A Co-Benefit Analysis of Alternative Transportation in Adelaide, Australia:
Integrating Perspectives from Communities and Stakeholders for Sustainable Change

Ting Xia, MBBS, MMedSci

Discipline of Public Health
School of Population Health
Faculty of Health Sciences
The University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy

May 2015
TABLE OF CONTENTS

LIST OF TABLES ... vii

LIST OF FIGURES ... ix

PUBLICATIONS DURING CANDIDATURE ... x

CONFERENCE PRESENTATIONS DURING CANDIDATURE ... xi

AWARDS ARISING OUT OF THIS THESIS .. xii

LIST OF ABBREVIATIONS .. xiii

ABSTRACT .. xvi

STATEMENT .. xx

ACKNOWLEDGEMENTS ... xxi

CHAPTER 1 INTRODUCTION ... 1

1.1 Background .. 2

1.2 Research aim and questions .. 5

1.3 Thesis outline .. 5

CHAPTER 2 LITERATURE REVIEW ONE .. 9

Co-benefits of replacing car trips with alternative transportation: a review of evidence and methodological issues .. 9

Preface .. 9

STATEMENT OF AUTHORSHIP ... 10

2.1 Abstract .. 11

2.2 Introduction ... 12

2.3 Method ... 14

2.4 Public transport ... 18

2.5 Active transport ... 19

2.6 Evidence of potential benefits of promoting alternative transport ... 20

2.6.1 Environmental benefits .. 20

2.6.2 Health benefits .. 21
2.6.2.1 Health benefit from mitigation of vehicle emission reduction..................21
2.6.2.2 Health benefit from active transport..23
2.6.2.3 Active transport, physical activity and benefits relating to fitness and
weight..25
2.6.3 Economic co-benefits..26
2.7 Methodology issues in co-benefit analysis..27
 2.7.1 Scenarios ..27
 2.7.2 Modelling method and tool ...28
 2.7.2.1 Environmental benefit assessment ..28
 2.7.2.2 Health benefit assessment ..30
 2.7.3 Economic benefit assessment..33
 2.7.4 Data issues..35
2.8 Summary and recommendations ..36

CHAPTER 3 LITERATURE REVIEW TWO ...39

Travel behaviour and transport policy ..39
Preface..39
 3.1 Introduction ..40
 3.2 Factors affecting travel behaviour ...40
 3.2.1 Socio-demographic factors..40
 3.2.2 Land use factors ..43
 3.2.3 Psycho-social factors...45
 3.3 Transport policies to promote alternative transport50
 3.3.1 Push measures ..51
 3.3.2 Pull measures ...52
 3.4 Conclusion ..55

CHAPTER 4 RESEARCH DESIGN AND METHODOLOGY57
Preface..57
 4.1 Introduction ..58
 4.2 Context of the research ..58
 4.3 Framework for the methods used in this thesis ..62
 4.3.1 The scenario-based modelling study ...66
 4.3.2 The community-based cross-sectional study ...67
4.3.3 The qualitative study of stakeholders’ perspectives ... 68
4.4 Ethics... 70
4.5 Conclusion ... 71

CHAPTER 5 SCENARIO-BASED MODELLING STUDY ... 73

Traffic-related air pollution and health co-benefits of alternative transport in Adelaide,
South Australia ... 73

Preface .. 73

STATEMENT OF AUTHORSHIP ... 74

5.1 Abstract ... 76
5.2 Introduction ... 77
5.3 Materials and methods .. 79
 5.3.1 Study setting ... 79
 5.3.2 Theoretical framework .. 80
 5.3.3 Baseline vehicle kilometre travelled and emissions ... 82
 5.3.4 Scenarios ... 82
 5.3.5 Air pollution estimates ... 85
 5.3.5.1 Traffic-related PM$_{2.5}$ and CO$_2$ emission model .. 85
 5.3.5.2 PM$_{2.5}$ dispersion model ... 85
 5.3.5.3 Health impact assessment .. 86
 5.3.5.4 Air pollution .. 86
 5.3.5.5 Physical activity and health outcome exposure response relationships 87
 5.3.5.6 Population projection and burden of disease .. 88
 5.3.5.7 Estimates of traffic injury .. 89
 5.3.5.8 Sensitivity analysis ... 89
 5.4 Results ... 90
 5.5 Discussion .. 95
 5.6 Conclusion ...103

