Characterisation of proteinaceous toxins isolated from *Pyrenophora teres f. teres*

by

Ismail Ahmed Ismail

A thesis submitted for the degree of Doctor of Philosophy at

The University of Adelaide

Faculty of Science

School of Agriculture, Food and Wine

Waite Campus

Adelaide, South Australia

2013
Table of contents

Chapter 1 General introduction ... 1
 1.1 Fungal phytotoxins ... 1
 1.2 Necrotrophic phytotoxins and disease development 3
 1.3 Net blotch disease in barley .. 5
 1.4 \textit{Ptt}-barley interaction ... 7
 1.4.1 Infection process .. 7
 1.4.2 \textit{P. teres} toxins ... 8
 1.4.2.1 HNSTs ... 9
 1.4.2.2 Proteinaceous HSTs .. 10
 1.5 Virulence and proteinaceous HSTs .. 12
 1.6 The mode of action of necrotrophic effectors (HSTs) 13
 1.7 Identification of necrotrophic fungal toxins might contribute to the development of resistant barley 15
 1.8 The objectives of this study .. 18

Chapter 2 Fungal growth and virulence of \textit{Pyrenophora teres f. teres} on barley ... 20
 2.1 Introduction ... 20
 2.2 Materials and methods ... 22
 2.2.1 Plant growth .. 22
 2.2.2 Fungal isolation and culturing ... 22
 2.2.3 Virulence testing of \textit{Ptt} isolates .. 23
 2.2.4 \textit{In vitro} and \textit{in planta} conidial germination assays 24
 2.2.5 Determination of fungal growth \textit{in planta} 27
 2.2.6 Optimisation of proteinaceous toxin production and extraction 27
2.2.6.1 Effect of media type and incubation conditions on protein production

2.2.6.2 Protein extraction from Ptt culture filtrate

2.2.6.2.1 Ultrafiltration purification (UFP)

2.2.6.2.2 Ammonium sulfate precipitation (ASP)

2.2.6.2.3 TCA protein extraction

2.2.6.3 PAGE

2.2.6.3.1 Coomassie Brilliant Blue staining (CBB R250)

2.2.6.3.2 Silver staining

2.2.6.4 Evaluation of UFP and ASP extraction methods

2.2.6.5 Proteinaceous toxin bioassay for six isolates of Ptt

2.2.7 Statistical analysis

2.3 Results

2.3.1 Virulence of Ptt isolates

2.3.2 Germination and fungal growth are correlated with virulence

2.3.2.1 Germination in vitro and in planta

2.3.2.2 Fungal hyphal growth in planta

2.3.3 Effect of media on protein production

2.3.4 Optimisation of protein production conditions

2.3.5 Evaluation of UFP and ASP extraction methods

2.3.6 Bioassay of total protein extracted from culture filtrates of six Ptt isolates

2.4 Discussion

Chapter 3 Identification of individual candidate proteinaceous toxins from Pyrenophora teres f. teres

3.1 Introduction

3.2 Material and methods

3.2.1 Plant growth

3.2.2 Fungal isolation and toxin production

3.2.3 Proteinaceous toxin fractionation and bioassays

3.2.3.1 Bioassay of protein fractions from two isolates with different virulence

3.2.3.2 Bioassay of protein fractions and sub-fractions on barley cultivars of different susceptibility

3.2.4 Investigation of Ptt toxins in intercellular washing fluids (ICWFs) and cell components in infected plants

3.2.4.1 Plant inoculation

III
3.2.4.2 Protein extraction from ICWFs .. 63
3.2.4.3 Protein extraction from cell components................................. 64
3.2.5 Visualisation of proteins and candidate toxin identification 66
 3.2.5.1 PAGE.. 66
 3.2.5.2 2DGE.. 66
 3.2.5.3 Candidate proteinaceous toxin identification 67

3.3 Results .. 69
 3.3.1 Identification of potential toxins .. 69
 3.3.1.1 From fractions of culture filtrate proteins from two isolates with different virulence .. 69
 3.3.1.2 From fractions and sub-fractions of culture filtrate proteins that induce symptoms differentially on barley cultivars of different susceptibility .. 75
 3.3.1.3 Comparing active and less active protein fractions 86
 3.3.2 Identification of virulence-related candidate proteins (VRCPs) 88
 3.3.3 Characterisation of ICWFs and cell components from infected plants ... 91

