ENGINEERING SECURITY METHODOLOGIES FOR DISTRIBUTED SYSTEMS

by

Anton Victor Uzunov

May 2014

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL OF COMPUTER SCIENCE
UNIVERSITY OF ADELAIDE
This page is intentionally left blank.
Table of Contents

Abstract .. ix
Declaration .. x
Acknowledgements .. xi

Introduction

Background .. 1
Problem Statement and Research Objectives .. 2
Solution and Brief Outline of Contributions ... 3
Thesis Structure .. 4

Chapter 1: Engineering security into distributed systems: A survey of methodologies 6

1 Introduction .. 6
 1.1 Scope and Organization ... 8
2 Taxonomy of Security Methodologies .. 10
 2.1 Background: Key Ingredients of a Security Methodology ... 10
 2.2 Classification Dimensions ... 11
 2.2.1 Methodology Paradigm ... 11
 2.2.2 Specificity ... 12
 2.2.3 Modeling Language and Notation .. 12
 2.2.4 Range of Security Properties .. 13
 2.2.5 Use of Formal Methods and Verification .. 13
 2.2.6 SDLC Stages Supported ... 13
 2.2.7 Ease of Use .. 13
 2.2.8 Tool Support ... 13
3 Survey of Model-Based Security Methodologies ... 14
 3.1 (General) Model-Based Methodologies ... 14
 3.1.1 Jürjens (MBSE / UMLsec) ... 14
 3.2 Model-Driven Methodologies ... 15
 3.2.1 Model Driven Architecture / Security (MDA/MDS) Methodologies 16
 3.2.2 Aspect-Oriented Software Development (AOSD) Methodologies 22
 3.2.3 Other Model-Driven Methodologies .. 26
 3.3 Architecture-Driven Methodologies ... 26
 3.3.1 Ren / Taylor ... 27
 3.3.2 Ali / El-Kassas / Mahmoud .. 28
 3.3.3 Other Architecture-Driven Approaches ... 28
 3.4 Pattern-Driven Methodologies ... 29
 3.4.1 Methodologies Using Security Components and/or Architectures as Patterns 30
 3.4.2 Methodologies Using Security Patterns ... 35
 3.5 Agent-Driven Methodologies ... 40
 3.5.1 Mouratidis / Giorgini (Secure Tropos) .. 40
4 Evaluation ... 42
 4.1 Criteria ... 43
 4.2 Analysis Results .. 44
 4.3 Discussion ... 45
5 Conclusion and Future Directions ... 46
References ... 49
Epilogue .. 60
<table>
<thead>
<tr>
<th>Chapter 2: Securing distributed systems using patterns: A survey</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prologue</td>
