Determination of the genetic basis for successful fermentation in high sugar media

by

Trung Dung Nguyen

A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Sciences

School of Agriculture, Food and Wine
The University of Adelaide
Australia

December 2013
Thesis summary

Yeast (Saccharomyces cerevisiae) plays a key role in the completion of several fermentations including those used for beverage and bioethanol production. In the wine industry, slow or incomplete alcoholic fermentation is still a challenging problem and often results in increased costs of production and decreased wine quality. One of the reasons for the persistence of this problem could be the trend towards rising sugar concentrations in grape musts. What is already a high sugar concentration fermentation (~200 g L\(^{-1}\) or more) has increased by some 20 – 40 g L\(^{-1}\) due to climate warming and winemaker pursuit of ripeness. In this project we aim to gain a better understanding of how wine yeast cope in high sugar fermentations (HSF) to help develop strategies for managing these types of grape musts.

With the availability of collections of laboratory yeast including gene deletion and overexpression libraries and the development of techniques used for whole genome analysis, it is now possible to investigate yeast biology under oenological conditions with a systems biology approach. A number of genome-wide studies of yeast have previously been conducted to identify yeast genes involved in sensitivity to individual stresses present during fermentation. However, in reality many of these stresses are often present at the same time, or sequentially throughout the phases of fermentation. This highlights an important gap in current research, that being identification of those genes important for maintenance of fermentation efficiency throughout a complete cycle of fermentation, and in particular an environment which has high initial sugar content such as that found in grapes used to make quality wines. We expected these genes to be related to wine yeast adaption, survival and maintenance of fermentative metabolism.

In this study 93 genes were identified as important for the successful completion of high sugar fermentation as deletants of these resulted in either protracted or incomplete fermentation. We have named this gene set the Fermentation Essential
Genes (FEGs). A gene ontology (GO) analysis of these revealed that vacuolar acidification (VA) is an important biological process required for efficient completion of a high sugar fermentation: 20 of the 93 FEGs annotate to this GO term (vacuolar acidification). Also, this gene set is highly represented in the FEGs since these 20 FEGs represent 77% of all genes annotated to this same GO term. In this study we also report 18 genes (also all FEGs), not previously associated with VA, of which deletants have VA defects. This was achieved through examination of the VA of 93 FEGs using the vacuolar specific probe 6-carboxyfluorescein diacetate (6-CFDA), microscopic and Fluorescence Activated Cell Sorting (FACS) analysis.

It was shown that, nine FEGs were seen to be particular critically to fermentation progression and completion. Their deletion result in the extreme phenotype of arrested or ‘stuck’ fermentation. Amongst these, featured two genes involved in trehalose biosynthesis. The disaccharide trehalose is an enigmatic compound accumulated in *Saccharomyces* and known to be associated with survival under environmental stress conditions. Deletion of either *TPS1* or *TPS2*, encoding enzymes involved in trehalose biosynthesis, resulted in incomplete fermentation. This phenotype could be reversed by the over-expression of *HXK2* (a paralog of *HXK1* encoding hexokinase isomer 2) in Δtps1 and introduction of the phosphotrehalase gene (TreA), from *Bacillus subtilis*, in Δtps2. *HXK2* over-expression increased the fermentation rate of Δtps1 and the parent BY4743 which actually demonstrated a shorter fermentation duration than the parent having blank plasmid.

To further investigate fermentation of yeast in HSF we sought to examine the fermentation performance of a gene overexpression library, which was constructed in this study by transformation of a Yeast Genomic Tiling Collection into a haploid wine yeast strain; ISOC9dΔleu2. The construction of this library was performed in collaboration with two other PhD students (Mrs Jade Haggerty and Ms Jin Zhang). The clonal identity, degree of plasmid retention and development of methodologies to allow fermentation in high sugar chemically defined grape juice medium (CDGJM) were achieved. However, due to time constraints further evaluation of this library was not possible within the current project.
The collective findings from this project have provided greater insight into the mechanism by which yeast cope with HSF as well as providing direction if not specific gene targets for exploitation in strain improvement programs.
Declaration of Authorship

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge, contains no material previously published or written by another person, except where reference has been made in the text.

