrence Classification System coding information and text-based diagnosis-related descriptions. Case-crossover analytic approach was undertaken to estimate the risk of occupational heat illnesses during heatwaves. The second part of this study comprises two cross-sectional questionnaire surveys to investigate how workers and occupational hygienists perceive the risk of workplace heat exposure and health impact.
Results

Analyses of workers’ compensation claim data

Generally, there was a reversed U-shaped relationship between daily maximum temperature (T_{max}) and daily injury claims in Adelaide. With increasing T_{max} below certain threshold temperatures ranging from 31.8°C to 38.9°C, significant temperature-injury claims associations were found in the following sub-groups: young workers aged ≤ 24 years; those working in some outdoor industries such as ‘agriculture, forestry and fishing’, ‘construction’, and ‘electricity, gas and water’; or employed as labourers, production and transport workers, and tradespersons in small and medium sized businesses. When the temperature was extremely hot, almost all industries had a decrease in injury claims, except the ‘electricity, gas and water’ industry.

During heatwave (≥ 3 consecutive days with $T_{\text{max}} \geq 35^\circ \text{C}$) periods, outdoor male labourers and tradespersons aged ≥ 55 years in ‘agriculture, forestry and fishing’ and ‘electricity, gas and water’ industries were found to be at higher risk of work-related injuries. Occupational burns, lacerations, amputations, and heat illnesses were found to be significantly associated with extreme heat, together with injuries resulting from moving objects, chemical exposures, and environmental factors.

There were 306 heat-related injury claims reported during the 9-financial year period in South Australia, with an incidence rate of 4.5 per 100,000 workers. Relatively high heat illness incidence rates were observed in ‘mining’ and ‘electricity, gas and water’ industries, and those employed as labourers and tradespersons across the state during the study period. When T_{max} was above 35.5°C, a 1 °C increase of T_{max} was associated with a 12.7% increase in occupational heat illness claims. During heatwave periods the risk of occupational heat illness was about 4-7 times higher than that of non-heatwave periods.
Workers and occupational hygienists’ perceptions on heat exposure

Surveyed workers were moderately concerned about heat exposure. Young workers (≤24 years) were less concerned than older workers. Workers undertaking very physically demanding work, wearing personal protective equipment, or having had a previous heat illness/injury were found to be more concerned about heat exposure.

The majority (90%) of occupational hygienists and specialists surveyed showed great concerns over heat stress, but they did not show strong willingness to amend heat prevention recommendations to management or companies. From the occupational hygienists’ point of view, Australian workplaces may not be well-prepared for the likelihood of increasing heat stress due to climate change.

Conclusions

Findings from this study will provide essential epidemiological evidence for policy makers and relevant stakeholders to develop regulations and guidelines locally and/or internationally to reduce the impacts of extreme heat on workers’ health and safety, particularly in the susceptible subgroups identified. Industrial specific workplace hot weather alerts and response mechanisms need to be developed via multi-sectoral cooperation between stakeholders to improve vulnerable groups’ risk perceptions and knowledge about harm minimisation strategies during extremely hot weather. In a warming climate, there is a need to develop specific and clear enforceable heat regulations to ensure the implementation and compliance of heat policies.
DECLARATION

I certify that this work is original and contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and brief, contains no material previously published or written by another person, except where due acknowledgement is made in the text. No part of the work will be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the join-award of the degree except where due reference has been made in the text.

I give my consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

Signature: _____________________ Date: ________________________
ACKNOWLEDGEMENT

First and foremost I would like to express my heartfelt gratitude to my supervisors Professor Peng Bi, Professor Dino L. Pisaniello, and Dr Alana Hansen, all of whom provided much appreciated continuous help, encouragement and guidance. I consider myself very lucky to have such a wonderful and supportive supervisory panel, and very fortunate to be part of our warm research team. I would also like to thank all members of the Thesis Writing Group, the other academic and professional staff, and fellow PhD students of the Discipline of Public Health for their support throughout the candidature.

Appreciation is extended to SafeWork SA for providing workers’ compensation claims data, especially Mr. John Horrocks and Ms. Shelley Rowett’s assistance in data delivery, collation and variable interpretation. Beyond that, I am also thankful to SafeWork SA for helping me to invite potential employers to participate in the heat stress questionnaire survey. I would also like to thank TAFE SA and the Australian Institute of Occupational Hygienists Inc. (AIOH) for their generous assistance in the distribution of questionnaires. All survey participants and employers getting involved in this research are greatly appreciated for their contributions.

My sincere thanks also go to Mr. Thomas Sullivan (DMAC, University of Adelaide), Mr. Graeme Tucker and Dr Monika Nitschke from SA Health, Dr. Sue Williams, Dr. Ying Zhang, and Dr. Murthy Mittinty for their helpful assistance in solving the many methodological problems encountered.

My PhD candidature was funded by the China Scholarship Council and the University of Adelaide through a joint postgraduate scholarship program.

Thanks are extended to my friends for providing support and friendship that I needed, and particularly to Mr. Andrew Bain, Ms Jennifer Cooper, Xue Qin, Sisi, Maoyi Xu, Ting Xia, Yanyan Kong, Shurong Han, Hui Li, Jimin Xiong, Tongzhe Bi, Yun Li, and Tao Zhang. Last but certainly not least, I wish to thank my hardworking parents and my two lovely younger sisters. Their love provided my inspiration and was my internal driving force throughout the journey.

Jianjun Xiang