<td>61</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>63</td>
</tr>
<tr>
<td>2 Background, Related Work and Organization of Patterns</td>
<td>64</td>
</tr>
<tr>
<td>2.1 Brief History of Software and Security Patterns</td>
<td>65</td>
</tr>
<tr>
<td>2.2 Related Work on Security Patterns</td>
<td>65</td>
</tr>
<tr>
<td>2.3 Distributed Systems and their Security Concerns</td>
<td>66</td>
</tr>
<tr>
<td>2.4 Scope and Organization of Patterns in the Survey</td>
<td>67</td>
</tr>
<tr>
<td>3 Survey of Security Patterns for Distributed Systems</td>
<td>67</td>
</tr>
<tr>
<td>3.1 Security Contexts</td>
<td>68</td>
</tr>
<tr>
<td>3.2 Identity Management</td>
<td>68</td>
</tr>
<tr>
<td>3.3 Authentication</td>
<td>68</td>
</tr>
<tr>
<td>3.4 Authorization and Access Control</td>
<td>69</td>
</tr>
<tr>
<td>3.5 Secure Communications</td>
<td>70</td>
</tr>
<tr>
<td>3.6 Filtering</td>
<td>71</td>
</tr>
<tr>
<td>3.7 Authentication/Authorization Frameworks and Languages</td>
<td>72</td>
</tr>
<tr>
<td>3.8 Distribution Control</td>
<td>72</td>
</tr>
<tr>
<td>3.9 Processing</td>
<td>73</td>
</tr>
<tr>
<td>3.10 Monitoring</td>
<td>74</td>
</tr>
<tr>
<td>4 Evaluation of Surveyed Patterns</td>
<td>74</td>
</tr>
<tr>
<td>4.1 Classification</td>
<td>74</td>
</tr>
<tr>
<td>4.2 Analysis and Discussion</td>
<td>77</td>
</tr>
<tr>
<td>4.2.1 Quality</td>
<td>77</td>
</tr>
<tr>
<td>4.2.2 Concerns covered</td>
<td>77</td>
</tr>
<tr>
<td>4.2.3 Levels of abstraction</td>
<td>77</td>
</tr>
<tr>
<td>4.2.4 Summary</td>
<td>77</td>
</tr>
<tr>
<td>5 Methodologies for Applying Security Patterns</td>
<td>78</td>
</tr>
<tr>
<td>5.1 Introduction and Classification</td>
<td>78</td>
</tr>
<tr>
<td>5.2 Survey</td>
<td>78</td>
</tr>
<tr>
<td>5.2.1 Mature and/or larger-scale Methodologies</td>
<td>79</td>
</tr>
<tr>
<td>5.2.2 Young and/or smaller-scale Methodologies</td>
<td>80</td>
</tr>
<tr>
<td>5.3 Evaluation of Methodologies and Discussion</td>
<td>81</td>
</tr>
<tr>
<td>6 Conclusion and Future Directions</td>
<td>83</td>
</tr>
<tr>
<td>References</td>
<td>84</td>
</tr>
<tr>
<td>Epilogue</td>
<td>88</td>
</tr>
</tbody>
</table>

