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Abstract

In Hirschsprung Disease the enteric nervous system is absent from a variable segment of the distal bowel due

to incomplete proximal-to-distal colonization of the elongating embryonic gut by migrating and proliferating neural

crest precursor cells. Genetic causes of this disease are many and most are classed as dominant mutations. However

not all individuals with the same mutation show the disease; this is termed incomplete penetrance. This incomplete

penetrance extends even to discordancy in monozygotic (identical) twins. We develop a continuous-time Markov

chain model that approximates a continuous-time one-dimensional stochastic agent-based model of the colonization

process. The probability mass function for the most distally-advanced agent is obtained for the agent-based model and

its approximation, and they compare extremely well. These results confirm that the neural crest agent proliferation

is the most important parameter in determining success of full colonization. Furthermore, the results suggest that

when the neural crest agent proliferation and migration rates are sufficiently large to simulate the normal genotype

(i.e., in the absence of the Hirschsprung Disease mutation), small perturbation of these rates leads to only small

changes in colonization rate, but almost always resulting in successful colonization. A different outcome occurs with

lowered neural crest agent proliferation or migration rate (but with elongation of the gut unchanged from normal) to

simulate the effect of a Hirschsprung Disease mutation. For this case, success or failure of colonization is probabilistic,

equivalent to incomplete penetrance. This idea places limits on the predictability of this disease even if a full genetic

and epigenetic description could be obtained.
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1. Introduction

Hirschsprung Disease is a serious and quite common developmental defect (about 1/5000 live births) in which the

enteric nervous system (ENS) is absent from the distal intestine, resulting in a regional failure of peristalsis (Newgreen

& Young 2002a). The ENS derives from a small number of hindbrain neural crest (NC) cells which colonize the gut

in a proximal-to-distal invasion of cells migrating within the intestinal wall. NC cells normally complete colonization

of the distal colon at seven weeks gestation (Fu et al. 2004). Completion of colonization is made more difficult by

the simultaneous elongation of the intestine itself (Binder et al. 2008; Binder & Landman 2009). This mode of ENS

formation is conserved among vertebrates, which also exhibit Hirschsprung-like defects (Newgreen & Young 2002a;

Newgreen & Young 2002b). In rodent models the cause of this defect is generally failure to complete proximal-to-

distal colonization. Because ENS formation in humans descriptively and genetically resembles that in rodents, it is

presumed in most cases to arise in humans as a defect in early colonization, with the critical period prior to seven

weeks gestation.

The diagnosis of Hirschsprung Disease is unequivocal, but its origins are complex, with predisposing mutations

in many genes (Amiel et al. 2008; Burzynsk et al. 2009). Individuals with identified mutations in Hirschsprung
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Disease genes, for example mutation of one copy of the gene RET, may not show the disease while others show a

variable length of affected intestine. This incomplete penetrance and variable severity (lumped here as incomplete

penetrance) are apparently stochastic phenotypic variations exhibited after defined gene mutations. These surprising

and apparently chance-based variations have been discussed since the mid-1920s with their biology receiving renewed

interest (Oates 2011).

The most puzzling aspect of incomplete penetrance occurs when monozygotic (identical) twins are discordant, and

Hirschsprung Disease illustrates this (Hannon & Boston 1988; Moore et al. 1979; Siplovich et al. 1983). For example,

in a description of over 130 cases of Hirschsprung Disease, Jung (Jung 1995) noted three sets of monozygotic twins,

all of whom were discordant. Moreover, in another set of monozygotic twins, Hirschsprung Disease occurred with

sensorineural deafness. This association (Waardenburg Syndrome type 4 or Waardenburg-Shah syndrome) arises from

mutations in genes (SOX10, EDNRB or EDN3) that control development of both the ENS and the auditory system.

Both twins were deaf, showing both had the mutation, but only one showed Hirschsprung Disease (Sarioglu et al.

2000). Similar variability of colonization or incomplete penetrance has also been observed with inbred mouse models

(Uesaka et al. 2008).

