Assessment of Critical Survival Mechanisms Exploited by BCR-ABL1+ Cells to Evade Tyrosine Kinase Inhibitor-Induced Death; Determination of Novel Therapeutic Targets in Chronic Myeloid Leukaemia

Lisa Schafranek

The Melissa White Laboratory
Cancer Theme, SAHMRI

&

The Faculty of Health Sciences
Department of Medicine and Centre for Personalised Cancer Medicine
The University of Adelaide, South Australia

A thesis submitted to the University of Adelaide in candidature for the degree of Doctor of Philosophy

February 2014
Declaration

I, Lisa Schafranek, certify that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis, when deposited in the University Library, to be available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
# Table of Contents

TABLE OF CONTENTS .................................................................................................................... I

TABLE OF FIGURES ........................................................................................................................ IX

PUBLICATIONS ................................................................................................................................. XIII

SCHOLARSHIPS AND AWARDS ...................................................................................................... XVI

ABBREVIATIONS ............................................................................................................................. XVIII

ACKNOWLEDGMENTS ....................................................................................................................... XXVI

ABSTRACT ......................................................................................................................................... XXIX

CHAPTER 1. ....................................................................................................................................... 1

INTRODUCTION .................................................................................................................................

1.1 **HAEMATOPOIESIS** .................................................................................................................. 2

1.2 **CHRONIC MYELOID LEUKAEMIA** ..................................................................................... 3

1.2.1 **History** ............................................................................................................................... 3

1.2.2 **Clinical Features** .............................................................................................................. 5

1.2.3 **Pathogenesis and Stages of Disease** ................................................................................ 8

1.3 **MOLECULAR BIOLOGY OF CML** ....................................................................................... 10

1.3.1 **Philadelphia Chromosome Translocation, BCR-ABL fusion gene and transcripts** ........ 10

1.3.2 **BCR and c-Abl Structure and Function** ......................................................................... 10

1.3.3 **Bcr-Abl Structure and Function** ..................................................................................... 12

1.3.4 **Bcr-Abl Signalling Pathways** ........................................................................................... 15

1.4 **TREATMENT OF CML** ......................................................................................................... 18

1.4.1 **Historical Treatments** ....................................................................................................... 18

1.4.2 **Imatinib** ............................................................................................................................ 19

1.4.3 **Second Generation Tyrosine Kinase Inhibitors** ................................................................ 21

1.5 **RESISTANCE TO TYROSINE KINASE INHIBITION** .......................................................... 22
1.5.1 Dynamics of TKI inhibition of Bcr-Abl kinase and cell death ........................................ 22
1.5.2 Dependence of CML cells on BCR-ABL ........................................................................ 25
1.5.3 Overexpression and targeting of STATS ........................................................................ 27
1.5.4 Persistence of leukaemic stem cells following TKI therapy ........................................... 28
1.5.5 Haematopoietic Cytokines and their Contribution to LSC Persistence ............................ 30
1.5.6 Autophagy ...................................................................................................................... 33
1.6 SUMMARY AND PROJECT AIMS ....................................................................................... 36
   1.6.1 Summary ..................................................................................................................... 36
   1.6.2 Project Aims................................................................................................................ 36

CHAPTER 2 .......................................................................................................................... 38

MATERIALS AND METHODS .............................................................................................. 38

2.1 COMMONLY USED REAGENTS ....................................................................................... 39
2.2 SOLUTIONS BUFFERS & MEDIA ........................................................................................ 43
   2.2.1 Cell culture media ........................................................................................................ 43
   2.2.2 Hanks Balanced Salt Solution (HBSS) ...................................................................... 43
   2.2.3 Cryoprotectant mixture .............................................................................................. 43
   2.2.4 Binding Buffer ............................................................................................................ 43
   2.2.5 1x Laemmli’s buffer (modified) .................................................................................. 43
   2.2.6 MACS buffer .............................................................................................................. 44
   2.2.7 2.5% Membrane blocking solution .......................................................................... 44
   2.2.8 MethoCult™ .............................................................................................................. 45
   2.2.9 Serum deprived media (SDM) ................................................................................... 45
   2.2.10 SDS-Polyacrylamide Gel ........................................................................................ 46
   2.2.11 1 x TBS .................................................................................................................... 47
   2.2.12 1xTBST .................................................................................................................... 47
   2.2.13 Thaw solution .......................................................................................................... 47
   2.2.14 White cell fluid ....................................................................................................... 47
2.3 INHIBITORS

2.3.1 Dasatinib

2.3.2 Imatinib (IM)

2.3.3 Nilotinib (NIL)

2.3.4 Chloroquine

2.3.5 Clarithromycine

2.3.6 3-Methyladenine

2.3.7 Pimozide

2.3.8 N’-(4-Oxo-4H-chromen-3-yl)methylene)nicotinohydrazide (STAT5 inhibitor)

2.3.9 Ruxolitinib

2.3.10 U0126 (MEK1/2 inhibitor)

2.4 GENERAL TECHNIQUES

2.4.1 Maintenance of cell lines

2.4.2 Cell count and viability assessment

2.4.3 Lymphoprep isolation of mononuclear cells (MNC)

2.4.4 Magnetic Cell Sorting (MACS)

2.4.5 Fluorescence Activated Cell Sorting (FACS)

2.4.6 Cryopreservation of cells

2.4.7 Thawing of Cells

2.4.8 Cell counts and viability

2.5 SPECIAL TECHNIQUES

2.5.1 Drug Treatments and Washing Protocols

2.5.2 Flow cytometry to assess the cell death

2.5.3 Flow cytometry to assess pSTAT5 (intracellular staining)

2.5.4 Western Blot following SDS-PAGE

2.5.5 Intracellular Uptake and Retention (IUR) assay

2.5.6 Analysis of cellular morphology
CHAPTER 3. .........................................................................................................................63