Chapter 3: A comprehensive pattern-oriented approach to engineering security methodologies	89
Prologue	89
1 Introduction	91
2 Background	92
2.1 Security methodologies	92
2.2 Flexible security methodologies	93
2.3 Towards engineering security methodologies	93
3 Engineering a security methodology: security process aspect	94
3.1 SPPF: a framework of security process patterns and pattern modifiers	94
3.2 Structure and presentation of SPPF	96
3.3 First SPPF level: generic life-cycle modifiers	96
3.3.1 Requirements Analysis (reqAn) Phase pattern	96
3.3.2 Design (des) Phase pattern	97
3.3.3 Implementation (impl) Phase pattern	97
3.3.4 Deployment (deploy) Phase pattern	97
3.4 Second SPPF level: generic security macro-process patterns ... 97
3.4.1 Overview .. 97
3.4.2 Security Requirements Determination (SecReq) Phase pattern .. 98
3.4.3 Countermeasure Introduction (CounterIntro) Phase pattern ... 100
3.4.4 Security Implementation (SecImpl) Phase pattern .. 103
3.4.5 Security Administration (SecAdmin) Phase pattern ... 104
3.4.6 Refine task modifier [refine] ... 105
3.5 Using SPPF to construct security process models ... 105
3.6 Engineering strategies for constructing security process models ... 105
3.6.1 “From-scratch” strategy: process pattern assembly ... 105
3.6.2 Generalizing existing methodology elements (stage) ... 112
3.6.3 Selecting existing methodology elements for tailoring (stage) .. 112
3.6.4 Verifying methodology model (stage) .. 112
3.6.5 Verifying methodology model (stage) .. 112
3.7 Methodology Design/Modeling phase .. 111
3.7.1 Selecting and organizing SPPF patterns (stage) ... 111
3.7.2 Instantiating the conceptual framework meta-model (stage) .. 112
3.7.3 Selecting and organizing SPPF patterns (stage) ... 111
3.7.4 Instantiating the conceptual framework meta-model (stage) .. 112
3.7.5 Generalizing existing methodology elements (stage) ... 112
3.8 Methodology Construction phase .. 113
3.8.1 Requirements elicitation and analysis (stage) .. 111
3.8.2 Instantiating SPPF patterns (stage) .. 113
3.8.3 Realizing conceptual framework model elements (stage) ... 113
3.8.4 Documenting the methodology (stage) ... 113
3.8.5 Verifying methodology model (stage) .. 113
3.8.6 Verification (stage) ... 113
3.9 Methodology Deployment phase ... 114
3.9.1 Requirements elicitation and analysis (stage) .. 111
3.9.2 Instantiating SPPF patterns (stage) .. 113
3.9.3 Realizing conceptual framework model elements (stage) ... 113
3.9.4 Documenting the methodology (stage) ... 113
3.9.5 Verifying methodology model (stage) .. 113
3.9.6 Verification (stage) ... 113
4 Engineering a security methodology: conceptual security framework aspect 106
4.1 Conceptual security framework meta-model .. 106
4.2 Engineering strategies for constructing conceptual framework models 107
4.2.1 Meta-model instantiation .. 107
5 Notation for representing methodology models .. 107
6 S-SMEP: a meta-methodology for engineering flexible security methodologies 110
6.1 Constructing S-SMEP ... 110
6.2 Methodology Initiation phase ... 111
6.2.1 Requirements elicitation and analysis (stage) .. 111
6.3 Methodology Design/Modeling phase .. 111
6.3.1 Selecting and organizing SPPF patterns (stage) ... 111
6.3.2 Instantiating the conceptual framework meta-model (stage) .. 112
6.3.3 Selecting existing methodology elements for tailoring (stage) .. 112
6.3.4 Verifying methodology model (stage) .. 112
6.3.5 Generalizing existing methodology elements (stage) ... 112
6.4 Methodology Construction phase .. 113
6.4.1 Instantiating SPPF patterns (stage) .. 113
6.4.2 Realizing conceptual framework model elements (stage) ... 113
6.4.3 Documenting the methodology (stage) ... 113
6.4.4 Verification (stage) ... 113
6.5 Methodology Deployment phase ... 114
6.5.1 Requirements elicitation and analysis (stage) .. 111
6.5.2 Instantiating SPPF patterns (stage) .. 113
6.5.3 Realizing conceptual framework model elements (stage) ... 113
6.5.4 Documenting the methodology (stage) ... 113
6.5.5 Verifying methodology model (stage) .. 113
6.5.6 Verification (stage) ... 113
7 Applying S-SMEP to engineer a security methodology .. 114
7.1 Methodology Initiation phase ... 114
7.1.1 Requirements Elicitation and Analysis .. 114
7.2 Methodology Design/Modeling phase .. 115
7.2.1 Selecting and organizing SPPF patterns (stage) ... 111
7.2.2 Instantiating the conceptual framework meta-model (stage) .. 115
7.2.3 Selecting existing methodology elements for tailoring (stage) .. 117
7.2.4 Verifying methodology model (stage) .. 118
7.3 Methodology Construction phase .. 118
7.3.1 Instantiating SPPF patterns (stage) .. 118
7.3.2 Realizing conceptual framework model elements (stage) ... 118
7.3.3 Discussion .. 119
7.4 Feature analysis/screening of the approach ... 119
8 Related work ... 121
8.1 Security process patterns and method engineering ... 121
8.2 Engineering development methodologies using process patterns 122
8.3 Mining process patterns ... 122
8.4 Pattern-based process modeling notations ... 123
8.5 Relation to traditional SME approaches ... 123
8.5.1 Assembly-based SME in the context of security .. 123
Chapter 4: Framework for decomposing distributed software architectures

