Chapter 1 LITERATURE REVIEW ... 1

1.1 GENERAL OVERVIEW OF IODINE’S PHYSIOLOGICAL FUNCTION 1

1.1.1 Iodine and thyroid hormone synthesis ... 1

1.1.2 The regulation of thyroid hormone synthesis in the human body 2

1.1.2.1 The regulation of thyroid hormone synthesis in the general population 2

1.1.2.2 The regulation of thyroid hormone synthesis during pregnancy, lactation and infancy ... 5

1.2 RECOMMENDED DIETARY IODINE INTAKE 9

1.2.1 Iodine requirements in pregnancy, lactation and infancy 9

1.2.2 Natural sources of dietary iodine .. 12

1.2.2.1 Drinking water .. 12
1.2.2.2 Food ... 13

1.3 IODINE DEFICIENCY ... 13

1.3.1 Etiology .. 13

1.3.2 Prevalence .. 14

1.3.3 Consequences of iodine deficiency .. 15

1.3.4 Specific risks of iodine deficiency in pregnant and lactating women 15

1.4 ASSESSMENT OF IODINE STATUS .. 17

1.4.1 Circulating Tg, TSH, T3 and T4 concentrations as indicators of iodine nutrition status 17

1.4.1.1 Thyroid hormone concentration (T3 and T4 levels) .. 17

1.4.1.2 TSH concentration ... 18

1.4.1.3 Tg concentration ... 19

1.4.2 Urinary iodine concentration (UIC) as an indicator of iodine nutrition status 20

1.4.2.1 Background ... 20

1.4.2.2 Methods of UIC measurement ... 23

1.4.3 Breast milk iodine level as an indicator of iodine intake of breastfed infants 23

1.5 IODINE FORTIFICATION IN AUSTRALIA .. 24

1.6 IODINE STATUS OF PREGNANT AND LACTATING WOMEN AND INFANTS IN AUSTRALIA ... 25
1.7 THYROID HORMONES AND METABOLIC HEALTH.................................33

1.7.1 Thyroid function and body composition...33

1.7.1.1 Association between thyroid status and body weight......................33

1.7.1.2 Thyroid function and percent body fat...42

1.7.2 Thyroid function and insulin sensitivity..43

1.7.3 The relationship between thyroid status in early life and metabolic health outcomes later childhood...48

1.8 AIMS OF THIS THESIS..50

Chapter 2 ANALYTICAL METHODOLOGY AND VALIDATION PROCEDURES FOR MEASUREMENT OF UIC, TSH AND TG LEVELS.................................54

2.1 URINARY IODINE CONCENTRATION..54

2.1.1 Principle of the method..54

2.1.2 Materials ..55

2.1.3 Reagents and standards preparation..55

2.1.4 Procedure ..56

2.1.5 Calculation of results ...57

2.1.6 Method validation...57

2.1.6.1 Linearity ..57

2.1.6.2 Recovery test ...58
2.1.6.3 Parallelism ..59
2.1.6.4 Accuracy ..59
2.1.6.5 Precision ...59
2.1.6.6 Limit of detection (LOD), method quantitation Limit (MQL) and instrument quantitation limit ..59
2.1.6.7 Contamination check of components used in urine collection and analysis60
2.1.7 Validation results ..60
 2.1.7.1 Linearity ..60
 2.1.7.2 Recovery test ..60
 2.1.7.3 Parallelism test ..61
 2.1.7.4 Accuracy ..62
 2.1.7.5 Precision ..62
 2.1.7.6 LOD, MQL and IQL ..62
 2.1.7.7 Contamination check of components used in urine collection and analysis63

2.2 ANALYSIS OF PLASMA TSH AND TG LEVELS ...63
 2.2.1 TSH ELISA method ..63
 2.2.1.1 Principle of the assay ..63
 2.2.1.2 Assay procedure ...64
3.3.2.3 Thyroxine spiked solutions...81
3.3.2.4 Iodine calibration solutions ..81
3.3.2.5 Iodine drift correction standard solutions ...82
3.3.2.6 Blanks ...82
3.3.2.7 Wash solutions...82
3.3.3 Instrumentation ..83
3.3.4 Sample Digestion ...84
3.3.5 Method Optimisation ...85
 3.3.5.1 Optimal digestion time and temperature for iodine (iodide and T4)
 extraction from human breast milk ...85
 3.3.5.2 Instrument/system memory effect ...85
 3.3.5.3 Sample-to-sample carryover..86
 3.3.5.4 Stability of the iodine calibration standards86
 3.3.5.5 Stability and reliability of internal standards86
 3.3.5.6 Human breast milk homogeneity ..87
 3.3.5.7 Stability of extracted samples ..87
 3.3.5.8 Contamination check of components used in the milk collection and
 analysis ..87
3.3.6 Method Validation ..88
3.3.6.1 Linearity ..88
3.3.6.2 Recovery ...88
3.3.6.3 Precision ..88
3.3.6.4 Accuracy ...89
3.3.6.5 Limit of Detection (LOD) and Method Quantitation Limit (MQL)89