Essentially all of the work detailed in Chapter 4 has been submitted for publication.

This thesis may be made available for loan or photocopying.

Trung Dung Nguyen

December 2013.
Acknowledgements

First of all, my sincere thanks to my principal supervisor Prof. Vladimir Jiranek, my co-supervisors Dr. Michelle E. Walker and Dr. Jennifer M. Gardner for their tremendous support, enthusiasm and patience throughout my study. It has been a pleasure to learn the knowledge, research and writing skills from you.

Thanks to the past and present members of the Wine Microbiology and Microbial Biotechnology Laboratory, who provided their help in my experiments and the fun they shared in the Lab.

I would like to thank my parent Bo Cong Nguyen and Mao Thi Tran and my parent-in-law Khan Tien Do and Len Thi Pham for their support and encouragement.

Finally, my thanks go to my beloved wife Thu-Dung Thi Do and my wonderful sons Minh Trung Nguyen and Nam Bao Nguyen for all their never-ending love and encouragement.

This study is supported financially by Ministry of Agriculture and Rural Development of Vietnam (MARD) through its Project of Agricultural Science and Technology and the University of Adelaide. I would like to thank the Grape and Wine Research and Development Corporation (GWRDC) for granting a top-up scholarship.
Abbreviations

AGRF Australian Genome Research Facility
ATP adenosine triphosphate
bp base pairs of DNA
°C degrees centigrade
CDGJM chemically defined grape juice medium
CDGJM+PP CDGJM enriched with polyphenol extract
DNA deoxyribonucleic acid
dNTP deoxynucleotide triphosphate
FACS Fluorescence Activated Cell Sorting
FAN free amino acid nitrogen
GO Gene Ontology
HOG high osmolarity glycerol
HPLC high performance liquid chromatography
HSE heat shock elements
HSF high sugar fermentation
kb kilo bases of DNA
LB Luria-Bertani
LiAc lithium acetate
M molar
mL millilitre
mM millimolar
mol mole
NAD+ nicotinamide adenine dinucleotide
NADH nicotinamide adenine dinucleotide reduced form
NADP nicotinamide adenine dinucleotide phosphate
NADPH nicotinamide adenine dinucleotide phosphate reduced form
NOPA o-Pthaldialdehyde/N-acetyl-L-cysteine
OD optical density
OE over-expression
ORF open reading frame
PBS phosphate buffered saline
PCR polymerase chain reaction
PEG polyethylene glycol
RI refractive index
RNA ribonucleic acid
rpm revolutions per minute
SDS sodium dodecyl sulphate
STRE stress responsive element
TAE tris acetate EDTA
TCA tri-carboxylic acid
TE tris EDTA
Tre6P trehalose-6-phosphate
IPTG isopropyl β-D-1-thiogalactopyranoside
UDP-Glucose uridine diphosphate glucose
UTR untranslated region
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>URS</td>
<td>upstream regulatory sequence</td>
</tr>
<tr>
<td>VA</td>
<td>vacuolar acidification</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
<tr>
<td>YAN</td>
<td>yeast assimilable nitrogen</td>
</tr>
<tr>
<td>YEPD</td>
<td>yeast extract peptone dextrose</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-indolyl-galactopyranoside</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