Most explanations of incomplete penetrance in genetically identical individuals are made by assuming differences

in gene expression between affected and unaffected individuals. We suggest here a novel explanation of incomplete

penetrance in Hirschsprung Disease based on (typical) stochastic cell behavior, amplified by disease-causing muta-

tions. Intuitively, for a high NC migration rate we would expect colonization to be always successful, whereas at a low

NC migration rate we would expect colonization to be always unsuccessful. This raises the following question: on

ramping down the NC cell motility and/or proliferation rate(s), but maintaining the normal elongation of the intestine,

does the outcome at the level of the whole system suddenly switch from successful to unsuccessful colonization at

some point. Since the stochasticity acting here does so at the level of each single cell, and each cell is equivalent to

any other cell, and the system has very many cells, one might suggest a very predictable switch-style outcome at the

system level. Alternatively, does colonization success degrade gradually and probabilistically? This would mean that

there may exist identical starting conditions with a variable success in colonization, hence allowing for incomplete

penetrance (see Fig. 1).

We investigate this by considering two continuous-time one-dimensional Markovian models: one an agent-based

model as previously used in this area, and the other an approximating model. The agent-based (cellular automata)

model simulates the unidirectional proximal-to-distal invasion of NC cells within the growing gut tissue. This is the

continuous-time 1-D analogue of the discrete-time 2-D agent-based model for the mechanisms of NC cell proliferation

and motility, and gut cell proliferation (Binder et al. 2008; Binder & Landman 2009; Simpson et al. 2007; Zhang et al.

2010). Although the probability distribution of the state of the agent-based model is determined by a set of ordinary

differential equations, the size of this system makes it impractical to solve. We therefore derive a second model

which is a Markov chain approximation to quantify the variability of the NC invasion front, providing a measure of

colonization success.

The approximation is validated by comparison with averaged simulation data from the agent-based model of the

overall process, demonstrating a high level of accuracy across a wide range of parameter space. The results suggest

that the variability in colonization, as observed in the case of discordancy between genetically similar monozygotic

twins, can be attributed to the stochastic interactions of the cellular mechanisms.

2. Agent-based model

We consider a continuous-time one-dimensional discrete-state agent-based model to simulate the NC colonization.

All quantities and variables are non-dimensional. The domain (gut tissue) is a single row of lattice sites whose

positions are located at the discrete integer points x = 1, 2, . . . , L(t), where L(t) is the length of the domain that

elongates with time t. Each lattice site of the domain can be either occupied by a single NC agent or unoccupied.

The total number of NC agents at any given time is N(t) ∈ {1, 2, . . . , L(t)}. The model update rules, similar to those

described previously (Binder et al. 2008; Binder & Landman 2009) for domain growth, NC agent motility and NC

agent proliferation events are shown in Fig. 2. If the target site is occupied for any NC motility or proliferation event,

then that event is aborted. These events are volume exclusion processes (Chowdhury et al. 2005; Simpson et al.

2009). Note that if the chosen lattice site is occupied by an NC agent in the case of a domain growth event, then the

NC agent is transported to the right with the moving lattice site.
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Figure 1: Successful and unsuccessful outcomes of the agent-based model and schematic diagram of probability of successful outcomes. (a)

Agents, representing NC cells (dark grey), initially occupy the left-hand end of the domain, representing the gut mesoderm cells (light grey). The

gut is elongating by progressive cell division, modelled by a uniformly growing domain. The NC agents are dividing and are allowed to move

in the horizontal direction only. For some simulations the colonization may be classified as successful, while in other simulations under identical

conditions the colonization is classified as unsuccessful. This difference in outcomes arises from the stochastic nature of the division and movement

processes. (b) The schematic diagram shows the probability of successful colonization as a function of the NC migration rate.

The model is updated in continuous-time (Gillespie 1977) with domain growth rate, λg, NC agent motility rate λm

and NC proliferation rate λp. We define the propensity function as λ = (λm + λp)N(t) + λgL(t), giving the total rate

at which events occur at time t. Random numbers are drawn from the exponential distribution and standard discrete

uniform distribution as E[λ−1] and U[0, 1], respectively. The algorithm then proceeds as follows, being terminated at

either a maximum chosen time t f > 0 or maximum chosen domain length L f > L(0).

Step 1: Calculate the propensity function λ given the current state, and update the time with t := t + E[λ−1]. If t < t f

(or alternatively L(t) < L f ) go to Step 2; else stop.

Step 2: Generate a random number R = λU[0, 1].

Step 3: Decide which type of event to perform. If R < λmN(t) then attempt to perform a NC motility event. If

λmN(t) ≤ R < (λm + λp)N(t) then attempt to perform a NC proliferation event. If R ≥ (λm + λp)N(t) then

perform a domain growth event. Update the state as appropriate.

