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We present a multi-scale model to study the attachment of spherical particles with a rigid core, coated
with binding ligands and suspended in the surrounding, quiescent fluid medium. This class of fluid-
immersed adhesion is widespread in many natural and engineering settings, particularly in microbial
surface adhesion. Our theory highlights how the micro-scale binding kinetics of these ligands, as well
as the attractive/repulsive surface potential in an ionic medium affects the eventual macro-scale size
distribution of the particle aggregates (flocs). The bridge between the micro–macro model is made via an
aggregation kernel. Results suggest that the presence of elastic ligands on the particle surface lead to the
formation of larger floc aggregates via efficient inter-floc collisions (i.e. non-zero sticking probability, g).
Strong electrolytic composition of the surrounding fluid favours large floc formation as well. The kernel for
the Brownian diffusion for hard spheres is recovered in the limit of perfect binding effectiveness (g → 1)
and in a neutral solution with no dissolved salts.

Keywords: aggregation; sticking probability; binding ligands; Smoluchowski coagulation equations

1. Introduction

The formation of aggregates, induced by the adhesion of two spherical particles or nearby surfaces
is important in many scientific and industrial processes. Interfacial attachment leading to larger
floc aggregates via the latching of binders on surfaces in close proximity is widespread. Examples
include binding of bacterial clusters to medical implants and host cell surfaces [39], cancer
cell metastasis [22], and the coalescence of medical gels with nanoparticles for targeted drug
delivery [25]. Moreover, coagulation and flocculation (the chemical and the physical aspects of
adhesion) are also important in pulp and paper-making industries as well as waste water treatment
plants [34]. This microscopic description of ligand-mediated surface adhesion is an important case
from an experimental point of view, e.g. consider the experimental studies of the P-selectin/PSGL-
1 catch bond interactions of leukocytes (a roughly spherical particle) with and without fluid flow
[24,36]. The rigid microspheres in these case studies had much shorter bonds (no microvilli) and
higher spring stiffness.
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Past investigations in the micro-scale modelling of fluid-borne surface adhesion have addressed
many theoretical challenges. These include the ligand-receptor binding kinetics [5,11], particle
surface deformation [12,30], excluded volume effects [27], paramagnetism [29], short range
interactions [38] and flow past the surrounding surfaces [14,20,37]. Consequently, many detailed
kinetic models have successfully described the adhesion-fragmentation processes from the micro-
scopic perspective. Korn and Schwarz [21] and more recently Mani et al. [23] studied the cellular
adhesion between the ligand coated wall and a sphere moving in a shear flow. A similar model
by Seifert et al. described the membrane adhesion via Langevin simulations [6]. On the contrary,
the macro-scale phase-field models describe the geometry of the floc aggregates as a continuum
mass of extracellular polymeric substance and predict the stability of the anisotropic structures in
a flowing medium [9].

However, efforts to couple the microscopic ligand evolution kinetics of charged surfaces with the
macroscopic population balance model, for particle aggregation dynamics, are limited. Sciortino
et al. made a recent effort in this direction, but those numerical studies were done with chemically
inert particles [10]. Other examples of recent work includes developing probabilistic extensions
of Smoluchowski’s multiplicative aggregation kernel in one [26] and two dimensions [19], with
kernels containing one scaling parameter to be fit to data. Jia et al., develop a method for pre-
dicting critical coagulant concentration via deriving a kernel incorporating surface charge density
and potential as a function of the electrolyte [18]. Gilbert et al. investigated and validated the
forces and potentials for nanoparticles [13] while Babler and Morbidelli studied aggregation and
fragmentation, but only driven by diffusion and shear flow [3]. For a good overview of several
research efforts as well as a focus on magnetic interactions, we direct the interested reader to
Serrano et al. [31]. In summary, each of these research efforts have focused on the aggregation
and fragmentation using separate theories.

This article represents an initial effort in providing a single unified theory by carefully cou-
pling the micro-scale description of the overall aggregation rate with the macro-scale floc-size
distribution. We explore how this adhesion (collision as termed in the colloid science literature)
mechanism for rigid, micron-size, spherical flocs is governed by various geometric and fluid
parameters as well as how the surface forces and binding kinetics of the ligands impact the even-
tual size of these flocs. Unlike results from our earlier paper [32], this work focuses on how to
model the aggregation kernel, KA, influenced by two microscopic effects (e.g. binding kinetics
and surface charges). Furthermore, this modelling methodology gives an idea on how to extend
other similar effects in future.

We consider the sphere–sphere interactions in a quiescent fluid conditions, thereby neglecting
the effect of hydrodynamic interactions on the binders. This assumption is discussed in greater
detail in Section 2.3. In the next section, we present the description of this population balance
model, including the details of how to incorporate the effects of the micro-scale binder kinetics
(Section 2.1), surface charges (Section 2.2) and finally, the model of the aggregation kernel
(Section 2.3). In Section 3, we discuss the numerical results, including the surface potential and
bond fraction calculations in Section 3.1 as well as the floc volume distribution dynamics in
Section 3.2. We conclude with a brief discussion of the implication of these results and the focus
of our future directions.