INDUCTION OF AUTOPHAGY BY TYROSINE KINASE INHIBITION IN BCR-ABL1+ CELLS PREVENTS CELL DEATH .........................................................................................................................63

3.1 INTRODUCTION ...........................................................................................................64

3.1.1 Approach ................................................................................................................67

3.1.2 Summary and Research Contribution .....................................................................67

3.1.3 Publications .............................................................................................................68

3.1.4 Conference Presentations .......................................................................................68

3.2 RESULTS .........................................................................................................................70

3.2.1 Inhibition of Bcr-Abl with TKIs induces markers of autophagy in KU812 cells .......70

3.2.2 TKI-induced loss of Bcl-2 and Bcl-xL expression in KU812 cells allows release of Beclin-1 70

3.2.3 Increase in vacuoles induced by autophagy inhibitor CQ in combination with dasatinib 73

3.2.4 Upregulation of autophagy-associated kinase LKB1 following dasatinib treatment ...... 73

3.2.5 Downregulation of PIM-3, MAP3K5 and CHEK2 kinases following dasatinib treatment.77

3.2.6 Blocking autophagy sensitises BCR-ABL1+ cells to TKI-induced cell death ...............82

3.2.7 Clarithromycin enhances dasatinib-mediated cell death .........................................82

3.2.8 Clarithromycin has no effect on pCrkL, and therefore Bcr-Abl, sensitivity to TKI treatment 83

3.2.9 Blocking late stage autophagy results in an increase in LC3-II and the accumulation of 89

vacuoles....................................................................................................................................89

3.2.10 Clarithromycin sensitises TKI-resistant BCR-ABL1+ cells to dasatinib treatment .......94

3.3 DISCUSSION ..................................................................................................................96

CHAPTER 4. .........................................................................................................................105
5.1.3 Publications ........................................................................................................................................... 147
5.1.4 Conference Presentations .......................................................................................................................... 147

5.2 RESULTS ....................................................................................................................................................... 149

5.2.1 Equilibration of cells in drug-free media prevents apoptosis induced by 30 min treatment with 100 nM dasatinib .................................................................................................................................................. 149
5.2.2 Reactivation of Bcr-Abl signalling and prevention of apoptosis following 30 min exposure to dasatinib and optimal washout .................................................................................................................................................. 151
5.2.3 Extension of the initial exposure to TKI for greater than 2 h induces cell death despite the complete removal of dasatinib .................................................................................................................................................. 151
5.2.4 Induction of apoptosis markers following 8 h 100 nM dasatinib exposure followed by optimal washout, despite reactivation of STAT5 and Erk ........................................................................................................ 159
5.2.5 Inhibition of JAK1/2, MEK/ERK or autophagy survival signally does not restore cell death following 30 min exposure to 100 nM dasatinib with OPT washout ........................................................................................................... 169
5.2.6 Inhibition of STAT5 activation with pimozide and STAT5i maintains cell death following 100 nM dasatinib with 30 min optimal washout in BCR-ABL1+ cell lines ......................................................................................................................... 173
5.2.7 Inhibition of STAT5 activation with pimozide and STAT5i maintains cell death and impair colony formation following 30 min 100 nM dasatinib OPT wash in CP-CML CD34+ patient cells ................................................................................................................................. 180
5.2.8 Following 30 min exposure to 100 nM dasatinib and pimozide, STAT5 remains inhibited despite complete removal of dasatinib .......................................................................................................................................... 185

5.3 DISCUSSION ..................................................................................................................................................... 195

CHAPTER 6. ............................................................................................................................................................ 201

TARGETING CYTOKINE PROTECTION FROM TKI-INDUCED CELL DEATH WITH THE PAN JAK INHIBITOR RUXOLITINIB ....................................................................................................................................................... 201

6.1 INTRODUCTION .................................................................................................................................................. 202

6.1.1 Approach ....................................................................................................................................................... 208