THESIS SUMMARY .. I
DECLARATION OF AUTHORSHIP .. IV
ACKNOWLEDGEMENTS ... V
ABBREVIATIONS .. VI

CHAPTER 1 LITERATURE REVIEW .. 1
1.1 Introduction ... 1
1.2 Yeast growth and fermentation kinetics ... 2
1.3 Factors affecting yeast growth and fermentation kinetics during high sugar fermentation ... 4
 1.3.1 Sugar and osmotic stress ... 4
 1.3.2 Ethanol ... 4
 1.3.3 Nutrient deficiencies ... 5
 1.3.4 Environmental factors ... 6
1.4 Response of yeast to stresses present in high sugar fermentation 7
 1.4.1 Response to osmotic and environment stresses .. 10
 1.4.2 Response to ethanol stress ... 12
 1.4.3 Response to nitrogen deficiencies ... 13
 1.4.4 Biological processes related to stress responses of the cell 14
 a) Glycerol production under stress conditions ... 14
 b) Cell wall and plasma membrane integrity .. 17
 c) Trehalose accumulation ... 17
1.5 Genetic improvement of wine yeast ... 19
 1.5.1 Introduction ... 19
 1.5.2 Genetic manipulation .. 20
 1.5.3 Yeast deletion and over-expression libraries ... 22
1.6 Conclusion ... 24

CHAPTER 2 GENERAL MATERIALS AND METHODS .. 26
2.1 Yeast strains and culture conditions .. 26
2.2 Bacteria and culture conditions .. 26
2.3 Minimal drop-out media .. 26
2.4 Chemically Defined Grape Juice Medium (CDGJM) ... 26
2.5 Laboratory scale fermentation and analysis of key metabolites 27
 2.5.1. Laboratory scale fermentation ... 27
 2.5.2 Sugar analysis ... 27
 2.5.3 Viable cell counts ... 27
 2.5.4 Plasmid retaining counts .. 28
2.6 Nucleic acid isolation .. 28
Table of contents

- **2.6.1 Preparation of plasmid from E. coli** 28
- **2.6.2 Genomic DNA isolation from S. cerevisiae** 28
- **2.6.3 Determination of DNA concentration** 29
- **2.7 Molecular cloning techniques** ... 29
 - **2.7.1 Polymerase Chain Reaction (PCR)** 29
 - **2.7.2 Restriction digestion of DNA** 29
 - **2.7.3 Ligation of DNA into plasmid** 29
 - **2.7.4 Preparation of competent E. coli cells and transformation** 30
 - **2.7.5 High efficiency yeast transformation using lithium acetate** 30
 - **2.7.6 DNA sequencing** .. 31
- **2.8 Data statistical analysis** ... 31

CHAPTER 3 LABORATORY-SCALE EVALUATION OF FERMENTATION PERFORMANCE OF YEAST HARBOURING SINGLE GENE DELETIONS 32

- **3.1 Introduction** ... 32
- **3.2 Materials and methods** ... 33
 - **3.2.1 Yeast strains and culture condition** 33
 - **3.2.2 Laboratory scale fermentation and monitoring of key metabolites** 33
 - **3.2.3 Classification and numerical enrichment of identified genes annotated to Gene Ontology (GO) terms using computational software tools** 34
- **3.3 Results** .. 35
 - **3.3.1 Screening of 181 gene deletants in laboratory-scale fermentation** ... 35
 - **3.3.2 Gene ontology analysis of the FEG dataset** 38
 - **3.3.3 Fermentation profiles of nine stuck gene deletants** 53
- **3.4 Discussion** .. 56
 - **3.4.1 Vacuolar acidification regulated by the V-ATPase complex is important in fermentation** ... 56
 - **3.4.2 Other cellular mechanisms have a role in fermentation** 58
 - **3.4.3 Other cellular processes (autophagy, membrane invagination) of importance to fermentation** ... 59
- **3.5 Summary and conclusion** .. 60

CHAPTER 4 APPROPRIATE VACUOLAR ACIDIFICATION IN SACCHAROMYCES CEREVISIAE IS REQUIRED FOR EFFICIENT HIGH SUGAR FERMENTATION .. 61

