INTERACTIVE WHITEBOARD:
Adoption and the Impact of its Utilization on Student Learning in South Australian Secondary Schools

Amrit Pal Kaur

MSc (Hons), BEd (GNDU, Amritsar)
MEd (Science & Technology) (The University of Adelaide)

This thesis is submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

The University of Adelaide

School of Education
Faculty of Arts
The University of Adelaide

December, 2014

Supervisory Panel:

Dr Igusti Ngurah Darmawan
A/Professor Christopher Dawson
Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: ______________________

Date : ______________________
Contents

List of Figures

List of Tables

Abstract

Acknowledgements

Chapter 1: Introduction

1.1 Background/Context of the Study

1.1.1 Information and Communication Technology (ICT)

1.1.2 ICT in Education

1.1.3 Scenario of ICT in Australian education system

1.1.4 ICT educational research: a broad picture

1.1.5 Introduction of IWB in Australian education system

1.1.6 What is Interactive Whiteboard?

1.1.7 IWB educational research

1.2 Statement of Research Problem

1.2.1 Issues in ICT Educational Research

1.2.2 Issues in IWB Educational Research

1.2.2.1 Lack of IWB studies in Australian context

1.2.2.2 Lack of large-scale quantitative research studies

1.2.2.3 Lack of studies to investigate the impact of IWB use on student learning

1.3 Aims of the Research

1.4 Key Research Questions

1.5 Importance of the Research

1.6 Limitations of the Research

1.7 Description of the Chapters of the Thesis

1.8 Summary
Chapter 2: Literature Review for Theoretical Framework

2.1 Introduction 24
2.2 Theoretical Framework 24

2.2.1. The Development of the Theoretical Framework 25

2.2.1.1 Adoption of ICT in education: in-sights from the literature 26

2.2.1.1.1 Theories and Models 27
2.2.1.1.2 Teachers: the key to success 30
2.2.1.1.3 Students: the ultimate end-users 33

2.2.1.2 Classroom Environment: setting for educational activity 34

2.2.1.2.1 Theories of Learning- Constructivism 35
2.2.1.2.2 Learning Environment - Educational Activity Setting Framework 36
2.2.1.2.3 Educational activity setting with IWB as a tool 39
 A. IWB and classroom interactivity 41
 B. Stages of IWB use by teachers 42

2.2.1.3 Student Learning: the educational end-product 40

2.2.1.3.1 Students Approaches to Learning (SAL) theory 43
2.2.1.3.2 3-P model of learning process 44
2.2.1.3.3 Taxonomy of Learning Objectives- the cognitive domain 46

2.2.2 The Explanation of the Theoretical Framework 48

2.3 Summary 51

Chapter 3: Data Collection: Methods and Methodology 52

3.1 Introduction 52
3.2 Research Design 52

3.2.1 Data Collection Methods 52

3.2.2 Sample 53

3.2.3 Preparation of Instruments for Data Collection 54

3.2.3.1 Survey Questionnaires 54
3.2.3.1.1 Teacher Questionnaire 55
3.2.3.1.2 Student Questionnaire 61
3.2.3.1.3 School Questionnaire 66
3.2.3.2 Interviews 66
3.2.3.2.1 Preparation of the Interview Questions 67
3.3 Ethical Considerations 68
3.4 Pilot testing of the instruments 69
 3.4.1 Pilot data analysis 71
 3.4.2 Finalising the Instruments 72
3.5 Final Data Collection procedure 73
 3.5.1 Selection of schools, teachers and student participants 73
 3.5.2 Administration of the survey Questionnaires 74
 3.5.3 Conducting the Interviews 76
3.6 Summary 77

Chapter 4: Data Preparation and Descriptive Analysis 78
 4.1 Introduction 78
 4.2 Data Preparation 78
 4.2.1 Summary of the items used in research questionnaires 79
 4.2.1.1 Summary of items used in Teacher Questionnaire 79
 4.2.1.2 Summary of items used in Student Questionnaire 83
 4.2.2 Missing Data 88
 4.3 Descriptive analysis 89
 4.3.1 Mean, Variance and Standard deviation 89
 4.3.2 Test for Normality of Data 90
 4.4 Summary 91

Chapter 5: Demographic Information on Participants 92
 5.1 Introduction 92
 5.2 Schools 92
 5.3 Teacher participants 94
 5.3.1 Type of Schools 94
5.3.2 Gender distribution of Teacher Participants 95
5.3.3 Age of the Teacher Participants 96
5.3.4 Teaching experience of the Teacher Participants 97
5.3.5 Teaching Qualifications of the Participants 98
5.3.6 Subject-areas taught by the participants using IWB 98
5.3.7 Year level to which the participants teach using IWB 100
5.3.8 Access to Computer and Internet by teacher participants 100
5.3.9 Computer Literacy of teacher participants 100
5.3.10 Frequency of classroom computer use by teacher participants 102
5.3.11 Computer Training of teacher participants 102
5.3.12 Access to IWB by teacher participants 103
5.3.13 Frequency of IWB use by teacher participants 103
5.3.14 Type of IWB related training of teacher participants 104
5.3.15 IWB related support from School for teacher participants 104
5.3.16 Competence of teacher participants at working with IWB 105
5.3.17 IWB Confidence level of teacher participants 105
5.3.18 IWB Experience level of teacher participants 106