6.1.2 Summary and Research Contribution ........................................................................................................ 208
6.1.3 Publications ................................................................................................................................................. 209
6.1.4 Conference Presentations ............................................................................................................................ 209
6.2 RESULTS .......................................................................................................................................................... 210
   6.2.1 BCR-ABL1+ cell lines express IL-3 and GM-CSF receptors ................................................................. 210
   6.2.2 Cytokines stimulate STAT5 activation in the presence of dasatinib ..................................................... 210
   6.2.3 Newly diagnosed primary CP-CML CD34+ cells express IL-3 and GM-CSF receptors .... 213
   6.2.4 Cytokines stimulate STAT5 activation in CP-CML CD34+ cells ......................................................... 215
   6.2.5 Cytokines protect cells from cell death ..................................................................................................... 215
   6.2.6 Ruxolitinib inhibits JAK1 and JAK2 activation in BCR-ABL1+ cell lines .............................................. 219
   6.2.7 Ruxolitinib blocks cytokine-dependent activation of STAT5, but not Bcr-Abl-dependent activation of STAT5 in BCR-ABL1+ cell lines ................................................................................................. 223
   6.2.8 Ruxolitinib blocks cytokine-dependent activation of STAT5, but not Bcr-Abl-dependent activation of STAT5 in CP-CML CD34+ cells ........................................................................................................ 224
   6.2.9 Ruxolitinib has little effect as a sole agent or in combination with dasatinib in the absence of cytokines, but abrogates cytokine protection of dasatinib-induced cell death. ...... 224
   6.2.10 In primary CP-CML CD34+ cells ruxolitinib removes cytokines protection from dasatinib-induced cell death, having no additional effect to dasatinib treatment in the absence of cytokines ................................................................................................................................................................................................. 228
   6.2.11 Ruxolitinib impairs the ability of CP-CML CD34+ cells to form colonies in the presence of 5GF 231
6.3 DISCUSSION .................................................................................................................................................... 235

CHAPTER 7. ............................................................................................................................................................ 239

GENERAL DISCUSSION............................................................................................................................................ 239

7.1 MAJOR FINDINGS ............................................................................................................................................... 241

7.1.1 Deactivation of STAT5 is critical for the induction of cell death in situations of low level or transient Bcr-Abl kinase inhibition. ............................................................................................................. 241
7.1.2 STAT5 is a critical component of the time-dependent sensitivity of BCR-ABL1+ cells to TKI treatment ........................................................................................................................................ 243

7.1.3 TKI-induced autophagy occurs by inhibiting Bcr-Abl driven survival signalling and may involve energy sensing pathways ........................................................................................................... 246

7.1.4 Tyrosine kinase inhibition of Bcr-Abl induces autophagy by activating stress response pathways ............................................................................................................................................. 246

7.1.5 Combination treatment of TKI with clarithromycin targets autophagy in BCR-ABL1+ cells 248

7.1.6 JAK2 activation of STAT5 occurs in a cytokine-dependent, but Bcr-Abl-independent manner 249

7.2 Future Directions .................................................................................................................................................................................... 253

7.3 Conclusion ...................................................................................................................................................................................................... 254

CHAPTER 8. ................................................................................................................................................................................................. 255

APPENDICES ......................................................................................................................................................................................... 255

APPENDIX I .................................................................................................................................................................................................... 256

APPENDIX II .................................................................................................................................................................................................. 258

APPENDIX III .................................................................................................................................................................................................... 260

CHAPTER 9. ................................................................................................................................................................................................. 261

REFERENCES .......................................................................................................................................................................................... 261

PUBLICATIONS ARISING FROM THESIS ........................................................................................................................................... 277
Table of Figures