Step 4: If t < t f (or alternatively L(t) < L f ) repeat steps 1–3; else stop.

We initialize a simulation by populating all the lattice sites to the left of and including the site z0, where 1 ≤

z0 ≤ L(0), and then record the position of the rightmost NC agent at later times. This provides a measure for the

NC invasion front. Shown in Fig. 1(a) are two sets of simulations (successful and unsuccessful) that were terminated

when L f = 40, with z0 = 4, L(0) = 8, λp = 0.4, λm = 1.0 and λg = 0.40.

To quantify the success of the colonization we record the counts (number of occurrences) of the positions z(t),

where z0 ≤ z(t) ≤ L(t) for t > 0 and z(0) = z0, of the rightmost or leading agents from M realisations. Dividing

the counts by the number of simulations M then produces an estimated probability mass function (PMF) P(z), for the

position of the rightmost NC agent or invasion front. Typical PMFs are shown in Figs. 3 and 4 (light grey). We delay

the discussion of these curves to Section 4.

3. Markov chain approximation

We now consider an approximating Markov chain model of the process of cell invasion and tissue growth. We

define the model and then discuss the evaluation of the main quantity of interest, the PMF of rightmost NC agent.
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Figure 2: Agent-based mechanisms, domain agents (light grey) and NC agents (dark grey). (a) Domain growth rule. (b) NC agent motility rule.

The NC agent can move to one of the two configurations shown with equal probability. (c) NC agent proliferation rule. The mother NC agent

divides into two daughter agents. After mitotic division two possible configurations can occur with equal probability.
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Figure 3: Comparison of PMFs for the position of the rightmost (leading) NC agent generated by the agent-based model and the Markov chain

approximation for various values of proliferation rate λp and initial position of the rightmost agent z0. The agent-based model results (grey) are

generated from M = 10000 simulations with a final length L f = 197 and average final time t̄ = 8; L(0) = 8, λm = 1.0 and λg = 0.4. The Markov

chain approximation is also shown (the black broken curves). (a) Initial population x0 = 2; λp = 0.1. (b) Initial population z0 = 2; λp = 1.0. (c)

Initial population z0 = 4; λp = 0.1. (d) Initial population z0 = 4; λp = 1.0. The inset shows the complete data.
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Figure 4: Comparison of PMFs generated by the agent-based model and the Markov chain approximation for various values of proliferation rate λp.

The agent-based model results (grey) are generated from M = 10000 simulations with a final length time t f = 8 and average final length L̄ = 197;

L(0) = 8, z0 = 4, λm = 1.0 and λg = 0.4. The Markov chain approximation is also shown (the black broken curves). (a) λp = 0.1. (b) λp = 1.0.

Our approximating model is a trivariate continuous-time Markov chain, where the variables are z(t), the position

of the rightmost occupied site, n(t), the number of sites occupied to the left of the rightmost occupied site, and l(t), the

length of tissue, at time t.

Since agents cannot jump over each other in the model, the agent in the rightmost position will be the same agent

or a daughter of the agent in the rightmost position for all t. This rightmost agent can move to the right, via motility

and proliferation, uninhibited provided it is currently not occupying the last site in the tissue, and hence requires no

approximation. However, an approximation is required when modelling motility and proliferation of this agent when

moving to the left, and for the motility and proliferation of the other n(t) agents, as we do not (typically) know the

exact configuration of the agents and hence the exact probability the sites will be vacant, and hence accessible for

movement and proliferation events. Tissue growth can also be modelled without approximation; however, its impact

on the precise configuration of the n(t) agents is unknown.

The dynamics (non-zero transition rates) of our model are described by six changes of state, detailed below.

(i) (z, n, l)→ (z + 1, n, l) at rate
λm

2
1{z<l}

(ii) (z, n, l)→ (z + 1, n + 1, l) at rate
λp

2
1{z<l}

(iii) (z, n, l)→ (z − 1, n, l) at rate
λm

2

(

z − n − 1

z − 1

)

(iv) (z, n, l)→ (z, n + 1, l) at rate
λp

2

(

z − n − 1

z − 1
+ nb(z, n)

)

(v) (z, n, l)→ (z + 1, n, l + 1) at rate λgz

(vi) (z, n, l)→ (z, n, l + 1) at rate λg(l − z).