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prologue</td>
<td>131</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>133</td>
</tr>
<tr>
<td>II. Conceptual framework for architectural decomposition</td>
<td>134</td>
</tr>
<tr>
<td>A. High-level modelling abstractions (first framework level)</td>
<td>134</td>
</tr>
<tr>
<td>B. Functionality decomposition layers (second framework level)</td>
<td>135</td>
</tr>
<tr>
<td>C. Technical realisation abstractions (third framework level)</td>
<td>136</td>
</tr>
<tr>
<td>III Process for using the framework</td>
<td>137</td>
</tr>
<tr>
<td>IV. Example</td>
<td>138</td>
</tr>
<tr>
<td>A. Incorporation of early security requirements (example)</td>
<td>140</td>
</tr>
<tr>
<td>B. Determination of design-level security requirements (example)</td>
<td>140</td>
</tr>
<tr>
<td>V. Related Work</td>
<td>140</td>
</tr>
<tr>
<td>VI. Conclusion and Future work</td>
<td>141</td>
</tr>
<tr>
<td>References</td>
<td>142</td>
</tr>
<tr>
<td>Epilogue</td>
<td>143</td>
</tr>
</tbody>
</table>

Chapter 5: Pattern-based threat library and taxonomy for networked and distributed systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prologue</td>
<td>144</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>146</td>
</tr>
<tr>
<td>2 Background and definitions</td>
<td>147</td>
</tr>
<tr>
<td>2.1 Threat patterns and pattern-based threat taxonomies</td>
<td>147</td>
</tr>
<tr>
<td>2.2 Architectural contexts for the threat patterns</td>
<td>149</td>
</tr>
<tr>
<td>2.2.1 Functionality decomposition layers</td>
<td>150</td>
</tr>
<tr>
<td>2.2.2 Technical realization abstractions</td>
<td>150</td>
</tr>
<tr>
<td>3 Base threat taxonomy for distributed systems</td>
<td>151</td>
</tr>
<tr>
<td>3.1 First level (security) threat patterns</td>
<td>152</td>
</tr>
<tr>
<td>3.1.1 Identity attacks</td>
<td>152</td>
</tr>
<tr>
<td>3.1.2 Network communications attacks</td>
<td>153</td>
</tr>
<tr>
<td>3.1.3 Network protocol attacks</td>
<td>153</td>
</tr>
<tr>
<td>3.1.4 Passing illegal data</td>
<td>154</td>
</tr>
<tr>
<td>3.1.5 Stored data attacks</td>
<td>154</td>
</tr>
<tr>
<td>3.1.6 Remote information inference</td>
<td>154</td>
</tr>
<tr>
<td>3.1.7 Loss of accountability</td>
<td>155</td>
</tr>
<tr>
<td>3.1.8 Uncontrolled operations</td>
<td>155</td>
</tr>
<tr>
<td>3.2 Second level (meta-security) threat patterns</td>
<td>156</td>
</tr>
<tr>
<td>3.2.1 Cryptography attacks</td>
<td>156</td>
</tr>
<tr>
<td>3.2.2 Countermeasure design</td>
<td>157</td>
</tr>
<tr>
<td>3.2.3 Configuration / administration</td>
<td>157</td>
</tr>
<tr>
<td>3.3 Specializing threat patterns</td>
<td>157</td>
</tr>
</tbody>
</table>
Chapter 9: A comprehensive security methodology for distributed systems 274
 Prologue .. 274
 1 Introduction ... 276
 2 Background .. 277
 2.1 Security methodologies ... 277
 2.2 Construction and overview of ASE ... 277
 3 ASE: conceptual security framework aspect ... 279
 4 ASE: security process aspect .. 281
 4.1 Requirements analysis (ReqAn) ... 281
 4.2 Design (Des) ... 287
 4.2.1 Security Requirements Determination (SecReq) phase 281
 4.2.2 Countermeasure Introduction (CounterIntro) phase 287
 4.3 Implementation (Impl) ... 289
 4.3.1 Security Implementation (SecImpl) phase ... 289
 5 Applying ASE in practice .. 290