Figure 1.1: Haematopoiesis and the hierarchy of CML progenitors ................................................................. 4
Figure 1.2: History of CML .................................................................................................................................. 6
Figure 1.3: Progression of disease in CML ........................................................................................................ 9
Figure 1.4: Philadelphia chromosome translocation ........................................................................................ 11
Figure 1.5: Structure of BCR, Abl and Bcr-Abl proteins ................................................................................... 13
Figure 1.6: c-Abl conformation and control of activation .................................................................................. 14
Figure 1.7: Key Bcr-Abl Signalling Pathways ................................................................................................... 17
Figure 1.8: Historical Treatments .................................................................................................................... 20
Figure 1.9: Oncogenic Shock .......................................................................................................................... 26
Figure 1.10: Initiation of autophagy ................................................................................................................ 35
Figure 2.1: Schematic of the standard and optimal washout procedures ........................................................ 56
Figure 3.1: Model of the autophagic process ................................................................................................... 66
Figure 3.2: Markers of Autophagy ................................................................................................................... 71
Figure 3.3: Induction of Autophagy Following TKI treatment in KU812 cells ................................................. 72
Figure 3.4: Imatinib and nilotinib decrease Bcl-2, preventing sequestration of Beclin-1 ................................. 74
Figure 3.5: Dasatinib increases expression of Beclin-1 and decreases expression of Bcl-2 and Bcl-xL ........ 75
Figure 3.6: CQ in combination with dasatinib results in accumulation of vacuoles ...................................... 76
Figure 3.7: Kinase upregulation by dasatinib .................................................................................................. 78
Figure 3.8: LKB1 is increased following exposure to TKIs ............................................................................ 79
Figure 3.9: Downregulation of kinases by dasatinib ..................................................................................... 80
Figure 3.10: Effect of TKI treatment on Pim3, ASK1 and Chk2 ....................................................................... 81
Figure 3.11: CQ sensitizes BCR-ABL1+ cells to TKI-induced cell death ....................................................... 84
Figure 3.12: CAM induces minimal cell death as a sole agent ................................................................. 85
Figure 3.13: CAM and CQ but not 3-MA enhances dasatinib-induced cell death in BCR-ABL1+ cells ........ 86
Figure 3.14: Bcr-Abl sensitivity to dasatinib is not affected by CAM ............................................................ 87
Figure 3.15: Bcr-Abl sensitivity to imatinib is not affected by CAM ............................................................. 88
Figure 3.16: Addition of CAM or CQ to Dasatinib Increased LC3-II in K562 cells ..................................... 91
Figure 3.17: CAM, but not 3-MA, induces vacuole formation in K562 cells treated with dasatinib .......... 93
Figure 3.18: CAM enhances dasatinib-induced cell death in K562 Dox V299L cells .................................. 95
Figure 3.19: Inhibition of Bcr-Abl and dissociation of Beclin-1 ................................................................. 99
Figure 3.20: Proposed mechanism of TKI-induced autophagy in CML ................................................................. 102
Figure 3.21: Blockade of TKI-induced autophagy by CAM .................................................................................. 104
Figure 4.1: Balance of survival and apoptosis signals .......................................................................................... 110
Figure 4.2: KU812 viability following exposure to a range of dasatinib concentrations ......................................... 114
Figure 4.3: Bcr-Abl activity in KU812 cells as expressed as a percentage of pCrkL .................................................. 115
Figure 4.4: Viability and colony forming ability of primary CP-CML CD34+ cells following exposure to a range of dasatinib concentrations .................................................................................. 117
Figure 4.5: Bcr-Abl activity in primary PB-MNCs CP-CML cells as measured by pCrkL/CrkL (IC50) ....................... 118
Figure 4.6: Transient (30 min) treatment with dasatinib induces cell death ......................................................... 121
Figure 4.7: Bcr-Abl is active following transient high and continuous low dose dasatinib treatments ............ 122
Figure 4.8: Dasatinib-induced transient inhibition of Bcr-Abl results in continuous inhibition of STAT5 .......... 125
Figure 4.9: Dasatinib-induced transient inhibition of Bcr-Abl is coupled with inhibition of pro-survival proteins and induction of pro-apoptotic markers ................................................................. 127
Figure 4.10: Gradual inhibition of Bcr-Abl signalling by 1nM dasatinib ................................................................. 132
Figure 4.11: Continuous exposure to 1 nM dasatinib induces inhibition of pro-survival proteins and induction of pro-apoptotic markers ................................................................................................. 134
Figure 4.12: Dasatinib is undetectable following standard washout ................................................................. 135
Figure 4.13: Dasatinib IUR limit of detection is ≤50nM ......................................................................................... 136
Figure 5.1: Schematic of the standard and optimal washout procedures .............................................................. 145
Figure 5.2: Optimal washout procedure prevents cell death in BCR-ABL1+ cells ............................................. 150
Figure 5.3: Reactivation of STAT5 following optimal washout ........................................................................... 152
Figure 5.4: Optimal washout prevents loss of Bcl-2 family members and induction of apoptosis markers .... 153
Figure 5.5: Extension of dasatinib exposure prior to OPT washout induces cell death in BCR-ABL1+ cell lines ................................................................................................................................. 156
Figure 5.6: Extension of imatinib exposure prior to OPT washout induces cell death in BCR-ABL1+ cell lines ................................................................................................................................. 158
Figure 5.7: Extension of 100 nM dasatinib exposure prior to OPT washout induces cell death and impairs clonogenic potential in CP-CML CD34+ patient cells ................................................................. 161
Figure 5.8: Extension of imatinib exposure prior to OPT washout induces cell death and impairs clonogenic potential in CP-CML CD34+ patient cells ................................................................................. 163
Figure 5.9: Extension of Bcr-Abl inhibition results in the inhibition of pSTAT5 and pErk prior to OPT washout ................................................................................................................................. 166
Figure 6.6: Cytokine protection from TKI-induced death in BCR-ABL1+ cell lines .................................................. 220

Figure 6.7: The structure and activity of JAK inhibitor ruxolitinib in comparison to other JAK2 inhibitors... 221

Figure 6.8: Dose-dependent inhibition of JAK1, JAK2 and STAT3, but not Bcr-Abl or STAT5, with ruxolitinib in KU812 cells. ........................................................................................................................................................................ 222

Figure 6.9: Ruxolitinib demonstrates minimal reduction of Bcr-Abl dependent pSTAT5 in KU812 cells ....... 225

Figure 6.10: Pan JAK inhibition removes cytokine stimulated pSTAT5 but not Bcr-Abl-dependent pSTAT5 in KU812 cells ........................................................................................................................................................................ 226

Figure 6.11: Ruxolitinib reduces cytokine stimulated pSTAT5 but not Bcr-Abl-dependent pSTAT5 in CP-CML CD34+ cells. ........................................................................................................................................................................ 227

Figure 6.12: Cytokine protection of CP-CML CD34+ cells from dasatinib-induced cell death is blocked by ruxolitinib. ........................................................................................................................................................................ 229

Figure 6.13: Ruxolitinib abrogates cytokine-dependent protection from dasatinib-induced cell death, but does not further increase cell death compared to dasatinib alone. ................................................................. 230

Figure 6.14: JAK inhibition prevents colony formation in the presence of 5GF ........................................ 233

Figure 6.15: Non-specific effect of ruxolitinib on clonogenic potential of normal CD34+ cells. .................. 234

Figure 6.16: Proposed cytokine- and Bcr-Abl-dependent signalling in CML ............................................. 238

Figure 7.1: Proposed STAT5 and autophagy signalling ............................................................................ 250
Publications

Publications


Schafranek L, Nievergall E, Powell JA, Hiwase DK, White DL and Hughes TP. Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia. Leukemia advance online publication, June 27, 2014; doi:10.1038/leu.2014.156; accepted article preview online May 12, 2014.