5.4 Student participants 107
5.4.1 Number of Students from each School 107
5.4.2 Types of the Schools 107
5.4.3 Gender of the student participants 107
5.4.4 Year level of the student participants 108
5.4.5 Subject-areas learnt using IWB by student participants 109
5.4.6 Access to Computer and Internet by student participants 111
5.4.7 Frequency of Computer Use at School by student participants 111
5.4.8 Frequency of Computer Use by student participants away from School 111
5.4.9 Computer Literacy Level of student participants 112
5.4.10 IWB installed in Classrooms of student participants 114
5.4.11 Frequency of IWB use by teachers of student participants 115
5.4.12 Competence and confidence levels of student participants in using IWB 115
5.5 Summary 118

Chapter 6: Validation of the Teacher Questionnaire Scales 119

6.1 Introduction 119
6.2 Statistical techniques used in instrument validation 119
 6.2.1 Reliability 119
 6.2.2 Validity 120
 6.2.2.1 Content Validity 121
 6.2.2.2 Criterion-related validity 122
 6.2.2.3 Construct validity 122
 6.2.2.3.1 Factor analysis 122
 6.3 Use of SPSS software for the validation of the scales 124
 6.4 Use of AMOS software for the validation of the scales 124
 6.5 Structural Equation Modeling (SEM) 124
 6.6 Confirmatory Factor Analysis for the current study using AMOS 125
6.7 Findings 128
 6.7.1 Scale 1: Attitudes towards ICT (AICT) 128
 6.7.1.1 Reliability of the Scale 128
 6.7.1.2 Factor Analysis using SPSS 128
 6.7.1.3 Final Reliability of the Scale 129
 6.7.1.4 Factor Analysis using SPSS 130
 6.7.1.5 Confirmatory Factor Analysis using AMOS 131
 6.7.2 Scale 2: Attitudes towards IWB (AIWB) 134
 6.7.2.1 Reliability of the Scale 134
 6.7.2.2 Factor Analysis using SPSS 134
 6.7.2.3 Final Reliability of the Scale 134
 6.7.2.4 Final Factor Analysis using SPSS 136
 6.7.2.5 Confirmatory Factor Analysis using AMOS 136
 6.7.3 Scale 3: General Approach towards Teaching (ATI) 140
6.7.3.1 Reliability of the Scale 140
6.7.3.2 Factor Analysis using SPSS 140
6.7.3.3 Final Reliability of the Scale 140
6.7.3.4 Factor Analysis using SPSS 142
6.7.3.5 Confirmatory Factor Analysis using AMOS 142

6.7.4 Scale 4: Classroom Interactions using IWB (CIIWB) 145
6.7.4.1 Reliability of the Scale 146
6.7.4.2 Factor Analysis using SPSS 146
6.7.4.3 Final Reliability of the Scale 146
6.7.4.4 Factor Analysis using SPSS 146
6.7.4.5 Confirmatory Factor Analysis using AMOS 147

6.8 Summary 150

Chapter 7: Validation of the Student Questionnaire Scales 151

7.1 Introduction 151
7.2 Scale 1: Attitudes towards ICT (AICT) 151
7.2.1 Reliability of the Scale 152
7.2.2 Factor Analysis using SPSS 153
7.2.3 Confirmatory Factor Analysis using AMOS 154
7.3 Scale 2: Attitudes towards IWB (AIWB) 157
7.3.1 Reliability of the Scale 158
7.3.2 Factor Analysis 158
7.3.3 Final Reliability Analysis using SPSS 158
7.3.4 Factor Analysis using SPSS 158
7.3.5 Confirmatory Factor Analysis using AMOS 159
7.4 Scale 3: Classroom Interactions using IWB (CIIWB) 162
7.4.1 Reliability of the Scale 163
7.4.2 Factor Analysis 163
7.4.3 Confirmatory Factor Analysis using AMOS 163
7.5 Scale 4: Learning Approaches using IWB (LA) 166
7.5.1 Reliability of the Scale 166
7.5.2 Factor Analysis using SPSS 166
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5.3 Final Reliability Analysis using SPSS</td>
<td>168</td>
</tr>
<tr>
<td>7.5.4 Factor Analysis using SPSS</td>
<td>168</td>
</tr>
<tr>
<td>7.5.5 Confirmatory Factor Analysis using AMOS</td>
<td>169</td>
</tr>
<tr>
<td>7.6 Scale 5: Learning Outcomes using (LO)</td>
<td>172</td>
</tr>
<tr>
<td>7.6.1 Reliability of the Scale</td>
<td>174</td>
</tr>
<tr>
<td>7.6.2 Factor Analysis</td>
<td>174</td>
</tr>
<tr>
<td>7.6.3 Dropping the Items</td>
<td>174</td>
</tr>
<tr>
<td>7.6.4 Final Reliability Analysis using SPSS</td>
<td>174</td>
</tr>
<tr>
<td>7.6.5 Factor Analysis using SPSS</td>
<td>175</td>
</tr>
<tr>
<td>7.6.6 Confirmatory Factor Analysis using AMOS</td>
<td>175</td>
</tr>
<tr>
<td>7.7 Summary</td>
<td>179</td>
</tr>
<tr>
<td>Chapter 8: Single Level Path Analysis: Teacher Level</td>
<td>180</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>180</td>
</tr>
<tr>
<td>8.2 Path Analysis</td>
<td>180</td>
</tr>
<tr>
<td>8.2.1 Model Specification using a Path Diagram</td>
<td>181</td>
</tr>
<tr>
<td>8.2.2 Trimming the path model</td>
<td>183</td>
</tr>
<tr>
<td>8.3 Variables used in the Teacher Level Path Analysis</td>
<td>183</td>
</tr>
<tr>
<td>8.4 Results of Teacher Level Path Analysis</td>
<td>187</td>
</tr>
<tr>
<td>8.4.1 Structural Model results at the teacher level</td>
<td>187</td>
</tr>
<tr>
<td>8.4.1.1 Computer Literacy</td>
<td>190</td>
</tr>
<tr>
<td>8.4.1.2 IWB Literacy</td>
<td>190</td>
</tr>
<tr>
<td>8.4.1.3 Teaching Experience</td>
<td>191</td>
</tr>
<tr>
<td>8.4.1.4 Attitudes towards ICT (AICT)</td>
<td>191</td>
</tr>
<tr>
<td>8.4.1.5 Attitudes towards IWB (AIWB)</td>
<td>192</td>
</tr>
<tr>
<td>8.4.1.6 Conceptual Change/Student Focused Teaching Approach (ATI_CCSF)</td>
<td>193</td>
</tr>
<tr>
<td>8.4.1.7 Information Transmission/Teacher Focused Teaching Approach (ATI_ITTF)</td>
<td>194</td>
</tr>
<tr>
<td>8.4.1.8 Classroom Interactions using IWB (CIIWB)</td>
<td>195</td>
</tr>
<tr>
<td>8.4.2 Model Fit Summary for Student Level Path Model</td>
<td>197</td>
</tr>
<tr>
<td>8.5 Summary</td>
<td>197</td>
</tr>
</tbody>
</table>
Chapter 9: Single Level Path Analysis: Student Level