 4 Quality framework and assessment/improvement process 236
 4.1 Methodology quality factors (first framework level) .. 236
 4.2 Abstract criteria and metrics (second framework level, first sub-level) 236
 4.3 Concrete criteria and metrics (second framework level, second sub-level) 239
 4.3.1 Correctness of construction (R) .. 239
 4.3.2 Completeness (C) .. 241
 4.3.3 Comprehensiveness (V) .. 241
 4.3.4 Usability (U) ... 243
 4.3.5 Assurance (S) and Adaptability (A) ... 244
 4.3.6 Base criteria profile relationships ... 245
 4.4 Quality assessment and improvement process (QAIP) 246
 5 Assessing methodology quality ... 248
 5.1 Project situation: a very brief description ... 248
 5.2 Step 1: Creating situational criteria profiles for general and peer-to-peer distributed systems ... 248
 5.3 Step 2: Constructing methodology models .. 250
 5.3.1 The methodology of Ali et al. .. 251
 5.3.2 SERENITY .. 252
 5.3.3 The methodology of Uzunov et al. .. 254
 5.4 Steps 3 and 4: Measuring criteria and assessment results 257
 5.4.1 Comparison and analysis of assessment results 259
 5.4.2 Discussion ... 259
 6 Improving methodology quality .. 260
 6.1 Generic conceptual security artefacts ... 260
 6.2 Abstract process fragments .. 260
 6.3 The methodology of Uzunov et al. ... 261
 6.3.1 QAIP Step 5: Determining areas for improvement 261
 6.3.2 QAIP Step 6: Re-engineering the methodology – requirements 261
 6.3.3 QAIP Step 7: Re-engineering the methodology – design and construction 262
 6.3.4 QAIP Step 8: Re-assessment .. 265
 6.4 Applying QAIP to SERENITY and the methodology of Ali et al. 265
 6.5 Discussion ... 265
 7 Related work .. 268
 8 Conclusion and future work .. 269
 References ... 270
 Epilogue .. 273
5.1 Requirements analysis (ReqAn) .. 290
5.1.1 Outline of system functionality .. 290
5.1.2 ASE's Security Requirements Determination (SecReq at Req) and Countermeasure Introduction (CounterIntro at Analysis) phases 291
5.2 Design (Des) ... 293
5.2.1 Outline of SHARED's design ... 293
5.2.2 ASE Security Requirements Determination (SecReq at Des) phase 294
5.2.3 ASE Countermeasure Introduction (CounterIntro at Des) phase 294
5.3 Additional details .. 294
5.3.1 Alternative design considerations .. 294
5.3.2 Security Implementation (SecImpl) phase ... 294
6 Conclusion and future work ... 294
6.1 Flexibility and range of solutions .. 294
6.2 Extending and assessing the effectiveness of ASE ... 294
6.3 Practical details: tool support .. 294
6.4 Development methodology integration ... 294
6.5 Re-engineering ASE and transferring features to other methodologies 294
References ... 294
Epilogue .. 305

Conclusion and Future Directions ... 306
Achievement of Research Objectives and Contributions ... 306
Future Research Directions ... 307

Bibliography (for Introduction and Conclusion and Future Directions) 309
Abstract

Over the last decade, researchers and practitioners have increasingly come to acknowledge that the introduction of security into software systems – especially complex, distributed systems – should proceed by means of a structured, systematic approach, combining principles from both software and security engineering. Such systematic approaches, particularly those implying some sort of process aligned with the development life-cycle, are termed security methodologies. While there are numerous methodologies in the literature, each with its own peculiar advantages and disadvantages, making it more or less suitable for a given set of project situations, none can lay claim to being universal, i.e. able to take into account all system-specific attributes, all technologies, all skill levels, and – in general – to be applicable to all project situations. In other words, the literature does not currently present developers with an “ideal” methodology (in an absolute sense); and, indeed, such a requirement would be infeasible, since “ideal” must necessarily be interpreted with respect to a given situation – encompassing system types, technologies, skillsets and whatever other qualities are seen as desirable. The problem facing the area is thus not so much the construction of “bigger and better” methodologies with novel or interesting features – i.e. (unattainably) ideal methodologies in an absolute sense – but the construction of (attainably) ideal methodologies for particular project situations.