Supplemental Material ..105

Section A- Air Pollution Model Description and Output ..106
Section B- Comparative Risk Assessment ..111
Section C- Physical activity of cyclists and pedestrians ..115
CHAPTER 6 COMMUNITY-BASED CROSS-SECTIONAL STUDY 131
Understanding the urban travel behaviour and attitudes of Adelaide adult residents..... 131
Preface ... 131
 6.1 Introduction .. 132
 6.2 Methods ... 136
 6.2.1 Study Setting and Data Collection .. 136
 6.2.2 Questionnaire .. 137
 6.2.2.1 Demographic characteristics and travel behaviour 138
 6.2.2.2 Perceptions and, attitudes towards traffic, environment and health .. 138
 6.2.2.3 Effectiveness of potential car reduction measures 139
 6.2.2.4 Intentions to reduce car use ... 139
 6.2.3 Participation rates ... 139
 6.2.4 Statistical analysis ... 140
 6.3 Results .. 141
 6.3.1 Socio-demographic and travel behaviour characteristics 141
 6.3.2 Effectiveness of car-reduction measures ... 148
 6.3.3 Scores on the statements related to transport use 149
 6.3.4 Factor analysis and correlations .. 151
 6.3.5 Predictors of the intention to change travel behaviour 152
 6.3.6 Reasons and preferences relating to alternative transportation 155
 6.4 Discussion ... 156
 6.5 Conclusion ... 165

CHAPTER 7 QUALITATIVE STUDY WITH STAKEHOLDER 167
Stakeholders’ perspectives on barriers and solutions.. 167
Preface ... 167
 7.1 Introduction .. 168
 7.2 Method .. 173
 7.2.1 Study participants ... 173
8.4.1 Integrating promotion of alternative transport into greenhouse gas strategy ... 235
8.4.2 Integrating health into transport policymaking .. 236
8.4.3 Building supportive physical environments for ‘safety in numbers’ 237
8.4.4 “Push” or “Pull” interventions .. 238
8.4.5 Community participation ... 239
8.4.6 A call for culture change around cycling ... 240
8.4.7 A call for government actions .. 241
8.5 Further research .. 242
8.5.1 Expanding air pollution modelling to other vehicular pollutants 242
8.5.2 Health impact assessment of reduction in traffic-related noise 243
8.5.3 Economic justifications for promoting alternative transport in Australia 243
8.5.4 Alternative transport and quality of life .. 244
8.5.5 The public and the policy makers: A comparative perspective on how to promote alternative transport ... 245
8.6 Concluding remarks .. 245

REFERENCES ... 247

APPENDICES .. 275

APPENDIX A: Email invitation to be sent to participants for qualitative interviews 277
APPENDIX B: Qualitative interview information sheet ... 278
APPENDIX C: Perception of Climate Change Risks and Travelling Behaviour Survey June 2012 .. 280
APPENDIX D: Participation rate of the Perception of Climate Change Risks and Travelling Behaviour Survey .. 288
APPENDIX E: Map of Adelaide metropolitan area ... 289
APPENDIX F: Qualitative interview participant consent form ... 290
APPENDIX G: Interview guide for the qualitative interviews ... 291
APPENDIX H: Journal Publications .. 293
LIST OF TABLES

Table 2.1: Summary of co-benefits studies in transport area .. 15

Table 4.1: Survey components .. 67

Table 5.1: Scenarios and calculated daily VKT in the metropolitan Adelaide area 84

Table 5.2: Estimated PM$_{2.5}$ and CO$_2$ changes, compared to BAU in 2030 91

Table 5.3: Estimated annual changes in burden of disease of 2030 reduction scenarios compared with 2030 BAU scenario in Adelaide, South Australia .. 94

Table S5.4: Tyre wear, Brake wear and Road abrasion emission factors by vehicle type .. 108

Table S5.5: Estimated annual mean PM$_{2.5}$ concentrations (μg/m3) by selected sites 110

Table S5.6: Increases in mortality and morbidity (and 95% confidence intervals) associated with a one μg/m3 increase in PM$_{2.5}$ (unit of air pollution change) 113

Table S5.7: Summary of the relative risk estimates for physically inactive related diseases for level 1 (sedentary), level 2 (insufficiently active) and level 3 (sufficient active) exposures, by age and sex .. 114

Table S5.8: Summary of Data Sources and Model Inputs ... 125

Table S5.9: Estimated relative risk and the attributable fraction (AF) for annual short-term and long-term PM$_{2.5}$ exposure (BAU scenario compare to reduction scenarios) 126

Table S5.10: Attributable Fractions of BAU2030 and Increased Cycling 2030 Scenario by cause of annual death and disability, metropolitan Adelaide .. 127

Table S5.11: Attributable Fractions of BAU2030 and Increased Cycling 2030 Scenario by cause of annual death and disability, metropolitan Adelaide -continued 128