9.1 Introduction

9.2 Variables used in the Student Level Path Analysis

9.3 Results of Student Level Path Analysis

9.3.1 Measurement model results at the student level

9.3.1.1 Attitudes towards ICT (AICT)

9.3.1.2 Attitudes towards IWB (AIWB)

9.3.1.3 Classroom Interactions using IWB (CIIWB)

9.3.1.4 Surface Learning Approach using IWB (SLA)

9.3.1.5 Deep Learning Approach using IWB (DLA)

9.3.1.6 Learning Outcomes using IWB (LO)

9.3.2 Structural Model results at the student level

9.3.2.1 IWB installed in classroom

9.3.2.2 Frequency IWB Use by Teacher

9.3.2.3 Frequency Computer Use School

9.3.2.4 Frequency Computer Use away from school

9.3.2.5 Computer Literacy

9.3.2.6 IWB confidence

9.3.2.7 IWB competence

9.3.2.8 Attitudes towards ICT (AICT)

9.3.2.9 Attitudes towards IWB (AIWB)

9.3.2.10 Classroom Interactions using IWB (CIIWB)

9.3.2.11 Surface Learning Approach using IWB (SLA)

9.3.2.12 Deep Learning Approach using IWB (DLA)

9.3.2.13 Learning Outcomes using IWB (LO)

9.3.3 Model Fit Summary for Student Level Path Model

9.4 Summary

Chapter 10: Hierarchical Linear Modeling

10.1 Introduction

10.2 Hierarchical Linear Modeling (HLM)

10.2.1 Model Building and Specification in HLM
10.2.2 Model Trimming in HLM 228
10.3 Conceptual HLM models 230
10.4 Variables Used in Three-level HLM Models 230
10.5 Hypothesised Models 233
10.6 Three-Level Model Results 234

10.6.1 Three-Level Deep Learning Approach using the IWB Model 235
10.6.1.1 Null Model 236
10.6.1.1.1 Level-1 Model 236
10.6.1.1.2 Level-2 Model 237
10.6.1.1.3 Level-3 Model 237
10.6.1.1.4 Variability of Outcome variable 238
10.6.1.2 Final Model 239
10.6.1.2.1 Final Level-1 Model 239
10.6.1.2.2 Final Level-2 model 239
10.6.1.2.3 Final Level-3 Model 240
10.6.1.2.4 Final Three-Level Model 240
10.6.1.3 The Cross-Level Interaction Effects 244
10.6.1.3.1 Interaction Effect of age of the teachers (AGE) with students' perceived classroom interactions using IWB (CIIWB) 244
10.6.1.3.2 Interaction Effect of IWB literacy of the teachers (IWB_LITE) with students' perceived classroom interactions using IWB (CIIWB) 247
10.6.1.3.3 Interaction Effect of computer literacy of the teachers (COMP_LIT) with students' perceived classroom interactions using IWB (CIIWB) 249
10.6.1.3.4 Interaction Effect of Students' full access to software and hardware (SASH) with students' perceived classroom interactions using IWB (CIIWB) 252
10.6.1.4 Estimates of Variance components 254
10.6.2 Three-Level Learning Outcomes using IWB Model 255
10.6.2.1 Null Model
10.6.2.1.1 Level-1 Model
10.6.2.1.2 Level-2 Model
10.6.2.1.3 Level-3 Model
10.6.2.1.4 Variability of Outcome variable

10.6.2.2 Final Model
10.6.2.2.1 Final Level-1 Model
10.6.2.2.2 Final Level-2 model
10.6.2.2.3 Final Level-3 Model
10.6.2.2.4 Final Three-Level Model

10.6.2.3 The Cross-Level Interaction Effects
10.6.2.3.1 Interaction Effect of teachers' computer Literacy (COMP_LIT) with students' perceived classroom interactions using IWB (CIIWB)
10.6.2.3.2 Interaction Effect of teachers' gender (GENDER_T) with students' perceived deep learning approach using IWB (DLA)
10.6.2.3.3 Interaction Effect of frequency of access to software and hardware for students (SASH) with the gender of the students (GENDER)