Conference Presentations

Oral Presentations

Schafranek L, Nievergall E, Powell JA, Hiwase DK, Leclercq T, Hughes TP and White DL. New evidence that transient Bcr-Abl inhibition commits cells to death in a time- and STAT5-dependent manner despite reactivation of Bcr-Abl. NDLR, March 2014, Noosa, QLD (oral presentation)

Schafranek L. Cannibalistic Cancer. 3 Minute Thesis Competition, July 2013, University of Adelaide, Australia (oral presentation). Faculty Finalist


**Poster Presentations**

**Schafranek L**, Nievergall E, Hiwase H, Powell J, White D, Hughes T. Direct inhibition of STAT5 in combination with transient Bcr-Abl inhibition commits cells to apoptosis despite reactivation of Bcr-Abl. ASH Dec 2013, New Orleans, USA (poster presentation). ASH Abstract Achievement Award

**Schafranek L**, Nievergall E, Hiwase H, Powell J, White D, Hughes T. STAT5 inhibition is critical to the commitment of chronic myeloid leukemia cells to apoptosis regardless of Bcr-Abl reactivation. CPCM Symposium, August 2013, National Wine Centre, Adelaide Australia (poster presentation)

**Schafranek L**, Nievergall E, Hiwase H, Powell J, White D, Hughes T. Inhibition of activated STAT5 sensitizes chronic myeloid leukemia cells to TKI treatment and commits cells to apoptosis despite reactivation of Bcr-Abl, independent of JAK1/2. FHS
Conference, July 2013, University of Adelaide, Australia (poster presentation). **Awarded Florey Medical Research Foundation Prize**

**Schafranek L, Nievergall E, Hiwase H, Powell J, White D, Hughes T. Commitment of CML Cells to Apoptotic Cell Death Depends On the Length of Exposure to Das and the Level of STAT5 Activity. ASH Dec 2012, Atlanta, USA (poster presentation)**

**Schafranek L, Leclercq TM, White DL and Hughes TP. Clarithromycin increases the sensitivity of chronic myeloid leukaemia cells to dasatinib. FHS conference, August 2012, University of Adelaide, Australia (poster presentation).**

**Schafranek L, Leclercq TM, White DL and Hughes TP. Clarithromycin Enhances TKI-Induced Cell Death In CML Cells. NDLR March, 2012, Sunshine Coast, Australia (poster presentation).**

**Schafranek L, Leclercq TM, White DL and Hughes TP. Clarithromycin increases the sensitivity of chronic myeloid leukaemia cells to dasatinib. CPCM Symposium, July 2012, National Wine Centre, Adelaide, Australia (poster presentation).**

**Schafranek L, Hiwase H, Powell J, Melo J, White D, Hughes T. Blocking Cytokine Signalling Along with Intense BCR-ABL Kinase Inhibition may be necessary to Eradicate CML cells. Health Sciences Postgraduate Research Conference Aug. 2011, Adelaide, Australia (poster presentation)**
Scholarships and Awards

American Society of Hematology Abstract Achievement Award

For the abstract entitled "Direct inhibition of STAT5 in combination with transient Bcr-Abl inhibition commits cells to apoptosis despite reactivation of Bcr-Abl. ASH Annual Conference, New Orleans, USA.

Florey Medical Research Foundation Prize

For the presentation of the abstract entitled “Inhibition of activated STAT5 sensitizes chronic myeloid leukemia cells to TKI treatment and commits cells to apoptosis despite reactivation of Bcr-Abl, independent of JAK1/2”, FHS conference, Adelaide, Australia

Faculty of Health Science, 3 Minute Thesis Finalist

For the presentation entitled “Cannibalistic Cancer”, University of Adelaide, 2013

Medical Staff Society Research Prize Finalist

For the presentation entitled “Overcoming resistance to tyrosine kinase inhibitors in chronic myeloid leukaemia by blocking autophagy with clarithromycin”, Royal Adelaide Hospital Medical Staff Society, Adelaide, Australia 2013.
Hematology Society of Australia and New Zealand non-member travel grant

Awarded on the basis of abstract for work of exceptional novelty and significance. For the abstract entitled “Constant Exposure to Low Dose Dasatinib Is Sufficient for Induction of Apoptosis in CML Cells”, HAA Annual Conference, 2011 Sydney, Australia

PhD Scholarship, Leukaemia Foundation of Australia 2010-2013

Support for the educational and professional development of researchers and other professionals undertaking a PhD. The award is to support research in Australia into the causes, treatment and care of people with leukaemia, lymphoma, myeloma and related blood disorders and is awarded on the merits of the applicant and project proposal.
Abbreviations