Here the notation 1{z<l} is unity if z < l and zero otherwise, and b(z, n)/2 = (z − n − 1)/[2(z − 1) − n]. Transition (i)

describes a motility event of the rightmost agent to its immediate right (to z + 1), while (ii) describes a proliferation

event of the rightmost agent, where a daughter is placed to its immediate right (z + 1). Only the second event changes

the total number of agents to the left of the rightmost agent, and the length of the domain remains unchanged. In both

these cases, we know that z+1 is unoccupied, so the transitions automatically occur. Transitions (v) and (vi) represent

domain growth to the left and right of the rightmost agent respectively.

Transitions (iii) and (iv) involve additional terms which are approximations requiring explanation. The first, (iii),

represents a move of the rightmost agent to its immediate left (to z − 1) with no change in the number of agents. The
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second, (iv), represents a proliferation event of the rightmost agent at z to its immediate left (z − 1) or a proliferation

event of any of the n agents to the left of z, ensuring that the rightmost agent remains at z, but the total number of

agents increases by unity. A movement or proliferation event of the rightmost agent can only occur if the site at z−1 is

unoccupied, so depends on volume exclusion. We therefore need to modify the attempted transition rate (namely λm/2

in (iii) and λp/2 in (iv)) by the probability of site z−1 being vacant. If we assume that the occupied sites are uniformly

distributed between sites 1 and the rightmost occupied site z, then the factor (z− n− 1)/(z− 1) is the probability of the

site to the left of the rightmost agent being vacant (since it is just the number of vacant sites to the left of the rightmost

agent divided by the total number of sites to its left). In (iv), we also need to account for proliferation events of any

agent to the left of z. This occurs at rate λpn/2 times the probability there is a vacant site to one side of the chosen

agent. Because one of the mechanisms by which sites become occupied is proliferation, it means it is more likely

that occupied sites will be adjacent to each other (rather than just if they had been laid down at random), and hence a

proliferating agent is less likely to find a vacant site. As noted, we define b(z, n)/2 = (z − n − 1)/[2(z − 1) − n] as the

approximation for this probability, which accounts for the fact that as the number of agents, n, increases for a fixed

number of sites, z−1, there must be an decrease in the probability of site vacancy. Since b(z, n)/2 ≤ (z−n−1)/(z−1),

this function reduces the rate from that which arises under an assumption of uniformly-distributed agents, to account

for the mechanism of proliferation which increases the likelihood of agents occupying adjacent sites.

We evaluate the distribution of the state of this approximating Markov chain using EXPOKIT (Sidje 1998). From

this distribution we may evaluate any quantity of interest, such as the marginal PMF of the position of the rightmost

agent shown by the broken curves in Figs. 3 and 4. We discuss these figures and their implications next.

4. Results and Discussion

PMFs of the rightmost NC agent have been generated with the two different stopping criteria (either a final length

L f or a final time t f is chosen), for various values of the NC proliferation rate λp and the initial position of the

rightmost agent z0.

When the colonization process is terminated at a fixed domain length L f = 197, with an average time of simulation

t̄ = 8 (Fig. 3), the effect of increasing both λp and z0 is an increase in colonization success, indicated by the probability

distribution of the position of the advancing NC colonization front. The spikes in the PMFs (Figs. 3(b)–(d)) at

L f = 197 correspond to NC agents that happened to reach the end of the domain during the simulations and then

being transported by the domain growth mechanism.

Alternatively, when the colonization process is terminated at a fixed time t f = 8, with an average final length of

domain L̄ f = 197 (Figs. 4), we observe that there is a smaller increase in the advancing colonization front (Fig. 4)

for the same increase in proliferation rate of that in the fixed final length case (Figs. 3(c)–(d) with the same parameter

values). Also noteworthy, the spikes in the PMFs are no longer present in Fig. 4, due to the (large) variability in the

final length of the domain.

Moreover, the comparison between the averaged simulation data (light grey curves) and Markov chain approxi-

mation (black broken curves) for both sets of results is excellent. Therefore, our approximate Markov chain is a good

approximation to the agent-based model.

The accuracy of the Markov chain approximation is further examined by the sum, Q, of marginal probabilities of

occupancy P(z):

Q =

L f
∑

z=⌊βL f ⌋

P(z).

In Fig. 5 we chose β = 3/4 for the case where a given L f is the stopping criteria. The effect of increasing both

the NC proliferation and motility rate (λp and λm respectively), for three values of the gut (domain) growth rate (λg)

is illustrated. The quantity Q provides a probabilistic indicator of colonization success similar to that shown in the

schematic of Fig. 1. Note that as the value of β→ 1−, the curves will increase at a less rapid rate.