3.4 RESULTS ...90

3.4.1 Method optimisation ..90
 3.4.1.1 Optimal digestion time and temperature for iodine extraction from human
 breast milk ..90
 3.4.1.2 Instrument/system memory effect ...90
 3.4.1.3 Sample-to-sample carryover ...92
 3.4.1.4 Stability of the iodine calibration standards ...93
 3.4.1.5 Stability and reliability of internal standards ...93
 3.4.1.6 Human breast milk homogeneity ..94
 3.4.1.7 Stability of extracted samples ...94
 3.4.1.8 Contamination check of components used in milk collection and analysis. ...
 ..95

3.4.2 Method Validation ..95
 3.4.2.1 Linearity ...95
3.4.2.2 Recovery ... 95
3.4.2.3 Precision ... 96
3.4.2.4 Accuracy ... 96
3.4.2.5 Detection limits .. 96

3.5 DISCUSSION .. 97

3.6 Acknowledgments .. 101

Chapter 4 CURRENT IODINE STATUS OF PREGNANT WOMEN, LACTATING WOMEN AND THEIR INFANTS IN SOUTH AUSTRALIA .. 103

4.1 INTRODUCTION ... 103

4.2 METHODS .. 105

4.2.1 Study design ... 105

4.2.2 Participants and recruitment .. 105

4.2.3 Assessments of UIC .. 106

4.2.3.1 Sample collection ... 106

4.2.3.2 UIC assessment ... 106

4.2.4 Other assessments .. 106

4.3 Data analysis .. 107

4.4 RESULTS .. 108

4.4.1 Iodine status during pregnancy ... 109
4.4.2 Iodine status at 3 month postpartum ... 114
4.4.3 Iodine status of infants at 3 months of age ... 119

4.5 DISCUSSION .. 119

4.5.1 Iodine status of pregnant women in Australia after the introduction of mandatory iodine fortification .. 120
4.5.2 Iodine status of lactating women at 3 months postpartum after the introduction of mandatory iodine fortification ... 122
4.5.3 Iodine status of infants at 3 months of age after the introduction of mandatory iodine fortification .. 124
4.5.4 The limitations of the present study ... 126
4.5.5 Summary ... 127

Chapter 5 BREAST MILK IODINE CONCENTRATION OF LACTATING WOMEN IN SOUTH AUSTRALIA PRE AND POSTFORTIFICATION 129

5.1 INTRODUCTION ... 129

5.2 METHODS ... 130

5.2.1 Study design .. 130
5.2.1.1 DOMInO study population (pre iodine fortification) 130
5.2.1.2 PINK cohort (post iodine fortification) ... 132
5.2.2 Assessments .. 132
5.2.2.1 Breast milk iodine concentration (BMIC) ... 132
5.2.2.2 Other assessments ... 134

5.3 DATA ANALYSIS .. 134

5.4 RESULTS ... 135

5.4.1 Breast milk iodine concentration of breast feeding women before and after the introduction of mandatory iodine fortification .. 135

5.4.1.1 Before mandatory iodine fortification ... 135

5.4.1.2 After mandatory iodine fortification .. 140

5.4.2 Comparison of breast milk iodine concentrations pre and post fortification.... 143

5.5 DISCUSSION .. 146

5.5.1 The breast milk iodine concentrations of mothers pre and post-fortification ... 146

5.5.2 The comparison of breast milk iodine concentrations pre and post fortification ... 149

5.5.3 The limitations of the present study .. 150

5.5.4 Summary .. 151

Chapter 6 THE RELATIONSHIP OF CURRENT AND PERINATAL IODINE NUTRITION STATUS WITH BODY COMPOSITION AND INSULIN SENSITIVITY AT 5 YEARS OF AGE ... 154