3.4 Discussion .. 99

Chapter 4 Isolation, characterisation and cloning of cDNA encoding for virulence-related candidate proteins (VRCPs) from Pyrenophora teres f. teres (Ptt) .. 108

4.1 Introduction .. 108

4.2 Materials and methods .. 111
 4.2.1 Isolation of the full length of cDNA for virulence-related candidate gene transcripts (VRCGs) ... 111
 4.2.1.1 Culturing the isolate .. 111
 4.2.1.2 Primer design .. 111
 4.2.1.3 RNA extraction, quantification and DNase treatment 112
 4.2.1.4 Isolation of the full length of VRCGs 113
 4.2.1.5 cDNA extraction from agarose gel and confirmation of sequences .. 114
 4.2.2 Bioinformatics analysis .. 114
 4.2.2.1 Conserved domains analyses for VRCPs 114
 4.2.2.2 Alignment of individual VRCPs 115
 4.2.2.3 Phylogenetic analysis ... 117
 4.2.2.4 Secondary structure and three dimensional modelling of VRCPs 117
 4.2.3 Semi-quantitative RT-PCR .. 118
4.2.3.1 In vitro .. 118
4.2.3.2 In planta ... 119

4.3 Results .. 120
4.3.1 Isolation of the full length of cDNA for virulence-related candidate
gene transcripts (VRCGs) .. 120
4.3.2 Conserved domains and phylogenetic analyses for VRCPs 120
4.3.2.1 PttXyn11A .. 120
4.3.2.2 PtCHFP1 ... 130
4.3.2.3 PttGPI-CFEM ... 136
4.3.2.4 PttSP1 ... 140
4.3.3 Semi-quantitative RT-PCR .. 144
4.3.3.1 In vitro ... 144
4.3.3.2 In planta ... 145

4.4 Discussion .. 146

Chapter 5 Heterologous expression and bioassays of virulence-related
candidate proteins (VRCPs) ... 152

5.1 Introduction .. 152

5.2 Material and methods ... 153
5.2.1 Cloning of cDNA of VRCGs 153
5.2.2 Heterologous expression of candidate proteins 155
5.2.2.1 Ligation of PCR amplicons in pDEST17 vector 155
5.2.2.2 Expression of recombinant protein 156
5.2.2.3 Purification of heterologously expressed proteins 156
5.2.2.3.1 Purification under denaturing conditions 157
5.2.2.3.2 Purification under native conditions 157
5.2.2.4 Visualisation and LC-eSI-IT MS identification of expressed
recombinant proteins ... 158
5.2.2.5 The effect of recombinant protein on the viability of E. coli 158
5.2.3 Bioassay of heterologously expressed proteins 159
5.2.4 Activity of xylanase in six isolates of Ptt in vitro 160
5.2.5 Statistical analysis and photography 162

5.3 Results .. 162
5.3.1 Heterologous expression of VRCPs 162
5.3.1.1 PttGPI-CFEM ... 162
5.3.1.2 PttXyn11A ... 163
5.3.1.3 PtCHFP1 ... 168
5.3.1.4 PttSP1 ... 172
5.3.2 Bioassay for candidate proteins ... 176
5.3.2.1 Biological activity of recombinant proteins on barley cultivars .. 176
5.3.2.2 Biological activity of recombinant proteins on cv. Sloop 183
5.3.3 Biological activity of commercial xylanase 186
5.3.4 Xylanase activity in isolates of *Pt* with different virulence 187

5.4 Discussion .. 188

Chapter 6 Expression of virulence-related candidate genes (VRCG) during the interaction between barley and isolates of *P. teres* f. *teres* with different virulence .. 194

6.1 Introduction ... 194

6.2 Material and methods ... 197
6.2.1 Quantification of expression of VRCGs in six isolates of *Pt* 197
6.2.1.1 Primer design for RT-qPCR .. 197
6.2.1.2 Plant inoculation and *in planta* cDNA synthesis 199
6.2.1.3 Optimisation of RT-qPCR for VRCGs gene expression 199
6.2.1.3.1 VRCGs expression using Comparative C_T (ΔΔC_T) 200
6.2.1.3.2 qPCR for genomic DNA for six isolates of *Pt* at 192 hpi 201
6.2.1.3.3 VRCGs expression using absolute quantification 201
6.2.1.3.3.1 Primer efficiency .. 201
6.2.1.3.3.2 Standard curve optimisation ... 202
6.2.1.3.3.3 Optimisation of final cDNA and primer concentration for *in planta* analysis .. 203
6.2.1.3.4 Absolute quantification of VRCGs expression using the optimal cDNA and primer concentrations .. 203
6.2.2 Statistical analysis and photography 204