Comparison between Fig. 5(a) and (b) show that the Q increases more rapidly as the NC agent proliferation rate,

λp, is increased than when the NC agent motility rate, λm, is increased. Indeed the results suggest that increasing

the NC proliferation is the most effective way of decreasing the probability of failure to complete colonization (i.e.,

Hirschsprung Disease), for a fixed or normal gut growth rate.
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Figure 5: Sum of probabilities Q, in the last 25% of the length of tissue, L f = 197, L(0) = 8 and z0 = 2. The arrow indicates the increasing rate of

gut growth for the three sets of results, λg = {0.2, 0.4, 0.8}. The agent-based model, averaged over M = 10000 simulations, (black markers) and the

Markov chain approximation (broken curves) are both illustrated. (a) Increasing proliferation rate with fixed motility rate; λm = 1. (b) Increasing

motility rate with fixed proliferation rate; λp = 1.

The puzzle of incomplete penetrance of a disease phenotype is usually explained by assuming that, between

individuals with the same primary disease-causing mutation, other pre-existing differences occur which determine

the difference in disease phenotype. In individuals with different genotypes, this difference in disease expression

is assumed to occur mostly because individuals have different alleles of so-called disease modifier genes (Nadeau

2003). Indeed, a number of genes that modify the penetrance of Hirschsprung Disease genes have been described

(Wallace & Anderson 2011). In highly inbred animals or monozygotic twins each individual has the same modifier

gene variants, yet reduced penetrance disease still occurs. In this case, one assumption is that differences occur even

between such closely related individuals in the gestational or post-gestational environment, and this differentially

influences gene expression (Khoury et al. 1988). The second assumption is that differences in expression of genes

that influence the specific phenotype can arise between individuals by somatic genetic or epigenetic mutations. These

two effects can interact in a complex way (Gordon et al. 2012). In any case, although these genetic differences may

arise stochastically, once present they drive the phenotype so that some individuals are affected while others with the

same primary disease-causing mutation are not. In theory at least these gene sequence or expression differences, or

epigenetic differences, can be discovered by large scale genetic testing (Grundberg et al. 2012).

We propose here an additional and fundamentally different mechanism for incomplete penetrance which requires

no differences of genes or their expression, or change of environmental conditions. This explanation depends on the

rules that govern defined aspects of the behaviour of individual cells having innately stochastic components, in this

case their proliferation (Cheeseman et al. 2014) and movement (Young et al. 2014). This same model could apply to

many other incompletely penetrant birth defects, particularly neurocristopathies (Singh et al. 2002). This means that

in such cases prognostic certainty at an individual level cannot be obtained even if all determinants are known, and

adds to the considerable difficulties in risk assessment for diseases with incomplete penetrance (Emery 1986).

To test stochastic causation in experiments is a formidable challenge. The genetically deterministic alternative

could be tested in inbred mice with incompletely penetrant Hirschsprung-like phenotype such as these recently pro-

duced (Uesaka et al. 2008). This could be performed by comparing individuals at the earliest stage when differences

in their ENS can be detected. This early stage would be necessary to capture the gene expression signature at or near-

est the time when causative developmental genetic mechanisms are acting. Demonstration, for example by microarray

technology, that gene expression differences in ENS cells or in cells of their microenvironment occurred between dif-

ferent individuals, and that these correlated with the presence or degree of their Hirschsprung-like phenotype would

be consistent with an explanation determined by gene expression levels. This of course would not rule out additional

sources of variation. In contrast, failure to demonstrate any such correlated differences would not be consistent with

this genetic determinist model, and would allow (but not prove) that the discordancy arises at a level above gene

expression, such as we propose. To more directly investigate whether this could be due to the stochasticity of cell

behavior, as proposed here, genetic alterations might be made to the rules of cell behaviour. Isolated ENS cells in gut

tissue show a random walk which is directionally biased by cell contacts (Young et al. 2014). The cell speed could
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be preserved while the cells’ directional walk probabilities could be altered. One way this could be implemented

experimentally is by providing a consistent invariant directional bias by introducing an over-riding chemotactic gra-

dient (Young et al. 2001). In addition, the directional response to cell contact could also be manipulated by targeting

molecules that control contact inhibition of locomotion (Stramer et al. 2013). Both these should lead to a shift of the

curve shown in Fig. 1, consistent with the direction of bias.
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