6.1 INTRODUCTION .. 154

6.2 METHODS .. 157

6.2.1 Study design .. 157
6.2.2 Participants and recruitment ...157

6.3 ASSESSMENTS ..158

6.3.1 Thyroid status ...158
 6.3.1.1 Thyroid function of DOMInO children at birth158
 6.3.1.2 Thyroid function of children at 5 years of age158

6.3.2 Anthropometric parameters and body composition159
 6.3.2.1 Anthropometrics and body mass index (BMI)159
 6.3.2.2 Body fat mass ..160

6.3.3 Insulin sensitivity ...160

6.3.4 Other assessments ..161
 6.3.4.1 Maternal socioeconomic and demographic background at DOMInO trial entry161
 6.3.4.2 Pregnancy-related outcomes at birth ...161
 6.3.4.3 Maternal measures at 5 years follow up ..161

6.3.5 Sample collection and processing ..161

6.4 DATA ANALYSIS ...162

6.5 RESULTS ..162
 6.5.1 Anthropometric and hormonal measures in different sex163
6.5.2 Correlation between neonatal thyroid function anthropometric parameters at birth .. 166

6.5.3 Correlations between neonatal TSH levels and metabolic parameters of children at 5 years of age .. 167

6.5.4 Correlation between thyroid function and metabolic parameters of children at 5 years of age .. 176

6.6 DISCUSSION .. 184

6.6.1 The association between TSH status in the neonatal period and metabolic health at 5 years of age .. 184

6.6.2 The association between markers of current thyroid function and metabolic health at 5 years of age .. 188

6.6.3 Limitations of the present study .. 190

6.6.4 Summary .. 191

Chapter 7 SUMMARY AND CONCLUSIONS .. 193

BIBLIOGRAPHY .. 198
LIST OF TABLES

Table 1.1: Australia and New Zealand Iodine Reference Value ..10

Table 1.2: The spectrum of iodine deficiency disorders...15

Table 1.3: Epidemiological criteria for assessing iodine nutrition of population based on median urinary iodine concentration of school-age children (≥6 years)22

Table 1.4: The median or range of UIC used to categorise the iodine intake of pregnant women, lactating women and children less than 2 years of age ..22

Table 1.5: Summary of studies of iodine status in pregnant women and lactating women in Australia..28

Table 1.6: Summary of population-based studies investigating associations between thyroid function and body composition..37

Table 1.7: Summary of population-based studies of thyroid function and insulin sensitivity .45

Table 2.1: The evaluation of linearity ..61

Table 2.2: Recovery percentage of 2 tested urine samples ..61

Table 2.3: Recovery percentage of 5 samples in recovery test ..70

Table 3.1 Agilent ICPMS operating conditions ..84

Table 3.2: Comparison of iodine concentration determined in the sample NIST 1549 milk powder and human breast milk samples for each of the 3 digestion conditions90

Table 3.3: The stability of extracted samples ..94

Table 3.4: Iodine recovery percentage for samples spiked with iodide and T4.96
Table 4.1: Demographic, lifestyle and pregnancy-related characteristics of women at enrolment

Table 4.2: UICs at enrolment and 28 weeks of gestation

Table 4.3: Differences in median UIC at baseline and 28 weeks of gestation in relation to demographic, lifestyle and clinical characteristics of the women

Table 4.4: UICs in women and their infants at 3 month postpartum

Table 4.5: Differences in median UIC at 3 months postpartum in relation to demographic, lifestyle and clinical characteristics of the women

Table 5.1: The relative standard deviation of 7 samples during 18 month storage

Table 5.2 Average relative standard deviation of breast milk samples stored at -20°C vs -80°C

Table 5.3: Demographic information of DOMInO women at trial entry

Table 5.4: Differences in breast milk iodine levels (µg/l) in relation to demographic, lifestyle and clinical parameters of women in both pre and post fortification

Table 5.5: Breast milk iodine levels of breast feeding mothers post fortification

Table 6.1: Maternal anthropometric and demographic characteristics at trial entry and follow-up of 5 years

Table 6.2: Neonatal anthropometric and biochemical parameters of participants according to sex

Table 6.3: Anthropometric and biochemical parameters of participants at 5 years of age according to sex

xiv
Table 6.4 The correlation between neonatal TSH level and anthropometric parameters at birth