6.3 Results ... 204
6.3.1 Virulence of *Pt* isolates .. 204
6.3.2 Optimisation of quantitative RT-PCR for VRCGs 206
6.3.2.1 VRCGs expression using Comparative C_T (ΔΔC_T) 206
6.3.2.2 qPCR for genomic DNA for six isolates at 192 hpi 207
6.3.2.3 VRCGs expression using absolute quantification 208
6.3.2.3.1 Primer efficiency and standard curves 208
6.3.2.3.2 Optimisation of cDNA concentration *in planta* 209
6.3.2.3.2.1 Absolute quantification of VRCGs during the interaction..... 210

6.4 Discussion .. 216

Chapter 7 General discussion .. 222
7.1 Virulence needs both toxin production and fungal growth.... 223
7.1.1 Xylanase contributes to Ptt virulence......................... 224
7.1.2 PttCHFP1 might contribute to Ptt virulence 227
7.1.3 Contribution of other proteinaceous toxins to Ptt virulence 228
7.1.4 Proposed infection process of barley by Ptt 229

7.2 Conclusion and future directions 232

References. ... 234

Appendix 1 .. 257
Appendix 2 .. 259
Appendix 3 ... 266
Appendix 4 ... 269
Appendix 5 ... 278

List of Figures

Figure 1.1. Net blotch disease in barley, spot form net blotch (A) and net form net blotch (B). ... 6
Figure 2.1. Specially designed Petri dish inoculation system used in this study to allow easy visualisation of Ptt growth on barley. 26
Figure 2.2. Representative images depicting differences in the virulence of the six Ptt isolates on barley cv. Sloop 6 days post inoculation........ 36
Figure 2.3. Representative images depicting differences in the virulence of the six Ptt isolates on barley cv. Sloop 17 days post inoculation....... 37
Figure 2.4. Representative images for fungal development of two isolates of Ptt after 11 days post inoculation in planta. 38
Figure 2.5. Percentage of conidia germinated for six isolates of Ptt after 24 h in vitro or in planta in barley cv. Sloop................................. 40
Figure 2.6. Representative images for fungal development of six isolates of Ptt in planta... 41
Figure 2.7. Differences in the hyphal length between six isolates of Ptt at 24 hours post inoculation (hpi) in planta in barley cv. Sloop. 43

VII
Figure 2.8. Fungal development of six isolates of *Ptt* after 24 hours post inoculation (hpi) *in planta.* ... 44

Figure 2.9. Optimisation of toxin production in two isolates of *Ptt* (32/98, more virulent) and 08/08f (less virulent) using two types of media. 45

Figure 2.10. Optimisation of protein production in 32/98 and 152/09 (more virulent isolates) grown for 12 days (d) on two types of media. 47

Figure 2.11. Concentration of protein in the filtrates of two virulent isolates (32/98 and 152/09). ... 48

Figure 2.12. PAGE for total protein extracted from the filtrates of 32/98 and 152/09 grown for 23 days in two types of media. 48

Figure 2.13. Effect toxin extraction methods on the bioassay of toxins on barley cv. Sloop. ... 49

Figure 2.14. Bioassay test for proteinaceous toxins extracted from filtrates of the six isolates of *Ptt* ... 51

Figure 3.1. Bioassays of 5 fractions (F1 to F5) from the culture filtrates of the more virulent isolate (32/98) and less virulent isolate (08/08f) after 5 days post injection. ... 70

Figure 3.2. Protein comparison on PAGE between protein fractions (F2 to F5) of the culture filtrates of the more (32/98) and less (08/08f) virulent isolates. ... 72

Figure 3.3. Bioassay of 10 protein fractions (F1 to F10) from filtrates of the more virulent isolate (32/98) on three barley cultivars 5 days post injection. ... 77