CHAPTER 5 CONSTRUCTION OF AN OVER-EXPRESSION LIBRARY IN A HAPLOID WINE YEAST .. 87

- **5.1 Introduction** .. 87
- **5.2 Materials and Methods** .. 89
 - **5.2.1 Yeast strain** ... 89
 - **5.2.2 PCR amplification of 5’ and 3’ UTR sequences of LEU2 and cloning into plasmid pGEMT** ... 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.3 Cloning 5’ and 3’ UTR sequences of LEU2 into plasmid pBS418</td>
<td>93</td>
</tr>
<tr>
<td>5.2.4 Preparation of over-expression plasmids from Yeast Genomic Tiling Collection on pGP564</td>
<td>93</td>
</tr>
<tr>
<td>5.2.5 Transformation of Yeast Genomic Tiling Collection on pGP564 in wine yeast ISOC9dΔLeu2 (over-expression library construction)</td>
<td>95</td>
</tr>
<tr>
<td>5.3 Results</td>
<td>97</td>
</tr>
<tr>
<td>5.3.1 Construction of leu2::KanMX disruption cassette</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2 Generation of a leucine auxotroph of the haploid wine yeast</td>
<td>97</td>
</tr>
<tr>
<td>(ISOC9dΔLeu2)</td>
<td></td>
</tr>
<tr>
<td>5.3.3 Construction of an over-expression library by transformation of Yeast Genomic Tiling Collection in plasmid pGP564 in ISOC9dΔleu2</td>
<td>102</td>
</tr>
<tr>
<td>5.3.4 Initial trial of screening of the over-expression library</td>
<td>102</td>
</tr>
<tr>
<td>5.4 Discussion and Conclusion</td>
<td>107</td>
</tr>
<tr>
<td>CHAPTER 6 THE LINK BETWEEN THE TREHALOSE BIOSYNTHESIS PATHWAY AND THE COMPLETION OF FERMENTATION</td>
<td>109</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>109</td>
</tr>
<tr>
<td>6.2 Materials and Methods</td>
<td>112</td>
</tr>
<tr>
<td>6.2.1 Yeast strains and plasmids</td>
<td>112</td>
</tr>
<tr>
<td>6.2.2 Purification of HXK2 gene from Saccharomyces cerevisiae</td>
<td>112</td>
</tr>
<tr>
<td>6.2.3 Transformation of the over-expression plasmid pGP564HXK2 and pYX212TreA in Δtps1 and Δtps2 deletants</td>
<td>117</td>
</tr>
<tr>
<td>6.2.4 Confirmation of transformed yeast strains</td>
<td>117</td>
</tr>
<tr>
<td>6.2.5 Laboratory-scale fermentation and monitoring of key metabolites</td>
<td>117</td>
</tr>
<tr>
<td>6.3 Results</td>
<td>118</td>
</tr>
<tr>
<td>6.3.1 Fermentation profiles of TPS1 and TPS2 gene deletants</td>
<td>118</td>
</tr>
<tr>
<td>6.3.2 Determination of fermentation profiles of Δtps1 and Δtps2 with over-expression of hexokinase (HXK2)</td>
<td>120</td>
</tr>
<tr>
<td>6.3.3 Evaluation of fermentation performance of Δtps2 mutant when hexokinase (HXK2) and phosphotrehalase (TreA) genes are overexpressed</td>
<td>123</td>
</tr>
<tr>
<td>6.4 Discussion</td>
<td>125</td>
</tr>
<tr>
<td>6.4.1 The trehalose pathway may play an important role in the completion of fermentation</td>
<td>125</td>
</tr>
<tr>
<td>6.4.2 Over-expression of the HXK2 gene rescued the fermentation performance of Δtps1 but not in Δtps2 mutant</td>
<td>128</td>
</tr>
<tr>
<td>6.4.3 The introduction of phosphotrehalase (TreA), from Bacillus subtilis improved fermentation performance of Δtps2 mutant</td>
<td>129</td>
</tr>
<tr>
<td>6.5 Summary and conclusion</td>
<td>130</td>
</tr>
<tr>
<td>CHAPTER 7 GENERAL DISCUSSION AND FUTURE DIRECTIONS</td>
<td>133</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>138</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>160</td>
</tr>
</tbody>
</table>