Table S5.12: Annual health co-benefit of Increased Cycling 2030 Scenarios compared to BAU 2030 by cause of death and disability, metropolitan Adelaide 129

Table 6.1: Demographic of the study participants (weighted) ... 142

Table 6.2: Demographics and car use ... 147

Table 6.3: Participants’ responses to attitude statements .. 150
Table 6.4: Factor analysis of Perception, awareness of traffic, environment and health 151

Table 6.5: Correlations (Spearman’s) between factors and driving distance, frequency and perceived effectiveness of car reduction measures 152

Table 6.6: Multiple logistic regression analyses for predictors of travel behaviour change (adjusted for car ownership)... 154

Table 7.1: Participants’ perceived barriers to promoting alternative transport use........ 178
LIST OF FIGURES

Figure 4.1: A: location of Adelaide, South Australia. B: metropolitan Adelaide 59

Figure 4.3: The framework of the study: multidisciplinary alternative transport promotion ... 65

Figure 5.1: Theoretical framework model... 81

Figure 5.2: Results of air quality for PM$_{2.5}$ due to traffic by location. 92

Figure 5.3: Results from the sensitivity analysis (S1-S5) of the health co-benefits for the Towards Alternative Transport scenario compared to BAU 2030: estimated death and DALYs prevented .. 95

Figure S5.4: Linear relationship function for PM$_{2.5}$ emission and VKT in g/km 108

Figure S5.5: Line source on the TAPM Interface and selected sites................................. 109

Figure S5.7: Population distribution of physical activity in Increased Cycling Scenarios compared with BAU2030, metropolitan Adelaide ... 120

Figure 6.1: Cycling trip purposes* .. 143

Figure 6.2: (A) Cycling and (B) walking trip lengths perceived to be ‘comfortable’ for one trip* ... 143

Figure 6.4: Sores on the effectiveness of car reduction measures .. 148

Figure 6.5: Reasons for Alternative Transportation for travelling 155

Figure 6.6: Participant’s choice of their prefer alternatives ... 156

Figure 7.1: Social Ecological Model ... 170

Figure 7.2: The six phases of thematic analysis ... 176

Figure 7.3: The impacts of barriers on social ecological model...................................... 209

Figure 7.4: Potential solutions to barriers... 214
PUBLICATIONS DURING CANDIDATURE

Peer-reviewed Journals:

Conference paper:

CONFERENCE PRESENTATIONS DURING CANDIDATURE

3. Ting Xia, Pushan Shah, Ying Zhang, Shona Crabb. Evaluating the PM change and health impact due to urban vehicle emissions reduction in Adelaide, South Australia (Oral). 21st International Clean Air and Environment Conference, Sydney, Australia, September 2013