Figure 3.4. Bioassay of 6 protein sub-fractions (SF4/1 to SF4/6) of more virulent isolate (32/98) on three barley cultivars after 5 days post injection. ... 78

Figure 3.5. Separation of protein fractions (F3 to F10), protein sub-fractions (4/1-4/6) and crude toxin (32T) for more virulence isolate 32/98 on PAGE... 80
Figure 3.6. 2DGE comparison of protein profiles of fraction 4 (A) and fraction 6 (B) from 32/98 isolate. ... 87
Figure 3.7. Identification of proteins extracted from culture filtrates from the more virulent isolate 32/98 (A) and the least virulent isolate 08/08f (B) using 2-D gel electrophoresis. ... 89
Figure 3.8. PAGE for proteins extracted after 6 and 9 day post inoculation (dpi) from uninfected leaves (C) and leaves infected with 32/98 isolate (32) of Ptt. ... 92
Figure 3.9. Separation of proteins extracted from 32/98 crude toxin (32T), fraction 4 (F4), sub-fraction 4/2 (SF4/2) and intercellular washing fluids (ICWFs) using PAGE... 92
Figure 3.10. 2DGE comparison of protein profiles of ICWFs from infected and uninfected plants.. 97
Figure 4.1. The full length of PttXyn11A cDNA and PttXyn11A protein (JX900133) (A). ... 121
Figure 4.2. Multiple alignment and phylogenetic analysis of PttXyn11A and proteins containing Glycosyl hydrolases family 11 domain. 124
Figure 4.3. Alignment of PttXyn11A of Ptt with TrXyn11A, Trichoderma reesei and BcXyn11A, B. cinerea (Brito et al., 2006). 126
Figure 4.4. Secondary and three dimensional stucture of PttXyn11A of Ptt. . 129
Figure 4.5. The full length of PttCHFP1 cDNA and PttCHFP1 protein (JX900134). ... 131
Figure 4.6. Phylogenetic tree of selected members of cysteine hydrolase superfamily. ... 132
Figure 4.7. Multiple alignment of PttCHFP1 and selected members of isochorismatase family proteins. ... 134
Figure 4.8. The predicted three dimensional structure of PttCHFP1 of Ptt (A) and P. aeruginosa 1NF8 protein (B). 135
Figure 4.9. The full length of PttGPI-CFEM cDNA and PttGPI-CFEM protein (A)... 137
Figure 4.10. Multiple alignment of PttGPI-CFEM and fungal proteins showing the eight cysteine-containing CFEM domain (A). 138
Figure 4.11. The predicted three dimensional structure of PttGPI-CFEM of Ptt. 139
Figure 4.12. The full length of PttSP1 cDNA and PttSP1 protein (A). 141
Figure 4.13. Multiple alignment of PttSP1 and bacterial proteins showing lipid attachment site. 142
Figure 4.14. Secondary and three dimensional structure of PttSP1. 143
Figure 4.15. The predicted three dimensional structure of PttSP1 of Ptt. 144
Figure 4.16. Differences in the expression level of VRCGs for six isolates (in vitro) growing for 10 days in FCM. 145
Figure 4.17. Differences in the expression level of VRCGs for six isolates in planta at 192 hours post inoculation. 146
Figure 5.1. Denaturing purification of PttGPI-CFEM heterologously expressed in E. coli. 163
Figure 5.2. Optimisation of heterologous expression of PttXyn11A in E. coli with different temperatures. 165
Figure 5.3. Optimisation of heterologous expression of PttXyn11A in E. coli with different incubation time and L-arabinose concentration. 166
Figure 5.4. Heterologous expression of PttXyn11A in E.coli. 167
Figure 5.5. The effect of overexpression of PttXyn11A on the viability of E. coli. 168
Figure 5.6. Optimisation of heterologous expression of PttCHFP1 in E. coli with different incubation conditions and L-arabinose concentration. 169
Figure 5.7. Heterologous expression and denaturing purification of PttCHFP1 in E.coli. 170
Figure 5.8. Heterologous expression and native purification of PttCHFP1 in E.coli. 170
Figure 5.9. The effect of overexpression of PttCHFP1 on the viability of *E. coli*. ... 171

Figure 5.10. Optimisation of heterologous expression of PttSP1 in *E. coli* with different incubation conditions and L-arabinose concentration... 173