10.6.2.4 Estimates of Variance components

10.7 Summary

Chapter 11: Qualitative Findings

11.1 Introduction

11.2 Data Analysis
11.2.1 Data Preparation
11.2.2 Coding
11.2.3 Theme generating

11.3 Sample

11.4 Findings
11.4.1 Positive factors contributing to the adoption of IWB by teachers

Chapter 11: Qualitative Findings
11.4.1.1 Availability of IWB

11.4.1.2 Perception of teachers about IWB to improve Teaching and Learning

11.4.1.2.1 Perceived Improvement in Teaching (Teacher-focused)

11.4.1.2.2 Perceived Improvement in Learning (Student-focused)

11.4.1.3 Encouragement, Training and Support to use IWB

11.4.1.3.1 Encouragement by the schools

11.4.1.3.2 Training to use IWB

11.4.1.3.3 Peer support

11.4.1.4 Other factors

11.4.1.4.1 Expectations of others

11.4.1.4.2 Behaviour Management

11.4.1.4.3 Unique Factors

11.4.2 Classroom Interactions/Student involvement

11.4.3 Gradual evolvement of the use of IWB

11.4.4 Impact on Student Learning

11.4.4.1 Learning Approach/Attitudes

11.4.4.2 Learning Outcomes

11.4.5 Negative issues related to IWB use by teachers

11.4.5.1 Barriers/Constraints of using IWB

11.4.5.2 Negative aspects of IWB use

11.4.5.3 Overcoming Barriers

11.4.6 Future Use of IWB by teachers

11.4.7 Recommendations for novice IWB users

11.5 Conclusion

Chapter 12: Discussion and Conclusion

12.1 Introduction

12.2 Achieving the Research Aims

12.3 ICT and IWB related facilities

12.4 Adoption of IWB by teachers

xiii
12.5 Attitudes towards ICT 338
 12.5.1 Teachers 338
 12.5.2 Students 339
12.6 Attitudes towards IWB 341
 12.6.1 Teachers 341
 12.6.2 Students 343
12.7 Teaching Approaches 345
 12.7.1 Conceptual Change/Student Focused Teaching Approach 345
 12.7.2 Information Transmission/Teacher Focused Teaching Approach 346
12.8 Classroom Interactions using IWB 347
 12.8.1 Teachers 347
 12.8.2 Students 352
12.9 Student Learning Approaches 353
 12.9.1 Teachers 354
 12.9.2 Students 355
 12.9.2.1 Deep Learning Approach 355
 12.9.2.2 Surface Learning Approach 358
12.10 Student Learning Outcomes 359
 12.10.1 Teachers 359
 12.10.2 Students 360
12.11 Theoretical and Practical Implications 365
12.12 Limitations and Further Research 367
12.13 Summary 368
12.14 Final Conclusion 372

Appendices 373
Appendix A: The Pilot Study Teacher Questionnaire 374
Appendix B: The Pilot Study Student Questionnaire 390
Appendix C: The Final Teacher Questionnaire 402
Appendix D: The Final Student Questionnaire 414
Appendix E: The School Questionnaire 427
Appendix F: Information Sheet for the School 430
Appendix G: Information Sheet for the Teacher Participants 432
Appendix H: Information Sheet for the Student Participants 434
Appendix I: Information Sheet for the Parents 436
Appendix J: Consent Form 438
Appendix K: Parent Consent Form 440
Appendix L: Complaint Form 442
Appendix M: Interview Questions for Teacher Participants 444
Appendix N: Interview Transcription Sample 447
Appendix O: Ethics Approval from the University of Adelaide 455
Appendix P: Ethics Approval from DECS 457
Appendix Q: Ethics Approval from Catholic Association 459
Appendix R: Descriptive analysis results for teacher data (Teacher Questionnaire) 463
Appendix S: Descriptive analysis results for student data (Student Questionnaire) 467
Appendix T: Skewness and Kurtosis values for variables on Teacher Questionnaire 471
Appendix U: Skewness and Kurtosis values for variables on Student Questionnaire 475
Appendix V: Summary Statistics of Missing data for Teachers 479
Appendix W: Summary Statistics of Missing data for Students 485
Appendix X: Standardised Results of Confirmatory Factor Analysis (CFA) (Teachers) 491
Appendix Y: Standardised Results of Confirmatory Factor Analysis (CFA) (Students) 512