µg – Microgram/s

µL – Microlitre/s

µM – Micromolar

14-C – Carbon-14 radioactive isotope

3-MA – 3-Methyladenine

7-AAD – 7-Aminoactinomycin D

Ab – Antibody

ABL1 – Abelson murine leukaemia virus human homologue 1 gene

ACD – Acid Citrate Dextrose Acid

Akt – a serine threonine kinase also known as protein kinase B

ALL – Acute Lymphoblastic Leukaemia

AMPK – AMP-activated protein kinase

-AP – Alkaline Phosphatase Conjugated Antibody

AP – Accelerated Phase

APS – Ammonium Persulfate

Ara-C – Arabinofuranosyl Cytidine

ATCC – American Type Tissue Culture Collection

ASK1 – Apoptosis signal-regulating kinase 1

ATP – Adenosine Triphosphate
BAD – Bcl-Xl/Bcl-2 associated death promoter

BAX – Bcl-2 associated X protein

Bcl-Xl – B-cell lymphoma extra large

Bcl-2 – B-cell lymphoma 2

BC – Blast Crisis

BCR – Breakpoint Cluster region

BCR-ABL1 – BCR-ABL1 oncogene

Bcr-Abl – Bcr-Abl oncoprotein

Bim – Bcl-2 interacting mediator of cell death

BM – Bone Marrow

BSA – Bovine Serum Albumin

C – Degrees Celsius

CAM – clatithromycin

CCyR – Complete Cytogenetic Remission

CFU – Colony forming unit

CFU-GM – Colony forming unit granulocytes and macrophage

CFC – Colony forming cells

Chk2 – checkpoint kinase 2

CML – Chronic Myeloid Leukaemia

CP – Chronic Phase
**CO_2** – carbon dioxide

**CrkL** – C1T10 regulator of kinase like

**Ctrl** – control

**CQ** – chloroquine

**Das** – Dasatinib

**DMSO** – Dimethyl Sulphoxide

**DNA** – Deoxyribonucleic Acid

**EDTA** – Ethylenediaminetetraacetic Acid

**Erk** – Extracellular signal related kinase

**e.g.** – exempli gratia

**et al.** – et alia

**FACS** – Fluorescence Activated Cell Sorting

**FBS** – Foetal Bovine Serum

**FDA** – Food and Drug Administration

**FSC** – Forward scatter

**FLT-3 ligand** – FMS-like tyrosine kinase 3 ligand

**Gab2** – GRB2-associated-binding protein 2

**G-CSF** – granulocyte-colony stimulating factor

**GF** – growth factor

**5GF** – five haematopoietic growth factors (G-CSF, GM-CSF, IL-3, IL-6, SCF)
6GF – six haematopoietic growth factors (G-CSF, IL-3, IL-6, SCF, TPO and Flt3-ligand)

GM-CSF – Granulocyte Macrophage Colony-Stimulating Factor

GMP – Granulocyte macrophage progenitors

Grb2 – Growth factor receptor-bound protein 2

Glut3 – glucose transporter 3

h – Hour/s

HBSS – Hanks Balanced Salt Solution

HSC – Haemopoietic stem cells

HSCT – Haemopoietic stem cell transplantation

IC50 – Inhibitory Concentration 50

i.e. – id est

IFN – Interferon IM – Imatinib IUR –

IL-3 – Interleukin-3

IL-6 – Interleukin-6

IM – Imatinib mesylate

IMDM I- scove's modification of Dulbecco’s medium.

IUR – intracellular uptake and retention assay

kD – kilo Dalton

KD – Kinase Domain
JAK – Janus Kinase

JAKi – ruxolitinib, pan JAK inhibitor

JNK – c-Jun N-terminal kinase

L – Litre/s

LC3 – Microtubule-associated protein 1A/1B-light chain 3

LKB1 – liver kinase B1

M – Molar

mA – mili Amp (10^-3 Amps)

MACS – Magnetic activated cell sorting

MAPK – Mitogen activated protein kinase

Mcl-1 – myeloid cell leukemia sequence 1

MFI – Mean Fluorescence Intensity

mg – milligram/s

min – Minutes/s

mL – Millilitre/s

mM – Millimolar

MMR – Major Molecular Response

MNC/s – Mononuclear Cell/s

mRNA – messenger RNA

mTOR – mammalian target of rapamycin
MW – Molecular Weight

ng – Nanogram/s

NIL – Nilotinib

nM – Nanomolar

O₂ – oxygen

OPT – optimal

p- – Phosphorylated Form of Protein

p62 – sequestosome 1 (SQSTM1)

PAGE – Polyacrylamide Gel Electrophoresis

PARP – Poly (ADP-ribose) polymerase

PB – Peripheral Blood

PBMNC/s – Peripheral Blood Mononuclear Cell/s

PBS – Phosphate Buffered Saline

PDGFR – Platelet-Derived Growth Factor Receptor

PE – Phycoerythrin

Ph – Philadelphia Chromosome

PI3-K – Phosphotidylinositol – 3-kinase

Pim – serine/threonine kinase

P-loop – Phosphate binding loop

p-value – Probability Value
PVDF – Polyvinylidene Difluoride

Pz – pimozide

rcf – Relative Centrifugal Force

RPMI – Roswell Park Memorial Institute (media)