Figure 5.11. Heterologous expression and denaturing purification of PttSP1 in *E. coli* ... 174

Figure 5.12. Heterologous expression and native purification of PttSP1 in *E. coli*. ... 175

Figure 5.13. The effect of overexpression of PttSP1 on the viability of *E. coli*. ... 176

Figure 5.14. Bioassay of heterologously expressed PttXyn11A (X), PttCHFP1 (C) and PttSP1 (S) (expressed in *E. coli*) unwashed protein....... 179

Figure 5.15. Bioassay of heterologously expressed PttXyn11A (X), PttCHFP1 (C) and PttSP1 (S) (expressed in *E. coli*) washed protein........... 180

Figure 5.16. Bioassay of heterologously expressed PttXyn11A (X), PttCHFP1 (C) and PttSP1 (S) (expressed in *E. coli*) on three cultivars. 181

Figure 5.17. Bioassay of heterologously expressed PttXyn11A (X), PttCHFP1 (C) and PttSP1 (S) (expressed in *E. coli*), clear lysate on three cultivars. ... 182

Figure 5.18. Effect of protein concentration on the bioassay of heterologously expressed PttCHFP1 (expressed in *E. coli*) on cv. Sloop........... 184

Figure 5.19. Bioassay of heterologously expressed PttSP1 (expressed in *E. coli*) on cv. Sloop. ... 185

Figure 5.20. Bioassay of commercial xylanase on cv. Sloop..................... 186

Figure 5.21. Activity of xylanase (X) in the culture filtrate of six isolates of *Ptt* grown at FCM for 10 and 15 days... 188

Figure 6.1. Virulence of six isolates at different time on barley cv. Sloop, starting from 40 hours post inoculation (hpi) until 192 hpi.......... 205

Figure 6.2. Virulence score of six isolates at different time on barley cv. Sloop, from 64 hours post inoculation (hpi) until 192 hpi.............. 206
Figure 6.3. Fluorescent value of qPCR of *PttGAPDH* for six isolates at 192 hours post inoculation (hpi) ... 208
Figure 6.4. The expression of VRCGs during the interaction of *Ptt* isolates and barley ... 215
Figure 7.1. Simplified schematic showing the proposed scenario for *Ptt* infection process ... 231

Figure A1.1. Tekauz’s scale (Tekauz, 1985); the scale describes the reaction of barley to *P. teres* f. *teres* and illustrates these reaction using numbers from 1 to 10 ... 257

Figure A2.1. RT-PCR cycle number optimisation for VRCGs *PttSP1, PttXyn11A*, *PttCHFP1*, *PttGPI-CFEM* and *PttGAPDH* 259
Figure A2.2. Multiple alignment of *PttCHFP1*and CSHase family proteins. 260
Figure A2.3. The evolutionary history of *PttCHFP1* and its homologues from CSHase family ... 261
Figure A2.4. Multiple alignment of *PttCHFP1*and Nicotinamidase family proteins ... 262
Figure A2.5. The evolutionary history of *PttCHFP1* and its homologues from Nicotinamidase family ... 263
Figure A2.6. Secondary structure of *PttGPI-CFEM* and 4 selected members of CFEM family ... 264
Figure A2.7. Graphical summary of *PttSP1* BLAST in UniProtKB databases ... 265

Figure A3.1. Native extraction of heterologous expression of *PttXyn11A* from *E. coli* with different temperatures ... 266
Figure A3.2. Denaturing extraction of heterologous expression of *PttXyn11A* in new transformant of *E. coli* ... 267
Figure A3.3. Optimisation of heterologous expression of PttCHFP1 in *E. coli* with different incubation conditions and L-arabinose concentration. .. 267

Figure A3.4. Optimisation of heterologous expression of PttSP1 in *E. coli* with different incubation conditions and L-arabinose concentration. .. 268

Figure A4.1. RT-PCR products (partial product) for four VRCGs isolated from 32/98 mycelium grown for 10 day on FCM. 269

Figure A4.2. Sequence confirmation and alignment of qRT-PCR primers products with the full length of corresponding genes. 273

Figure A4.3. Expression of VRCGs at 40 and 192 hours post inoculation (hpi) using comparative CT (ΔΔC<T>) method. 274