AWARDS ARISING OUT OF THIS THESIS

- Postgraduate Travelling Fellowships. Faculty of Health Sciences Research Committee, University of Adelaide. 2013.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>ACS</td>
<td>American Cancer Society</td>
</tr>
<tr>
<td>ADM</td>
<td>Atmospheric Dispersion Modelling System</td>
</tr>
<tr>
<td>AF</td>
<td>Attributable fractions</td>
</tr>
<tr>
<td>ARI</td>
<td>Acute respiratory infections</td>
</tr>
<tr>
<td>BAU</td>
<td>Business-as-usual</td>
</tr>
<tr>
<td>BenMAP</td>
<td>Environmental Benefits Mapping and Analysis Program</td>
</tr>
<tr>
<td>BITRE</td>
<td>The Australian Bureau of Infrastructure, Transport and Regional Economics</td>
</tr>
<tr>
<td>CATI</td>
<td>Computer aided telephone interviewing</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CNG</td>
<td>Compressed natural gas</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO2-e</td>
<td>Carbon dioxide equivalent</td>
</tr>
<tr>
<td>CRA</td>
<td>Comparative Risk Assessment</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>DALY</td>
<td>The disability-adjusted life year</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>DPTI</td>
<td>Department for Transport, Energy and Infrastructure</td>
</tr>
<tr>
<td>EC</td>
<td>Elemental carbon</td>
</tr>
<tr>
<td>EMMM</td>
<td>Expansion of the multi-city mortality and morbidity study</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>EPA-MVEI</td>
<td>Environmental Protection Authority Motor Vehicle Emission Inventory database</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ERG</td>
<td>Environmental Research Group</td>
</tr>
<tr>
<td>FPM/APM</td>
<td>Fine Particles/Aerosol Particle Mass Analyzer</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross domestic product</td>
</tr>
<tr>
<td>GHGs</td>
<td>Greenhouse gases</td>
</tr>
<tr>
<td>HAPiNZ</td>
<td>Application of Health and Pollution in New Zealand</td>
</tr>
<tr>
<td>HEAT</td>
<td>Health Economic Assessment Tool</td>
</tr>
<tr>
<td>IPCC</td>
<td>International Panel on Climate Change</td>
</tr>
<tr>
<td>ITHIM</td>
<td>Integrated Transport and Health Impact Modelling Tool</td>
</tr>
<tr>
<td>LAEI</td>
<td>The London Atmospheric Emissions Inventory</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied petroleum gas</td>
</tr>
<tr>
<td>MET</td>
<td>Metabolic equivalent task hours</td>
</tr>
<tr>
<td>Mton</td>
<td>Metric ton</td>
</tr>
<tr>
<td>NAEI</td>
<td>National Atmospheric Emission Inventory</td>
</tr>
<tr>
<td>NAM</td>
<td>Norm-activation model</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OSPM</td>
<td>Operational Street Pollution Model</td>
</tr>
<tr>
<td>PAFs</td>
<td>Population attributable fractions</td>
</tr>
<tr>
<td>PBC</td>
<td>Perceived behavioural control</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Particles with an equivalent aerodynamic diameter ≤ 10 μm</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Particles with an equivalent aerodynamic diameter ≤ 2.5 μm</td>
</tr>
<tr>
<td>PROS</td>
<td>Population Research and Outcome Studies</td>
</tr>
<tr>
<td>QoL</td>
<td>Quality of life</td>
</tr>
<tr>
<td>RR</td>
<td>Relative risk</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SDM</td>
<td>System dynamics modelling</td>
</tr>
<tr>
<td>SEM</td>
<td>Meta-analytic structural equation modelling</td>
</tr>
<tr>
<td>SIM-air</td>
<td>Simple Interactive Models for better air quality</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulphur dioxide</td>
</tr>
<tr>
<td>TAPM</td>
<td>The Air Pollution Model</td>
</tr>
<tr>
<td>TAT</td>
<td>Towards Alternative Transport</td>
</tr>
<tr>
<td>TPB</td>
<td>Theory of planned behaviour</td>
</tr>
<tr>
<td>VAPIS</td>
<td>Vehicle Air Pollution Information System</td>
</tr>
<tr>
<td>VEPM</td>
<td>Vehicle Emissions Prediction Model</td>
</tr>
<tr>
<td>VKT</td>
<td>Vehicle kilometres travelled</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile organic compounds</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>YLD</td>
<td>Years lost due to disability</td>
</tr>
<tr>
<td>YLL</td>
<td>Years of life lost</td>
</tr>
</tbody>
</table>
ABSTRACT

Background

The increasing number of motor vehicles in urban areas has a significant impact on the environment, as well as, on human health. Motor vehicle emissions contribute a considerable amount of energy-related greenhouse gases and cause non-negligible air pollution. In addition, over-dependence on cars has also encouraged a sedentary lifestyle and an obesity epidemic, which may lead to increased burden of diseases. These health and environmental costs of motor vehicle usage can be reduced by encouraging individuals to change their travel behaviours in order to increase their use of alternative transport. Such a strategy provides an opportunity for collaboration between people working in the transportation, environment and public health areas. However, limited studies currently exist to provide sufficient evidence for policy and interventions relating to this issue.

Aims

The aims of the research presented in this thesis are to improve our understanding of the co-benefit effects of alternative transport and to investigate perspectives from communities and stakeholders on sustainable travel behaviour change in Adelaide, South Australia.

Methods

A mixed-method study design was employed, with three interrelated studies conducted: two quantitative and one qualitative. The first study was focussed on a scenario-based modelling analysis. Separate models, including air pollution, health impact assessment, and traffic injury models, were developed in relation to scenarios for car reduction with
possible environmental and health outcomes, in order to evaluate the overall potential benefits of alternative transport.

The second study involved a cross-sectional survey conducted in the Adelaide metropolitan area. A total of 381 residents were interviewed using the computer-assisted telephone interviewing (CATI) system. Descriptive statistical analysis, factor analysis, Pearson correlations, and multiple logistic regressions were performed to investigate the relationships between participants’ attitudes and their travel behaviours and to explore predictors of participants’ intention to reduce car use.

The third study presented in the thesis adopted a qualitative approach to explore the perspectives of stakeholders relevant to changing transport behaviours. In-depth interviews with key stakeholders (n=13) were conducted, and a thematic analysis of the resulting transcripts identified some of the particular challenges that must be overcome in order to promote alternative transport.