Bibliography 542
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1:</td>
<td>Different Components of a typical IWB</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.1:</td>
<td>Tripartite Model of Attitudes</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Technology Acceptance Model</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.3:</td>
<td>Theory of Planned Behaviour</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.4:</td>
<td>Biggs’ 3-P model of learning process</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.5:</td>
<td>Bloom’s Taxonomy</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.6:</td>
<td>Bloom’s Revised Taxonomy</td>
<td>47</td>
</tr>
<tr>
<td>Figure 2.7:</td>
<td>Theoretical Framework: Impact of the use of Interactive Whiteboard (IWB) on the secondary school students' learning in South Australia</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.1:</td>
<td>Measurement Model</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.2:</td>
<td>Instrumentation</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.1:</td>
<td>Distribution of type of schools of teacher participants</td>
<td>94</td>
</tr>
<tr>
<td>Figure 5.2:</td>
<td>Gender of the Teacher Participants</td>
<td>95</td>
</tr>
<tr>
<td>Figure 5.3:</td>
<td>Age of the Teacher participants</td>
<td>96</td>
</tr>
<tr>
<td>Figure 5.4:</td>
<td>Teaching Experience of the Participants</td>
<td>97</td>
</tr>
<tr>
<td>Figure 5.5:</td>
<td>Teaching Qualifications of the Participants</td>
<td>98</td>
</tr>
<tr>
<td>Figure 5.6:</td>
<td>Year levels to which teachers teach using IWB</td>
<td>100</td>
</tr>
<tr>
<td>Figure 5.7:</td>
<td>Computer experience level of teacher participants</td>
<td>101</td>
</tr>
<tr>
<td>Figure 5.8:</td>
<td>Computer Competency of teacher participants</td>
<td>101</td>
</tr>
<tr>
<td>Figure 5.9:</td>
<td>Computer Confidence of teacher participants</td>
<td>102</td>
</tr>
<tr>
<td>Figure 5.10:</td>
<td>Frequency of IWB use by teacher participants</td>
<td>103</td>
</tr>
<tr>
<td>Figure 5.11:</td>
<td>IWB competence level of teacher participants</td>
<td>105</td>
</tr>
<tr>
<td>Figure 5.12:</td>
<td>IWB Confidence level of teacher participants</td>
<td>106</td>
</tr>
<tr>
<td>Figure 5.13:</td>
<td>IWB Experience level of teacher participants</td>
<td>106</td>
</tr>
<tr>
<td>Figure 5.14:</td>
<td>Distribution of the number of student participants based on the types of schools</td>
<td>108</td>
</tr>
<tr>
<td>Figure 5.15:</td>
<td>Distribution of the student participants based on their year level</td>
<td>109</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 5.16</td>
<td>Frequency of Computer Use by student participants at school</td>
<td>112</td>
</tr>
<tr>
<td>Figure 5.17</td>
<td>Frequency of Computer Use by student participants away from school</td>
<td>112</td>
</tr>
<tr>
<td>Figure 5.18</td>
<td>Computer use experience of student participants</td>
<td>113</td>
</tr>
<tr>
<td>Figure 5.19</td>
<td>Computer competency level of student participants</td>
<td>113</td>
</tr>
<tr>
<td>Figure 5.20</td>
<td>Computer confidence level of student participants</td>
<td>114</td>
</tr>
<tr>
<td>Figure 5.21</td>
<td>IWB installed in classrooms of student participants</td>
<td>114</td>
</tr>
<tr>
<td>Figure 5.22</td>
<td>Frequency of IWB use by teacher</td>
<td>115</td>
</tr>
<tr>
<td>Figure 5.23</td>
<td>IWB Competence level of student participants</td>
<td>116</td>
</tr>
<tr>
<td>Figure 5.24</td>
<td>IWB Confidence level of student participants</td>
<td>117</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>1 Factor model for AICT scale of Teacher Questionnaire</td>
<td>133</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Hierarchical model for AIWB scale of Teacher Questionnaire</td>
<td>139</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>2 Orthogonal Factor Model for ATI scale of Teacher Questionnaire</td>
<td>144</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Hierarchical Model for CIIWB scale of Teacher Questionnaire</td>
<td>149</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Hierarchical model for AICT scale of Student Questionnaire</td>
<td>156</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Hierarchical model for AIWB scale of Student Questionnaire</td>
<td>161</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>Hierarchical model for CIIWB scale of Student Questionnaire</td>
<td>165</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>Hierarchical models for DLA and SLA scales of Student Questionnaire</td>
<td>171</td>
</tr>
<tr>
<td>Figure 7.5</td>
<td>Hierarchical model for the LO scale of Student Questionnaire</td>
<td>178</td>
</tr>
<tr>
<td>Figure 8.1</td>
<td>A general structural equation model</td>
<td>182</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Hypothetical Model at Teacher Level</td>
<td>184</td>
</tr>
<tr>
<td>Figure 8.3</td>
<td>Single Level Path Model at Teacher Level</td>
<td>188</td>
</tr>
<tr>
<td>Figure 9.1</td>
<td>Hypothetical Path Model at the Student Level</td>
<td>200</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Figure 9.2:</td>
<td>Student Level Path Model at Student Level</td>
<td>206</td>
</tr>
<tr>
<td>Figure 10.1:</td>