Figure A4.4. Amplification efficiency for VRCGs at different primer concentrations. ... 274

Figure A4.5. Standard curves for VRCGs with low concentration of cDNA. 275

Figure A4.6. Optimising of standard curve for VRCGs at lower cDNA concentration. ... 275

Figure A4.7. Standard curve for VRCGs with high concentration of cDNA. 276

Figure A4.8. Optimising standard curve for VRCGs at higher cDNA concentration. ... 276

Figure A4.9. The expression of VRCGs (*PttSP1*, *PttXyn11A*, *PttCHFP1*, *PttGPI-CFEM* and *PttGAPDH*) in (pg) at 40, 64, 120 and 144 hours post inoculation (hpi) in six isolates of *Ptt* in three experiments. 277
List of Tables

Table 2.1. Origin and isolation year of *Pyrenophora teres f. teres* isolates used in this study and the host barley cultivar from which they were isolated. ... 23
Table 2.2. Media and their components used for toxin production optimisation. .. 29
Table 3.1. Protein identification of the active fractions from more (32/98) and less (08/08f) virulent isolates.. 74
Table 3.2. Protein concentrations in fractions and sub-fractions of culture filtrates from the 32/98 isolate... 75
Table 3.3. Protein identification of the active fractions and sub-fractions from the culture filtrate of a more virulent isolate (32/98). 82
Table 3.4. Protein identification of whole fraction 4 and 4/4 from filtrates of a more virulent isolate (32/98). ... 84
Table 3.5. Protein identification of differentially expressed two-dimensional gel electrophoresis (2DGE) protein spots (Figure 3.7). 90
Table 3.6. Protein identification of ICWFs from barley leaves infected with *Ptt* isolate 32/98 after 9 dpi. ... 93
Table 3.7. Protein identification of 2DGE comparison of ICWFs from infected and uninfected leaves after 9 dpi (Figure 3.10).............................. 98
Table 3.8. The most dominant proteins as identified in the biologically active protein profiles and their accession number, source, family and proposed function. ... 104
Table 4.1. List of primers used in full length isolation and semi-quantitative RT-PCR to amplify the cDNA of the VRCGs *PttXyn11A, PttCHFP1, PttSPI, PttGPI-CFEM* and *PttGAPDH*. 112
Table 4.2. Selected proteins of GH11 family and their accession numbers and organisms which were used in multiple alignments with *PttXyn11A* (JX900133). ... 115
Table 4.3. Cysteine hydrolase families used in the alignments and phylogenetic analysis. .. 116

Table 6.1. List of primers used in RT-qPCR to amplify the partial length of cDNA of VRCGs PttSP1, PttXyn11A, PttCHFP1, PttGPI-CFEM and PttGAPDH. .. 198

Table A1.1. A numerical scale to assess development of P. teres during its growth upon barley using light microscopy (Lightfoot and Able, 2010). .. 258
Abstract

Pyrenophora teres f. *teres* (*Ptt*) causes net form net blotch disease (NFNB), an important disease of barley in Australia and worldwide. This fungus uses proteinaceous toxins to cause necrosis and different isolates of *Ptt* differ in their ability to cause symptoms on different cultivars of barley. However, little is known about the roles of pathogen growth and individual toxins in symptom development. This project therefore aimed to determine whether there is a relationship between toxin production, fungal growth and virulence in NFNB.

Conidial germination, extent of fungal growth and culture filtrate toxicity were compared for six South Australian *Ptt* isolates with different virulence on the barley cultivar ‘Sloop’. In addition, *Ptt* toxin production was optimised before identification and selection of virulence-related candidate proteins (VRCPs) for further characterisation. The biological activity of recombinant VRCPs on susceptible and resistant cultivars and VRCPs gene expression during the interaction of Sloop with each isolate were also compared.

In general, the more virulent isolates had higher rates of conidial germination (both *in vitro* and *in planta*) and fungal development *in planta*, represented by longer hyphae and more appressoria, compared with less virulent isolates. Similarly, *PttGAPDH* and its transcript were more abundant during the interaction of barley with more virulent isolates.
A proteomics approach was used to identify proteins unique to the more virulent isolate, proteins from bioactive fractions on either susceptible (Sloop) or resistant cultivars (CI9214 and Beecher) and proteins from the intercellular washing fluids (ICWFs) of infected barley. These analyses revealed that *Ptt* produced proteins between 37 and 150 kDa that have biological activity.