Table 6.5: Correlations between neonatal TSH level and TSH/Tg level and metabolic parameters of children at 5 years of age

Table 6.6: Correlation analysis between either TSH or Tg concentrations and metabolic parameters in children at 5 years of age
LIST OF FIGURES

Figure 1.1: A schematic diagram of the key steps involved in thyroid hormone synthesis2

Figure 1.2: Feedback regulation of thyroid hormone synthesis...4

Figure 1.3: Physiological adaption of the thyroid function during pregnancy7

Figure 2.1: The Sandell-Kolthoff reaction..54

Figure 2.2: Linear relationship between urine volumes and iodine concentration in the parallelism test ...62

Figure 2.3: The principle of the TSH sandwich ELISA ...64

Figure 2.4: Spiking recovery test..65

Figure 2.5: The correlation between observed and expected concentration in recovery test ...66

Figure 2.6: The correlation between plasma volume (i.e. dilution factor) and TSH concentration in parallelism test. ..67

Figure 2.7: The procedure of Tg analysis ...68

Figure 2.8: The correlation between absorbance and ASYBUF volume in the parallelism test ...70

Figure 3.1 Instrument/system memory effect ...92

Figure 3.2 Sample-to-sample carryover: ...93

Figure 4.1: UIC during pregnancy according to the use of iodine supplements at baseline, and 28 weeks of gestation. Different superscripts indicate median values that were significantly different...111
Figure 4.2: UIC at 3-months postpartum in mothers and infants in relation to the average dose of iodine supplements consumed during pregnancy. Different superscripts indicate median values that were significantly different. ...118

Figure 5.1: The difference in breast milk iodine levels between iodine supplement groups at birth and 3-month postpartum. Different superscripts indicate median values which are significantly different. ...142

Figure 5.2: The difference in breast milk iodine level between pre and post fortification in all women and in the sub-group of mother who were not taking iodine supplements. Different superscripts indicate median values which are significantly different.144

Figure 5.3: The proportion of women with BMIC above and below 100µg/l before and after fortification in the whole sample and in women not consuming dietary iodine supplements during pregnancy. ..145

Figure 6.1: The distribution and differences in BMI z-score, body fat mass and HOMA-IR between male and female children. Different superscripts indicate median values which are significantly different. ...165

Figure 6.2: The relationship between neonatal TSH levels and glucose level at 5 years of age
(a) all children; (b) male children and (c) female children...169

Figure 6.3: The relationship between neonatal TSH levels and BMI z-score at 5 years of age,
(a) all children, (b) male children, (c) female children...170

Figure 6.4: The relationship between neonatal TSH levels and HOMA-IR at 5 years of age,
(a) all children, (b) male children, (c) female children...171

Figure 6.5 The relationship between neonatal TSH levels and height at 5 years of age (a) all children, (b) male children and (c) female children...172
Figure 6.6: The relationship between neonatal TSH levels and height z-score at 5 years of age, (a) all children, (b) male children and (c) female children .. 173

Figure 6.7: The relationship between neonatal TSH levels and body fat mass at 5 years of age, (a) all children, (b) male children (c) female children .. 174

Figure 6.8: Correlation of TSH level among all children with metabolic parameters; (a) BMI z-score, (b) Body fat mass, (c) HOMA-IR .. 177

Figure 6.9: Correlation of Tg level among all children with metabolic parameters; (a) BMI z-score, (b) Body fat mass, (c) HOMA-IR .. 178

Figure 6.10: The correlation of TSH level among male children with metabolic parameters: (a) BMI z-score, (b) body fat mass, (c) HOMA-IR .. 179

Figure 6.11: The correlation of Tg level among male children with metabolic parameters: (a) BMI z-score, (b) body fat mass, (c) HOMA-IR .. 180

Figure 6.12: The correlation of TSH level among female children with metabolic parameters: (a) BMI z-score, (b) body fat mass, (c) HOMA-IR .. 181

Figure 6.13: The correlation of Tg level among female children with metabolic parameters: (a) BMI z-score, (b) body fat mass, (c) HOMA-IR .. 182
ABSTRACT

Iodine deficiency was not considered a major public health problem in Australia in the 1990s. However, the Australian National Iodine Nutrition Study in the early 2000s provided evidence of the resurgence of iodine deficiency in the Australian population. As a result, mandatory iodine of bread flour was introduced in Australia in late 2009. However, while several studies had assessed the iodine status of Australian children post fortification there were limited data regarding the impact of fortification on the iodine status of pregnant and lactating women and their infants.