RNA – Ribonucleic Acid

rpm – Revolutions Per Minute

STAT5 – Signal Transducer and Activator of Transcription 5

STAT5i – inhibitor of Signal Transducer and Activator of Transcription 5

SCF – Stem cell factor

SC – side scatter

SDS – Sodium Dodecyl Sulphate

sec – second/s

SEM – Standard Error of the Mean

SH – Src Homology Region

S/N – Supernatant

STD – standard

TBS – Tris Buffered Saline

TBST – Tris Buffered Saline + Tween®20

TKI/s – Tyrosine Kinase Inhibitor/s

Tyr – Tyrosine
U – Units

U/mL – Units Per Millilitre

Wash – drug washout

WCF – White Cell Fluid
Acknowledgments

One does not complete a PhD thesis without a great deal of encouragement, guidance and support, so there are a few people whom I would like to acknowledge and thank.

Thank you to my supervisors Tim Hughes, Deb White and Junia Melo. Early on in my PhD, I would often go into a meeting with my supervisors excited about my data and what it meant, only to come out overwhelmed with critiques and further experiments to perform and questions to answer. However, despite my initial misgivings to this process, I have fond memories of the challenging conversations and debates coming from those meetings. As mentioned by John Rasko in his special oration at NDLR 2012, Tim is one of the nicest guys in research: you have always challenged me to achieve my best and your clinical perspective has been invaluable. From the moment I came to this lab, Deb you have been an amazing mentor. You saw something in me, that at the time I couldn't see; the potential to be a great scientist and researcher. I finally feel like I can live up to that potential. Thank you for believing in me even when I didn’t and pushing me to be a first-class researcher. You may still get that confused look when I reverse my sentence order after I get overly excited over a result or expressing a new theory, but hopefully I get it the right way around more often than not these days.

To the members of the Melissa White Lab past and present, you are a dynamic bunch, who not only supported me in my research but also in my fundraising efforts to raise over $4000 for the Leukaemia Foundation of Australia. Thank you for your encouragement and friendship over the past years (and for putting up with my aimless humming in the lab). However, there are a few people whose influence throughout my PhD experience I would like to specifically thank.

Eva, when you came to our lab I was in the first year of my PhD and feeling hopeless about the future of my project. Talking with you about my results, good or bad, small or large, made me excited about my research again. You are an incredible researcher and an amazing friend. I feel so fortunate that you were around to enhance my research and drive me to greater things.

A special thanks also goes to Verity, not only for saving many of my samples from running off gels; for sharing your incredible technical expertise; your willingness to stop whatever you are in the middle of to help me with an experiment or give advice; your
friendship and late night conversations during/after a long day of experiments (in particular those bloody timecourses which had me in the lab at all hours).

Thanks must also go to Stephanie for all of her assistance (in particular in figuring out what finance had done to my accounts and chasing up orders) and to Tamara for her help editing my publications and thesis.

I can't imagine what the past few years would have been like without my fellow PhD students Dale and Laura. The credit for making sure I was enrolled to start my PhD (and getting other various paperwork in on time) goes to Dale. Going through a PhD with you has not only been beneficial (having someone who understands the numerous accounting screw ups with our consumables funding), but any competitiveness has only pushed us to be better researchers. Laura, I consider you one of my closest friends. I have found that we can talk about anything (make that ANYTHING) and to my concern we do not seem to have crossed the “too much information” line...yet. I can't believe we went through university together indifferent to one another only to find a) we have so much in common and b) that we are in danger (or rather everyone else is) of merging into the ever almighty Laurisa. You never fail to have me in stitches on a daily basis, whether it is from the multitude of warped faces I catch crossing your face, or hilarious stories of the past weekend’s follies. Laura and Dale, you have made it a pleasure to come to work every day and I will never forget your support and friendship (or our epic nights out) during this period of my life.

I must also express my significant gratitude to the Leukaemia Foundation of Australia, who provided me with a generous scholarship for the duration of my PhD. This scholarship enabled me to attend a large number of prestigious national and international conferences and also eased the financial burden of undertaking full time study while trying to support myself.

To my extended family and special friends, who never failed to express their pride and encouragement in the research which I was undertaking, even if you only follow every other word of what I’m talking about. Thank you for forgiving my unanswered text messages and cancelled dinner plans; for giving support in my fundraising for the Leukaemia Foundation; and for just lending an ear. Specific kudos goes to Suzie for being on call and for making me feel like I could achieve anything; to my aunties Lyn and Robyn who have always been a huge support, and to Joybelles and Joanie who, without fail, shared amazing weekly home cooked dinners.
To the MOCSC soccer girls, I was fortunate to join your team in the last year of my PhD, and although my long days prevented me from making it to many of the weekly practices, the games gave me an outlet for my scientific frustrations and provided a vehicle to literally exercise my competitive nature. Sundays shenanigans on and off the fields gave me something outside of my PhD to get excited about, especially after a tough week in the lab. You are a great group of ladies.