Liquid Chromatography-Electrospray Ionisation Ion-Trap Mass Spectrometry (LC-eSI-IT MS), of individual biologically active proteins was used to identify peptides which matched to 17 proteins that belong to three groups of fungal proteins including virulence-related proteins; fungal growth and development proteins; and those with unknown function (hypothetical proteins). However, *Ptt* toxins were not detected in the ICWF protein profiles suggesting that *Ptt* toxins were either in trace amounts or might be internalised into the cell.

The four VRCPs selected, were identified as hypothetical proteins with unknown function in the *Ptt* database. Further bioinformatic analysis characterised these VRCPs as an isochorismatase (*PttCHFP1*), an endo-1, 4-β-xylanase A (*PttXyn11A*), a glycosphatidylinositol (GPI)-anchored common in fungal extracellular membrane (CFEM) domain-containing protein (*PttGPI-CFEM*) and an unknown proteinaceous secreted (but conserved) hypothetical protein (*PttSP1*). These VRCPs were heterologously expressed and characterised using gene expression studies.
PttXyn11A had strong homology with the well characterised endoxylanases, TrXyn11A from *Trichoderma reesei* and BcXyn11A from *Botrytis cinerea*, known to contribute to virulence. A necrosis-inducing region on the surface of the enzyme was also identified in PttXyn11A, suggesting a potential role in necrosis induction. The culture filtrates for more virulent isolates had significantly greater xylanase activity than those from less virulent isolates. Even though heterologously expressed *PttXyn11A* was toxic to *Escherichia coli*, xylanase activity was detectable at very low levels and was not enough to cause symptoms in the bioassay. In addition, semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and RT-quantitative PCR (RT-qPCR) analysis demonstrated that *PttXyn11A* was expressed more abundantly by the more virulent isolates compared with the other isolates in culture and during the plant-pathogen interaction. Together, these results suggest that *PttXyn11A* plays a role in virulence, either through its ability to degrade the plant cell wall to assist fungal growth or through its necrosis-inducing ability.

PttCHFP1 showed homology to an isochorismatase, an enzyme that has been proposed to have a role in plant defence via inhibition of salicylic acid production. PttSP1 showed homology to a membrane lipoprotein proposed to have a role in fungal development. Bioassay of recombinant *PttCHFP1* and *PttSP1* induced chlorosis symptoms in the susceptible barley cultivar (Sloop). The cysteine-rich CFEM domain identified in PttGPI-CFEM has been
suggested to have an important role in hyphal attachment and fungal networking. However, *E. coli* was not able to express this gene probably due to its attachment to the plasma membrane and/or cell wall. Analysis of the gene expression profiles for *PttCHFP1*, *PttGPI-CFEM* and *PttSP1* showed no significant differences between isolates *in vitro* and *in planta* suggesting that all isolates regulated the expression of these genes to the essential level possibly required for pathogenesis.

This is the first study to identify the relationship between fungal growth and proteinaceous toxin production, characterise individual proteinaceous toxins in the mixture of *Ptt* culture filtrate and investigate the expression profiles of genes encoding VRCPs during the *Ptt*-barley interaction. This study therefore provides a better understanding of the *Ptt*-barley interaction by identifying the potential toxins which might lead to identify the toxin targets and ultimately support the breeding of resistant cultivars of barley.
Declaration

I declare that the work presented in this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Ismail Ahmed Ismail, and to the best of my knowledge and belief, this thesis does not contain any material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of the published works contained within this thesis (as listed in the Appendix 5) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Ismail Ahmed Ismail

/ /
Acknowledgment

I would like to thank the Ministry of Higher Education and Scientific Research of Iraq for providing me this PhD scholarship. My sincere thanks to my principal supervisor Associate Professor Amanda J. Able for the support, help, encouragement, patience, guidance and for believing in me. I am also grateful for my co-supervisor Dr. Dale Godfrey for her assistance, advices and support in my research.

Thanks to the Grains Research and Development Corporation for their support of this research and for providing a travel scholarship to attend the 4th Asian Conference on Plant Pathology and the 18th Biennial Australasian Plant Pathology Conference in Darwin. My thanks to Dr. Hugh Wallwork for providing *Pyrenophora teres* f. *teres* isolates and Mark Butt for his assistance in plant and fungal preparations.