The results of this thesis demonstrate that the urinary iodine concentrations (UIC) of lactating, pregnant women and their infants in South Australia post iodine fortification are consistent with an iodine sufficient status, independent of the intake of iodine supplements. However, iodine status of women who did not consume iodine supplements during pregnancy may be suboptimal as indicated by a borderline UIC level.

Breast milk is a sole source of iodine for exclusively breastfed infants, making the measurement of iodine concentration in breast milk clinically relevant. However, there had been limited previous attempts to assess breast milk iodine concentrations (BMICs), largely due to the lack of robust methods for routine analysis. This thesis describes the development and validation of a new method for assessing iodine concentrations in human breast milk. This method was subsequently applied to measure BMIC in samples collected from women from the same region of South Australia before and after the introduction of mandatory iodine fortification. Median BMICs post fortification was well above the suggested cut-off for providing a sufficient iodine supply for full-term infants. Importantly, the median BMICs in the post fortification samples were significantly higher than those of the women before mandatory iodine fortification, independent of iodine supplements, while the proportion of women in the sample with BMICs below 100µg/l was reduced by 28%. These data suggest
that mandatory iodine fortification and recommendations regarding iodine supplements in pregnancy and lactation have been effective in increasing the iodine supplied to the average South Australian infants.

Obesity and insulin resistance are currently major public health issues worldwide, and there is increasing evidence that the nutritional environment experienced in early life is an important determinant of long-term metabolic health. Chapter 6 of this thesis assessed relationships between markers of neonatal and current thyroid function and metabolic health of young children. Fasting glucose concentrations, HOMA-IR and height z-score in male children at 5 years of age were inversely related to neonatal TSH level at birth, however there was no evidence to suggest that current TSH or Tg concentrations were associated with measures of growth or insulin resistance at 5 years of age, in either males or females.

In conclusion, this thesis presents the first data regarding the iodine status of pregnant and lactating women and their infants after the introduction of mandatory iodine fortification, from a large and representative population, and has provided evidence that BMICs have been significantly improved since the introduction of iodine fortification in Australia. This adds important new information regarding the current iodine status of pregnant, lactating women and their infants in Australia, and provides insights into the potential role of neonatal iodine nutrition/thyroid status for long-term metabolic health.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Dao Hoa Anh Huynh and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australia Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Dao Hoa Anh Huynh
ACKNOWLEDGEMENTS

At the moment of accomplishment, it is my great pleasure to express my sincere thanks to all those who contributed to the completion of this thesis.

First and foremost, I am greatly indebted to my wonderful principle supervisor, Dr Beverly Muhlhausler for her support, encouragement and patience at every stage of my PhD. I am also thankful for her constructive criticism and fruitful discussion which helped me in achieving a good grasp of knowledge and improving my writing skill. This work would not have been possible without her guidance. I really appreciate for her support to help me overcome difficulties in my personal life.

I would like to express my sincere gratitude to co-supervisor, Dr Shao Jia Zhou for her invaluable advice and terrific support during my PhD journey. I also want to thank my co-supervisor, Prof Robert Gibson for providing me with the opportunity to complete my PhD thesis at FOODplus Research Centre.

I would also deeply like to thanks Mr Lyndon Palmer in Waite Analytical Service for his patience and guidance in laboratory technical skills; Dr John Carragher, for willing to help and inspire me with his best suggestion.

I want to thank present and past members of FOODplus Research Centre: Pamela Sim, Wei-Chun, and Zhi Yi Ong for sharing knowledge and laboratory technical skills. Thanks to Jing Zhou for collecting and pre-processing DOMInO blood samples. Also thanks to Ela Zielinski and David Apps for helping me with the sample collection at Waite. Thank you very much to Mini Vithayathil, Jessica Gugusheff, Liu Ge and Yichao for their support and encouragement. Thank you very much to Dominique Condo for supporting me in recruitments and sample collection. I would like to thank all colleagues and friends in FOODplus Research Centre and Waite Analytical Service their support and assistants that helped me with all aspects of my PhD study.
I also give my acknowledgement to staffs of DOMInO and PINK study in Women’s and Children’s Hospital and Flinders Medical Centre who helped me collect samples and data for my project. I really appreciate all participants of DOMInO and PINK study who kindly donated blood, urine and breast milk samples.
I dedicate this thesis….