Ever since I was little, my mum has instilled in me an infallible belief that I could do anything and always encouraged me to question everything, which may be why I ended up undertaking a PhD. This may have come back to bite her, as this now includes questioning her. Without her encouragement and support throughout my life I would not have been able to accomplish all that I have to date. Additionally, I give you huge “props” for reading my entire thesis for grammar and spelling. I'm glad that you now have at least a little bit of an understanding of what I’ve been up to the past few years. I also have an amazing big brother, who constantly provides me with food for thought on concepts relevant to my PhD and thankfully a range of other topics from philosophy to computer science to anime, but additionally provides me with delicious, nutritious food. I love you both so much and thank you for all that you have contributed to my life, above and beyond my PhD.

When I told my partner Pete I was considering undertaking honours and possibly a PhD, his response was along the lines of, “You want to be a student for how long?!” Nevertheless, you have always been unbelievably supportive. I have been to a few orations now, where recipients say something like, “I couldn't have done this without the love and understanding of my wife who takes care of my life,” to which a close friend made the comment, “Where can I get one of those?” Well, I have been lucky enough to find myself a partner who is better than just a mere “wife” and words cannot express how grateful I am to have Pete in my life. Your understanding of my crazy hours and the lack of time I had for you at various stages of my PhD, from having dinner ready when I arrived home to having my car serviced, you have been unbelievable! I promise this ends my student days (for now) and that I’ll start earning a “proper” income so that you may pursue your dreams.
Abstract

Chronic myeloid leukaemia (CML) is a clonal myeloid proliferative disease that results from constitutive activation of the Bcr-Abl oncprotein, which disrupts normal cellular signalling potentiating the survival and maintenance of BCR-ABL1+ cells. Tyrosine kinase inhibitors (TKIs), like imatinib, have revolutionised the treatment of CML and have become the model for therapy in other cancers. Imatinib treatment also founded the paradigm that potent and continuous dosing is required for optimal patient response in patients with CML. In contrast to imatinib, the second generation TKI dasatinib has a short half-life of only 3-5 h, nevertheless a once daily dosing regime is sufficient to achieve equivalent responses to twice daily dosing suggesting that continuous and complete inhibition of Bcr-Abl may not be required for optimal response to TKI therapy.

Despite initial studies indicating that a very brief exposure to a potent dose of TKI is sufficient to induce cell death in BCR-ABL1+ cells, recent studies have attributed this to sustained low-level inhibition of Bcr-Abl signalling due to inadequate drug washout. As reported in this thesis, experiments with low dose dasatinib treatment, which does not completely inhibit Bcr-Abl phosphorylation but is sufficient to induce cell death, demonstrated inactivation of STAT5 as a sensitive measure of Bcr-Abl activity. Here, it was also confirmed that <1 h exposure to potent TKI with adequate drug washout is insufficient to commit BCR-ABL1+ cells to death and it is established for the first time that at least 2 h of Bcr-Abl kinase inhibition are required. Furthermore, combinations of efficient TKI washout with specific inhibitors of STAT5, JAK and ERK ascertained sustained inhibition of pSTAT5, potentially independent of JAK2, as the determinant of commitment to cell death. Together, this research established that continuous,
complete inhibition of Bcr-Abl is not required to induce cell death, but that continuous blockade of STAT5, indicative of low-level threshold Bcr-Abl inhibition, is essential, thus challenging the imatinib paradigm.

Although most CML patients respond well to imatinib, only 40% of patients achieve a complete molecular response and some patients develop resistance. Blockade of Bcr-Abl signalling can drive cells to develop new survival mechanism, and amongst others, autophagy and the acquisition of extrinsic survival signalling have been implicated in resistance to therapy and/or persistent disease.

Studies presented in this thesis define a role for the activation of autophagy in response to tyrosine kinase inhibition of Bcr-Abl. Induction of autophagy by TKI was confirmed using established markers of autophagy, such as the conversion of LC3-I to LC3-II, degradation of p62 and cellular morphology. Blockade of anti-apoptotic proteins Bcl-2 and Bcl-xL along with activation of stress response pathways were revealed as potential mechanisms of autophagy induction, however, further investigation into these pathways is required. Importantly, the data presented here also established clarithromycin as a novel inhibitor of TKI-induced autophagy, advocating combination treatment with TKI therapy in resistant patients.

Recent observations that overexpression of cytokines and their receptors may contribute to BCR-ABL1+ cell persistence in CML patients undergoing TKI therapy. Here, the expression of IL-3 and GM-CSF cytokine receptors in BCR-ABL1+ cell lines and chronic phase CML CD34+ progenitor cells was established and signalling through those
was confirmed to maintain STAT5 survival signalling, thereby protecting cells from TKI-induced death. Inhibition of JAK2 with ruxolitinib inhibited cytokine-dependent, but not Bcr-Abl-dependent, activation of STAT5 and neutralised cytokine-induced protection from cell death while having little effect in the absence of cytokines.

Together, the findings of this thesis established the critical mechanisms in Bcr-Abl-dependent and -independent signalling that may also be targeted in combination therapeutic approaches and provides an in-depth understanding of the potential clinical effectiveness of dose reductions during dasatinib therapy. These studies will have broad implications for the ongoing development of therapeutic strategies in CML, particularly in the setting of TKI-resistance, and will aid the goal of achieving a curative treatment for patients with CML.