<td>Three-Level Deep Learning Approach using IWB Model</td>
<td>229</td>
</tr>
<tr>
<td>Figure 10.2:</td>
<td>Three-Level Learning Outcomes using IWB Model</td>
<td>229</td>
</tr>
<tr>
<td>Figure 10.3:</td>
<td>The hypothesised variables of the three-level Deep Learning Approach using IWB model</td>
<td>234</td>
</tr>
<tr>
<td>Figure 10.4:</td>
<td>The hypothesised variables of the three-level Learning Outcomes using IWB model</td>
<td>235</td>
</tr>
<tr>
<td>Figure 10.5:</td>
<td>Three-Level Model of Deep Learning Approach using IWB</td>
<td>243</td>
</tr>
<tr>
<td>Figure 10.6:</td>
<td>Interaction Effect of age of the teachers (AGE) with students' perceived classroom interactions using IWB (CIIWB)</td>
<td>246</td>
</tr>
<tr>
<td>Figure 10.7:</td>
<td>Interaction Effect of IWB literacy of the teachers (IWB_LITE) with students' perceived classroom interactions using IWB (CIIWB)</td>
<td>248</td>
</tr>
<tr>
<td>Figure 10.8:</td>
<td>Interaction Effect of computer literacy of the teachers (COMP_LIT) with students' perceived classroom interactions using IWB (CIIWB)</td>
<td>251</td>
</tr>
<tr>
<td>Figure 10.9:</td>
<td>Interaction Effect of Students' full access to software and hardware (SASH) with students' perceived classroom interactions using IWB (CIIWB)</td>
<td>254</td>
</tr>
<tr>
<td>Figure 10.10:</td>
<td>Three-Level Model of Learning Outcomes using IWB</td>
<td>265</td>
</tr>
<tr>
<td>Figure 10.11:</td>
<td>Interaction Effect of teachers' computer literacy (COMP_LIT) with students' perceived classroom interactions using IWB (CIIWB)</td>
<td>269</td>
</tr>
<tr>
<td>Figure 10.12:</td>
<td>Interaction Effect of teachers' gender (GENDER_T) with students' perceived deep learning approach using IWB (DLA)</td>
<td>271</td>
</tr>
<tr>
<td>Figure 10.13:</td>
<td>Interaction Effect of frequency of access to software and hardware for students (SASH) with the gender of the students (GENDER)</td>
<td>273</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1:</td>
<td>Cronbach's Alpha values for different scales of Student Questionnaire</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.2:</td>
<td>Table showing description of the number of participants</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Scale 1: Attitudes towards ICT (AICT)</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Scale 2: Attitudes towards IWB (AIWB)</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Scale 3: Approaches towards Teaching (ATI)</td>
<td>81</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>Scale 4: Classroom Interactions using IWB (CIIWB)</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.5:</td>
<td>Scale 1: Attitudes towards ICT (AICT)</td>
<td>83</td>
</tr>
<tr>
<td>Table 4.6:</td>
<td>Scale 2: Attitudes towards IWB (AIWB)</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.7:</td>
<td>Scale 3: Classroom Interactions using IWB (CIIWB)</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.8:</td>
<td>Scale 4: Learning Approaches (LA)</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.9:</td>
<td>Scale 5: Learning Outcomes (LO)</td>
<td>87</td>
</tr>
<tr>
<td>Table 5.1:</td>
<td>General Information about participating Schools</td>
<td>93</td>
</tr>
<tr>
<td>Table 5.2:</td>
<td>Cross-tabulation of Teachers by Type of the School and School ID</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.3:</td>
<td>Gender of the Teacher Participants</td>
<td>95</td>
</tr>
<tr>
<td>Table 5.4:</td>
<td>Cross-tabulation of Age by Gender of the Teacher participants</td>
<td>96</td>
</tr>
<tr>
<td>Table 5.5:</td>
<td>Teaching Experience of the Teacher Participants</td>
<td>97</td>
</tr>
<tr>
<td>Table 5.6:</td>
<td>Other teaching qualifications specified by the teacher participants</td>
<td>98</td>
</tr>
<tr>
<td>Table 5.7:</td>
<td>Subject-areas taught by teachers using IWB</td>
<td>99</td>
</tr>
<tr>
<td>Table 5.8:</td>
<td>Other subject areas specified by the teacher participants</td>
<td>99</td>
</tr>
<tr>
<td>Table 5.9:</td>
<td>Frequency of Classroom Computer use by teacher participants</td>
<td>102</td>
</tr>
<tr>
<td>Table 5.10:</td>
<td>Type of computer training of teacher participants</td>
<td>103</td>
</tr>
<tr>
<td>Table 5.11:</td>
<td>Type of IWB Training of teacher participants</td>
<td>104</td>
</tr>
<tr>
<td>Table 5.12:</td>
<td>IWB related support for teacher participants</td>
<td>104</td>
</tr>
<tr>
<td>Table 5.13:</td>
<td>Distribution of number of student participants from each School</td>
<td>107</td>
</tr>
<tr>
<td>Table</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Table 5.14:</td>
<td>Cross-tabulation of Student participants by Type of School and Gender</td>
<td>108</td>
</tr>
<tr>
<td>Table 5.15:</td>
<td>Subject areas learnt by student participants using IWB</td>
<td>110</td>
</tr>
<tr>
<td>Table 5.16:</td>
<td>Other Subject-areas specified by student participants</td>
<td>110</td>
</tr>
<tr>
<td>Table 5.17:</td>
<td>Student participant's access to Computer and Internet at and away from School</td>
<td>111</td>
</tr>
<tr>
<td>Table 5.18:</td>
<td>Competence level of student participants at working with IWB</td>
<td>116</td>
</tr>
<tr>
<td>Table 5.19:</td>
<td>Confidence level of student participants at working with IWB</td>
<td>117</td>
</tr>