Results

Results of the first study indicated that the major health benefits associated with the promotion of alternative transport policies related to increased physical activity. In the increased cycling scenarios, it was found that a small shift from car travel to cycling would reduce the burden of disease related to physical inactivity by 17-34% (1991-4132 disability-adjusted life years [DALYs] prevented), compared with a Business As Usual scenario by 2030. Results indicated that important health benefits can also be achieved by increasing public transport use, which involves increasing walking distance and a possible reduction in serious traffic injuries. Although findings from this study do not suggest a large reduction in PM$_{2.5}$ concentration (0.1-0.4 μg/m3) associated with alternative
transport use, health benefits (39-118 DALYs prevented) from the reduction of air pollution exposure for the general population should not be ignored.

The results of the cross-sectional survey suggest that there are socio-demographic differences in people’s dominant mode of transport, annual driving distance and car use frequency. In general, “Push” measures to reduce car use (e.g., increasing costs associated with driving) were considered less efficient than “Pull” measures (e.g., making alternative transport more attractive). In addition, people’s attitudes towards traffic, the environment and health may influence their travel behaviours and intentions to reduce car use. Those who highly rated the importance of safety and comfort and who reported having more negative emotions towards public transport were likely to use cars more often and less likely to shift their travel mode. In contrast, those who indicated a high level of awareness of the benefits of alternative transport and of the problems of traffic were more likely to report an intention to shift travel mode and favour car reduction measures.

Key themes identified in the final qualitative study suggested that barriers to promoting active transport fall into four main areas: (1) existing gaps in knowledge of transport emission impacts, strategies from other countries and the overall benefits of alternative transport, (2) striking a policy balance between alternative transport strategies and economic viability, feasibility, population density, traffic demands, and budget distribution issues, (3) shared ownership of responsibilities, funding and regulations among governments and departments, and (4) public resistance to using alternative transport. Potential solutions suggested by participants to resolve these barriers included government actions, “Push” and “Pull” policy interventions, educational approaches, culture change and evidence-based research.
Conclusion

Findings from the first study reveal that alternative transport use can produce considerable health benefits associated with increased levels of physical activity. This may lead policy makers to pay more attention to transport strategies which especially favour active transport, rather than strategies aimed solely at reducing vehicular emissions (e.g. elevating standards for emissions). The study also revealed that, to achieve significant health benefits through transport policy, travel behaviour change at the population level is essential. Findings from the second study provided a better understanding of current travel behaviour in the study setting. This study also suggested that public education and community campaigns focusing on local residents with sufficient knowledge of traffic issues and benefits of alternative transport, combined with car reduction barriers, could encourage less driving and more pro-environmental travelling. To take the alternative transport agenda forward, high level leadership and commitment from governments are needed to assist in establishing and building collaborative efforts. The findings of the third study fill a gap between policy intention and implementation, and highlight the importance of a ‘whole-of-government’ policy approach which can strengthen collaborations across relevant policy-makers.
I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed ... Date..
ACKNOWLEDGEMENTS

I would like to sincerely acknowledge and thank the following people for their contribution and help me to make this thesis possible.

I thank firstly, a wonderful supervisory panel, Dr. Shona Crabb, Dr. Ying Zhang, Professor Annette Braunack-Mayer and Dr. Pushan Shah, thanks for your passion, enthusiasm and patience in supporting me through the past four years. Advice and mentorship from Dr. Monika Nitschke and Dr. Alana Hansen were also vital to my journey through the research process and I will always appreciate their contribution and encouragement.

I would also like to thank to all who assisted in providing data, and assistance in modelling methodology. Particular thanks to Mr. Kelvyn Steer, Mr. Rob Mitchell and colleagues from the EPA for guidance with air pollution modelling.

A special thank you to Professor Philip Weinstein, Dr. Scott Hanson-Easey and Dr. Susan Williams Anne for their great support, encouragement and friendship as well as embarked upon the PhD journey. Thank you to Madigan who provided supports to me when I needed. Special thanks to my fellow students, in particular Kerri Beckmann, Mazna Almarzooqi, Shiau Yun Chong, Maoyi Xu, Jianjun Xiang, Si Si, Jane Scarborough, and Ismaniza Ismail, for their friendship and for generously sharing your expertise.

Professional editor, Dr. Arthur Saniotis, was used in the preparation of the thesis for submission, following the guidelines of the Australian Standards for Editing Practice.

Last but certainly not least, my thanks to Jackie my soul mate and best friend for always supporting, helping, and encouraging me and for always keeping me smiling and laughing. Also, a huge thanks to my parents for their continual support, care and encouragement.