…To my parents and my aunt, Le Nguyen, for always believing and supporting me throughout my life

…To my husband, Trung Nguyen, and my son, Khoa Nguyen, for bringing me so much love and happiness

…To my younger sisters, Ruby Huynh, Du Nguyen and Alanna Pham, for always supporting and consulting me in whatever I have been doing
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/l</td>
<td>microgram per litter</td>
</tr>
<tr>
<td>µIU</td>
<td>micro international unit</td>
</tr>
<tr>
<td>AI</td>
<td>Adequate Intake</td>
</tr>
<tr>
<td>BFB</td>
<td>body fat percentage</td>
</tr>
<tr>
<td>BFM</td>
<td>body fat mass</td>
</tr>
<tr>
<td>BIA</td>
<td>bioelectrical impedance analysis</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BMIC</td>
<td>breast milk iodine concentration</td>
</tr>
<tr>
<td>BMR</td>
<td>basal metabolic rate</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>DEXA</td>
<td>dual-energy X-ray absorptiometry</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>DIT</td>
<td>Diiodotyrosine</td>
</tr>
<tr>
<td>DOMInO</td>
<td>DHA to Optimise Mother Infant Outcome</td>
</tr>
<tr>
<td>EAR</td>
<td>estimated average requirement</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>homeostatic model assessment-insulin resistance</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>I/I₀</td>
<td>Iodide/Iodine</td>
</tr>
<tr>
<td>ICCIDD</td>
<td>International Council for the Control of Iodine Deficiency Disorders</td>
</tr>
<tr>
<td>ICPMS</td>
<td>inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>IMVS</td>
<td>Institute of Medical and Veterinary Sciences</td>
</tr>
<tr>
<td>IQR</td>
<td>interquartile range</td>
</tr>
<tr>
<td>ISI</td>
<td>insulin sensitivity index</td>
</tr>
<tr>
<td>ISIS</td>
<td>integrated sample introduction system</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>LCPUFA</td>
<td>long chain polyunsaturated fatty acid</td>
</tr>
<tr>
<td>LOD</td>
<td>limit of detection</td>
</tr>
<tr>
<td>mg/kg</td>
<td>milligram per kilogram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>MIT</td>
<td>Monoiodotyrosine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>MQL</td>
<td>method quantitation limit</td>
</tr>
<tr>
<td>NATA</td>
<td>National Association of Testing Authorities, Australia</td>
</tr>
<tr>
<td>NHMRC</td>
<td>The National Health and Medical Research Council of Australia</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standard and Technology</td>
</tr>
<tr>
<td>PF</td>
<td>peritoneal fat</td>
</tr>
<tr>
<td>PINK</td>
<td>Pregnancy Iodine and Neurodevelopment in Kids</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>QUICKI</td>
<td>quantitative insulin sensitivity check index</td>
</tr>
<tr>
<td>RDI</td>
<td>Recommended dietary intake</td>
</tr>
<tr>
<td>RSD/SD</td>
<td>Relative standard deviation/standard deviation</td>
</tr>
<tr>
<td>Sb</td>
<td>Antimony</td>
</tr>
<tr>
<td>SF</td>
<td>abdominal subcutaneous fat</td>
</tr>
<tr>
<td>T3/T3</td>
<td>Triiodothyronine/free Triiodothyronine</td>
</tr>
<tr>
<td>T4/T4</td>
<td>Thyroxine/free Thyroxine</td>
</tr>
<tr>
<td>Te</td>
<td>Tellurium</td>
</tr>
<tr>
<td>TFM</td>
<td>total fat mass</td>
</tr>
<tr>
<td>Tg</td>
<td>Thyroglobulin</td>
</tr>
<tr>
<td>TMAH</td>
<td>Tetramethylammonium hydroxide</td>
</tr>
<tr>
<td>TPO</td>
<td>Thyroperoxidase</td>
</tr>
<tr>
<td>TRH</td>
<td>Thyrotropin releasing hormone</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid stimulating hormone</td>
</tr>
<tr>
<td>UIC</td>
<td>urinary iodine concentration</td>
</tr>
<tr>
<td>UL</td>
<td>Upper Level</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>