<tr>
<td>Table 6.1:</td>
<td>Summary of AICT scale on Teacher Questionnaire</td>
<td>129</td>
</tr>
<tr>
<td>Table 6.2:</td>
<td>Cronbach's alpha coefficient for each sub-scale of AICT scale</td>
<td>130</td>
</tr>
<tr>
<td>Table 6.3:</td>
<td>Factor loadings for AICT scale</td>
<td>130</td>
</tr>
<tr>
<td>Table 6.4:</td>
<td>Fit Index: Model Fit Summary for AICT scale</td>
<td>131</td>
</tr>
<tr>
<td>Table 6.5:</td>
<td>Factor loadings for 1 factor model for AICT scale</td>
<td>132</td>
</tr>
<tr>
<td>Table 6.6:</td>
<td>Summary of the AIWB scale of Teacher Questionnaire</td>
<td>135</td>
</tr>
<tr>
<td>Table 6.7:</td>
<td>Factor loadings of AIWB scale</td>
<td>136</td>
</tr>
<tr>
<td>Table 6.8:</td>
<td>Fit Index: Model Fit Summary for AIWB scale</td>
<td>137</td>
</tr>
<tr>
<td>Table 6.9:</td>
<td>Factor Loadings for Hierarchical model of AIWB scale</td>
<td>138</td>
</tr>
<tr>
<td>Table 6.10:</td>
<td>Summary of items in ATI scale used in Teacher Questionnaire</td>
<td>141</td>
</tr>
<tr>
<td>Table 6.11:</td>
<td>Factor Loadings for ATI scale</td>
<td>142</td>
</tr>
<tr>
<td>Table 6.12:</td>
<td>Fit Index: Model Fit Summary for ATI scale</td>
<td>143</td>
</tr>
<tr>
<td>Table 6.13:</td>
<td>Factor loadings for 2 Orthogonal factor model for ATI scale</td>
<td>143</td>
</tr>
<tr>
<td>Table 6.14:</td>
<td>Summary of items used in CIIWB scale in Teacher Questionnaire</td>
<td>145</td>
</tr>
<tr>
<td>Table 6.15:</td>
<td>Cronbach's alpha coefficient for each sub-scale of CIIWB Scale</td>
<td>146</td>
</tr>
<tr>
<td>Table 6.16:</td>
<td>Factor loadings for CIIWB scale</td>
<td>147</td>
</tr>
<tr>
<td>Table 6.17:</td>
<td>Fit Index: Model Fit Summary for CIIWB scale</td>
<td>148</td>
</tr>
</tbody>
</table>
Table 6.18: Factor loadings for Hierarchical model for CIIWB scale
Table 7.1: Summary of AICT scale on Student Questionnaire
Table 7.2: Cronbach's Alpha Coefficients for each sub-scale of AICT Scale
Table 7.3: Factor Loadings for AICT scale
Table 7.4: Fit Index: Model Fit Comparison for AICT scale
Table 7.5: Factor Loadings for Hierarchical model of AICT scale
Table 7.6: Summary of AIWB scale of Student Questionnaire
Table 7.7: Cronbach's alpha coefficient for each sub-scale of AIWB Scale
Table 7.8: Factor Loadings of AIWB scale
Table 7.9: Fit Index: Model Fit Comparison for AIWB scale
Table 7.10: Factor loadings for hierarchical model of AIWB scale
Table 7.11: Summary of CIIWB scale of Student Questionnaire
Table 7.12: Factor loadings for CIIWB scale
Table 7.13: Fit Index: Model Fit Comparison for CIIWB scale
Table 7.14: Factor loadings for hierarchical model of CIIWB scale
Table 7.15: Summary of LA scale of Student Questionnaire
Table 7.16: Cronbach's alpha coefficient for each sub-scale of LA scale
Table 7.17: Factor loadings for Learning Approaches using IWB (LA) Scale
Table 7.18: Fit Index: Model Fit Summary for LA scale
Table 7.19: Factor loadings for Deep Learning Approach using IWB (DLA) scale
Table 7.20: Factor loadings for Surface Learning Approach using IWB (SLA) scale
Table 7.21: Summary of sub-scaling for Learning Outcomes using IWB Scale
Table 7.22: Summary of the Cronbach's Alpha Coefficients for sub-scales of LO scale
Table 7.23: Factor loadings for Learning Outcomes using IWB (LO) Scale
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 7.24</td>
<td>Fit Index: Model Fit Summary for Learning Outcomes using IWB (LO)</td>
<td>176</td>
</tr>
<tr>
<td>Table 7.25</td>
<td>Factor loadings for Learning Outcomes using IWB (LO) Scale</td>
<td>177</td>
</tr>
<tr>
<td>Table 8.1</td>
<td>Variables used in the teacher level path model</td>
<td>185</td>
</tr>
<tr>
<td>Table 8.2</td>
<td>Results of structural model at the teacher level</td>
<td>189</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>Latent variables used in the student level path model</td>
<td>201</td>
</tr>
<tr>
<td>Table 9.2</td>
<td>Other Observed variables used in the student level path model</td>
<td>202</td>
</tr>
<tr>
<td>Table 9.3</td>
<td>Results of measurement model at the student level</td>
<td>203</td>
</tr>
<tr>
<td>Table 9.4</td>
<td>Results of structural model at the student level</td>
<td>207</td>
</tr>
<tr>
<td>Table 10.1</td>
<td>List of Variables used in Three-Level HLM models</td>
<td>231</td>
</tr>
<tr>
<td>Table 10.2</td>
<td>Null Model Results: Three-Level Deep Learning Approach using IWB Model</td>
<td>238</td>
</tr>
<tr>
<td>Table 10.3</td>
<td>Final Model results: Three-Level Model of Deep Learning Approach using IWB</td>
<td>242</td>
</tr>
<tr>
<td>Table 10.4</td>
<td>Estimation of the Variance Components: Three-Level Deep Learning Approach Model</td>
<td>255</td>
</tr>
<tr>
<td>Table 10.5</td>
<td>Null Model Results: Three-Level Learning Outcomes using IWB Model</td>
<td>259</td>
</tr>
<tr>
<td>Table 10.6</td>
<td>Final Model Results: Three-Level Model of Learning Outcomes using IWB</td>
<td>263</td>
</tr>
<tr>
<td>Table 10.7</td>
<td>Estimation of Variance Components: Learning Outcomes using IWB</td>
<td>275</td>
</tr>
<tr>
<td>Table 11.1</td>
<td>Subject-areas taught by the participating teachers using IWB</td>
<td>279</td>
</tr>
<tr>
<td>Table 11.2</td>
<td>IWB Experience of the participating teachers</td>
<td>280</td>
</tr>
</tbody>
</table>
Abstract