This thesis proposes a comprehensive solution to the latter problem by developing a conceptual “toolkit” for engineering security methodologies, with an emphasis on security methodologies for distributed systems. The “toolkit” consists of a number of inter-related parts: a framework of process patterns, a domain-specific meta-model and a unifying meta-methodology for constructing and tailoring security methodologies (for any system type); a set of generic conceptual security artefacts – usable across different methodologies – for addressing various networked and distributed systems security features and for supporting threat modeling in a networked/distributed systems context; and a framework for assessing and improving security methodology quality, which, when combined with the meta-methodology, helps to ensure that all construction/tailoring efforts are sensible – i.e. of measurably good quality. Besides being part of an overall approach, each of these inter-related parts makes its own set of unique, self-contained contributions to the area of secure software engineering. Some of the parts are complete in themselves, while others require elaboration or specialization for different situations. In all cases the frameworks, artefacts and other “tools in the toolkit” can be customized and extended in various ways, providing developers, architects, methodology engineers and other team members with a high degree of freedom and flexibility. The latter point in particular, as well as the whole approach, is demonstrated incrementally throughout the thesis via the engineering of a specific pattern-based security methodology for distributed systems – a case study which in itself is another, final contribution. Of course, the case study methodology is also bigger and better (with respect to its predecessor) and contains novel features, but is only ideal with respect to its project situation. Through the presentation of the parts of the “toolkit” and the illustration of its use, the thesis accomplishes its task of both proposing and demonstrating the value of a comprehensive, holistic approach to engineering security methodologies, thereby offering a solution to the initial problem.
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Anton Victor Uzunov
May 2014
Acknowledgements

First of all I would like to thank my two supervisors: Dr. Katrina Falkner and Prof. Eduardo B. Fernandez. I felt very fortunate throughout my degree to have two pairs of experienced eyes glance at my work and provide feedback from two different, complementary angles. I am particularly grateful to Katrina for promptly reading and always providing valuable feedback on all my manuscripts, even under excruciatingly tight deadlines; for encouraging me and supporting my work; for all the friendly discussions; for inspiring me towards excellence; and for allowing me to collaborate freely and trusting me to develop my ideas in the way I saw fit. I am particularly grateful to Eduardo for all his advice and his deeply insightful comments and suggestions; for always being “on-line”, even for late-evening Skype meetings spanning different continents, and being so generous with his time; for all the discussions on topics in software security and beyond; and in the end for helping me to realize what I myself had done (!). When I first spoke to Eduardo about external co-supervision a number of years ago, I was struck by his friendly unpretentiousness; in good time, I realized I had the privilege of meeting not only an immensely experienced and knowledgeable supervisor, but also a man with broad interests and a genuine friend. Collaborating with both my supervisors was always marked with mutual respect and understanding; in fact, I often felt as though I was working with peers or colleagues – something that I appreciated very much.

I would like to thank the University of Adelaide’s School of Computer Science administrative staff – Sharyn Liersch and Julie Mayo – for taking care of my conference travel arrangements; as well as the postgraduate coordinators – Dr. Michael Sheng and Dr. Frank Neumann – for their readiness to help with filling out all the Graduate Centre forms. I would particularly like to thank Michael for helping me to settle in the School of CS at the beginning and also for his friendly encouragement.

Thanks goes to the local IT-admin guru (and fellow PhD student) Yuval Yarom, not only for setting up my University machine (which was used rarely, but to good purpose), user accounts etc., but also for the comradeship. Shalom Yuval!

I would also like to thank my colleagues, supervisors and line managers back at work – especially Richard Appleby, Bradley Hopkins, Chris North and Dr. Olivier De Vel – for supporting me in my decision to undertake PhD studies. My thesis topic is all my own, but it really is in security; after gaining many skills and much experience and expertise, I believe that (besides coming out alive – not a bad feat) I managed to become a bigger and better security expert and, above all, a bigger and better security researcher.

Finally, I would like to thank my family – close and distant – for all their love and support, which, although mentioned here last, was indispensable. To my grandad I would say: no, I didn’t worry too much at the end, and, yes, I mostly “hurried slowly” – Eile mit Weile (as the Germans say).

Anton V. Uzunov
October 2013