I also would like to thank Dr William Bovill and Dr Kelvin Khoo for their help, Darren Wong, Wan Mohd Aizat Wan Kamaruddin, Duc Thong Le and all Able Lab members for their warm and beneficial discussion.

I am appreciative for the Iraqi Cultural Affair in Australia, the International Student Centre in Adelaide, especially Ms Jane Copeland, and the School of Agriculture, Food and Wine for their continuous support.

Finally, my special thanks to my beautiful wife Entesar for her incredible patience and love, my lovely three kids, Durar, Yousif and Ibrahim. Many thanks to my mother for her prayer, asking my lord to recuperate her, my brothers and sister for their sacrifices and support.
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full term</th>
</tr>
</thead>
<tbody>
<tr>
<td>×</td>
<td>Times</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>2DGE</td>
<td>Two-Dimensional Gel Electrophoresis</td>
</tr>
<tr>
<td>3´</td>
<td>Three prime</td>
</tr>
<tr>
<td>5´</td>
<td>Five prime</td>
</tr>
<tr>
<td>ASP</td>
<td>Ammonium sulfate precipitation</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BLM</td>
<td>Barley leaf medium</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>cv</td>
<td>Cultivar</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>dpi</td>
<td>Day post inoculation</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EST</td>
<td>Expressed sequence tag</td>
</tr>
</tbody>
</table>
FCM Fries culture medium
FCM-noTE FCM with no trace elements
\(g\) g-force
\(g\) Gram
\(h\) Hour
\(hpi\) Hour post inoculation
HNST Host non-selective toxin
HST Host specific toxin
ICWF Intercellular washing fluid
IEF Isoelectric focusing
IPTG Isopropylthiogalactosidase
\(Kb\) Kilobase
\(kDa\) Kilodaltons
\(L\) Liter
LB Luria Bertani
LC-eSI-ITMS Liquid Chromatography-Electrospray Ionisation Ion-Trap Mass Spectrometry
LMWC Low molecular weight compound
LSD Least significant difference
\(M\) Molar
\(mA\) Milliampere
MES 2-(N-morpholino) ethanesulfonic acid
\(mg\) Milligram

XXIII
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>ML/min</td>
<td>Millilitre per minute</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectophotometery</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nikle-nitrilotriacetic acid</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometers</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>ORF</td>
<td>Open reading frame</td>
</tr>
<tr>
<td>P</td>
<td>Probability</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed cell death</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato dextrose agar</td>
</tr>
<tr>
<td>PFCM</td>
<td>Phosphate buffered FCM</td>
</tr>
<tr>
<td>pH</td>
<td>Potential of Hydrogen</td>
</tr>
<tr>
<td>pI</td>
<td>Isoelectric point</td>
</tr>
<tr>
<td>PR-Protein</td>
<td>Pathogenesis related-protein</td>
</tr>
</tbody>
</table>

XXIV
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>Photosystem</td>
</tr>
<tr>
<td>QTL</td>
<td>Quantitative trait loci</td>
</tr>
<tr>
<td>r</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>RQ</td>
<td>Relative quantification</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcriptase PCR</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SDW</td>
<td>Sterile distilled water</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>SNW</td>
<td>Sterile nanopure water</td>
</tr>
<tr>
<td>TAE buffer</td>
<td>Tris-acetate EDTA buffer</td>
</tr>
<tr>
<td>TCA</td>
<td>Trichloroacetic acid</td>
</tr>
<tr>
<td>TE buffer</td>
<td>Tris EDTA buffer</td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl) amino methane</td>
</tr>
<tr>
<td>U</td>
<td>Unit</td>
</tr>
<tr>
<td>UFP</td>
<td>Ultrafiltration purification</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume for volume</td>
</tr>
<tr>
<td>Vhr</td>
<td>Volt hours</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight for volume</td>
</tr>
<tr>
<td>μg</td>
<td>Micrograms</td>
</tr>
<tr>
<td>μg/mL</td>
<td>Micrograms per millilitre</td>
</tr>
<tr>
<td>μL</td>
<td>Micro litre</td>
</tr>
<tr>
<td>μM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
</tbody>
</table>