This research study explored the adoption and utilization of Interactive Whiteboard (IWB) technology by teachers and students of secondary schools in South Australia, Australia and investigated the impact of its use on the student learning (learning approaches and quality of learning outcomes). This research was conducted using a mixed method design which was comprised of both the quantitative (predominant) and qualitative (supportive) approaches for collecting and analysing data. Three different survey questionnaires were used for the quantitative phase during which data were collected at school (12), teacher (30) and student (269) levels. Interviews were used to collect qualitative data from 16 teachers.

The school questionnaire had some general questions to collect some information regarding the kind of Information and Communication facilities present at the schools; the teacher questionnaire included four scales which were Attitudes towards ICT (AICT), Attitudes towards IWB (AIWB), Approaches towards Teaching (ATT) and Classroom Interactions using IWB (CIIWB); and the student questionnaire was comprised of five scales which were Attitudes towards ICT (AICT), Attitudes towards IWB (AIWB), Classroom Interactions using IWB (CIIWB), Learning Approaches using IWB (LA) and Learning Outcomes using IWB (LO).

The Cronbach’s alpha values and Confirmatory Factor Analysis (CFA) techniques were used to establish the reliability and validity of all these scales. Single Level Path Analysis (SEM) technique was used to examine the relationships among the variables present at teacher and student levels separately. To examine the relationships among the nested variables at three levels (school-teacher-student) and the cross-level interaction effects on the outcome variable, Hierarchical Linear Modeling (HLM) was used. The interview data were hand analysed using open-coding technique.

The findings from the teacher level path analysis revealed that the classroom interaction level of teachers using IWB was positively influenced by their attitudes
towards IWB, the IWB related support they received from schools, their student-focused teaching approach and their age. The results from student level path analysis showed that the students’ perceived classroom interactions using IWB were positively associated with their perceived deep learning approach (direct association) and their perceived quality of learning outcomes (indirect association through deep learning approach). Students’ attitudes towards IWB also had significant positive influence on their perceived deep learning approach, their perceived classroom interactions using IWB and their perceived quality of learning outcomes.

The three-level (HLM) model of deep learning approach using IWB indicated that perceived classroom interactions using IWB (student-level factor), IWB support (teacher-level factor) and ICT integration level in classrooms (school-level factor) had direct positive influence on their perceived deep learning approach. The three-level model of learning outcomes using IWB revealed that students’ perceived learning outcomes when using IWB were directly influenced by their perceived classroom interactions, their attitudes towards IWB, their perceived deep and surface learning approaches, their gender (all student-level factors) and the age of the teacher (teacher-level factor).

Overall, it was evident that the students who had experienced an interactive and enhanced interactive classroom environment using IWB, and those who had more positive attitudes towards IWB tended to adopt a deeper learning approach and the quality of their learning outcomes improved. This association between these important factors provides clear evidence that the IWB technology, when used in an interactive or enhanced interactive way by the teachers and the students, can make the students more inclined towards adopting deeper approach to learning along with improving the quality of their learning outcomes.

The major contribution of this study is in the form of providing the much needed evidence of the impact of the use of IWB on the learning of the secondary school students along with the understanding of the inter-relationships among various other important factors at school, teacher and student levels. In future, more exclusive studies can be done to explore the issues of learning approaches and
learning outcomes using IWB in separate studies using longitudinal or other suitable research methods.

Keywords: Information and Communication Technology (ICT), Interactive Whiteboard (IWB), IWB adoption, IWB use, ICT attitudes, IWB attitudes, classroom interactions using IWB, learning approaches using IWB, learning outcomes using IWB, student learning, teaching approaches, mixed-method research, secondary school teachers, secondary school students, secondary schools, South Australia, Australia.
Acknowledgements

First and foremost, I am grateful to The Almighty God, for always being with me, showering blessings upon me throughout my life and for guiding me and providing me with the courage and strength to complete this study.

It is said in our culture that there is no difference between God and Guru (the Teacher), and I have experienced this to be absolutely true during my research journey, so I would like to express my deepest gratitude and special appreciation to my principal supervisor, Dr. I Gusti Ngurah Darmawan and co-supervisor A/Prof Christopher Dawson for their outstanding guidance, amazing supervision, priceless advice and providing me with an excellent atmosphere during my study. Dr. Darmawan, thank you very much for inspiring and helping me to apply for this scholarship and I can never thank you enough for your endless support, valuable insights and continuous encouragement which kept me going. Dr. Dawson, how can I thank you enough for your valuable suggestions, encouragement and guidance to expand my research horizons by recommending the conferences, both at national and international level, for me to present my work. Your expertise and invaluable advice during the thesis writing phase has helped me to improve my academic writing. I would also like to thank both of my supervisors for their unconditional support, care and patience during the time I was facing difficulties at the personal front of my life. You have helped me to grow as a researcher, an academic and as a person. If it weren't for both of you, I would never have accomplished this.

I would also like to thank the Australian government for providing me the scholarship (Australian Postgraduate Awards) through the University of Adelaide to pursue this degree. Special thanks to the Vice-Chancellor of the University of Adelaide, the Dean of Faculty of Professions and Faculty of Arts, the Head of School of Education, and Postgraduate Coordinator for making available all the facilities and resources needed throughout my candidature. My thanks are also addressed to the Principals, Vice-Principals and ICT coordinators of the participating schools who gave permissions and made arrangements for me to be
able to collect data from their schools and I am extremely thankful to all the participants of the study.

My sincere thanks to Dr. Linda Westphalen, Dr. Francis Ben and other academic staff members in the School of Education who were always there to help and support whenever I needed it during my research study. I am also thankful to the non-academic staff in the School of Education for their helpful services. Many thanks to my friends Ayesha, Dr. Burhannudin, Wilham, Dr. Poulomee and Dr. Joy for all your research related suggestions and fun-filled discussions that made my time at school extremely enjoyable.

And finally, a special thanks to my parents (Mummy ji and Daddy ji) for everything, today I am here just because of you and no words can express my love for you and that how blessed I feel to have you as my parents; thanks to my mother-in-law and father-in-law who had supported me during the writing phase of my thesis. And at the end I would like to thank my husband, Raminder Singh and my loving daughter, Kudrat Kaur for being the most important part of my life and for making it worth living.