2. Mathematical model: binder kinetics, effect of surface charges and aggregation kernel

The present study is geared towards tracking the size distribution of spherical floc aggregates in
stagnant fluid conditions [8]. The spherical particles within the flocs adhere through well-defined
disc-like patches covered with binding ligands. Following the general outline given in [7], we
define b(t, x)�x, as the number of aggregates having volumes between x and x + �x in time t. In

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

8:
51

 2
4 

A
ug

us
t 2

01
5 



Journal of Biological Dynamics 81

the volumes between x1 and x2, the total number of flocs B0 is given by

B0(t, x1, x2) =
∫ x2

x1

b(t, x) dx (1)

for [x1, x2] ⊂ [x, x̄], where x and x̄ are the minimum and maximum aggregate volume sizes,
respectively. The minimal size x is the volume of one particle, while x̄ could go unrestrained
(i.e. x̄ → ∞). The conservation of the aggregate number density, or the Smoluchowski [33]
coagulation equation for b is

bt = Ain(x, b) − Aout(x, b), (2)

where Ain is the rate with which flocs of size in [x, x + �x] are created and Aout is the rate a floc
of size in [x, x + �x] joins with another floc, to form a floc of volume greater than x + �x. These
rates are given by

Ain(x, b) = 1

2

∫ x−x

x
KA(y, x − y)b(t, y)b(t, x − y) dy, x ∈ [2x, x̄], (3a)

Aout(x, b) = b(t, x)
∫ x̄−x

x
KA(x, y)b(t, y) dy, x ∈ [x, x̄ − x], (3b)

KA is the aggregation kernel, describing the rate with which flocs of volume x and y combine to
form a floc of volume x + y. The next three sections will focus on modelling this kernel based
on (a) the surface binding kinetics and (b) surface potential, of two coalescing, charged spherical
floc-surfaces.

2.1. Surface binding kinetics

Figure 1 illustrates a model of interfacial attachment between two spheres of radius R1 and
R2 [11]. The centre, O, of the local spatial frame is located at the point of minimum separation
and on the surface of sphere 2. The surface of the spheres bind onto each other due to the
presence of adherent elastic binders (which are polymer strands with sticky heads) attached on
the floc-surfaces. The floc core does not deform. The binders are idealized as linear Hookean
springs with stiffness κ0. The mean rest length (i.e. the uncompressed or the unstretched length)
of the binders is l0. For a given spatial point s = (s1, s2, s3) with respect to the centre, O, of
the local frame, let D(s) be the separation distance between the two spheres, ATot and g be the
total number and the fraction of effective binding ligands on the adhesion surface, respectively.
For notational simplicity, we denote D(s) = D∗. In the local frame, this separation distance is

Figure 1. Closeup of the surface of two coalescing spherical, rigid flocs coated with binding ligands.

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

8:
51

 2
4 

A
ug

us
t 2

01
5 



82 S. Sircar et al.

given by, D∗ = (s2
1 + s2

3)/2(1/R1 + 1/R2) + D, where D is the minimum separation distance
(Figure 1). Next, we define ATotg(t) dA as the number of bonds in the transverse direction that
is attached between the two surfaces inside the circular patch, dA, at time t. In colloid literature,
the function g is synonymous to the term sticking probability. Hence the total number of bonds
formed in the transverse direction is

∫
As

ATotg(t) dA, As being the area of adhesion [11]. The bond
attachment/detachment rates, are

Kon(D) = Kon,eq exp

[−κs(D − l0)2 + W(D)

2kBT

]
,

Koff(D) = Koff,eq exp

[
(κ0 − κs)(D − l0)2 + W(D)

2kBT

]
, (4)

respectively, where Kon,eq and Koff,eq are the forward and reverse reaction rates for an undisturbed
bond, kB is the Boltzmann constant, T is the temperature, κs is the spring constant of the transition
state used to distinguish catch (κ < κs) from slip (κ > κs) bonds [11], and W(D) is the total
surface potential (described in the next section). In the limit of small binding affinity (Keq =
ATotKon, eq/Koff, eq � 1) and assuming that the binding ligands are abundant on the sphere surface
[11], the evolution equation for g is therefore

dg

dt
= ATotKon − Koffg. (5)

2.2. Effect of surface charges

We describe these interactions on the rigid surface of charged spherical flocs, through the Der-
jaguin, Landau, Verwey and Overbeek (DLVO) approach, i.e. the Coulombic and Van der Waals
interaction. For simplicity we neglect non-DLVO interactions (e.g. steric repulsion, polymer bridg-
ing, hydration effects, and hydrophobic attraction) in this study. The potential due to the repulsive
Coulombic forces is given by

WC(D) = 2πε0εψ1ψ2

(
2R1R2

R1 + R2

)
e−κD, (6)

where R1, R2 are the radii of the charged spheres, D the minimum separation distance, κ the
Debye length, ε, ε0 the dielectric constant of vacuum and the medium, respectively and ψ1, ψ2

the zeta potentials of the respective spheres. The corresponding potential due to the attractive Van
der Waal forces is

WVW(D) = − A

6D

R1R2

R1 + R2
, (7)

where A is the Hamaker constant, measuring the Van der Waal ‘two-body’ pair-interaction for
macroscopic objects. The net surface potential is W(D) = WC(D) + WVW(D), which is pair-wise
attractive over very short and very long distances, and pair-wise repulsive over intermediate
distances (Figure 2).

2.3. Aggregation kernel

First, we discuss some limitations imposed in our current approach. Due to stagnant fluid con-
ditions, we neglect the shearing effect of the fluid flow on the mean rest length of the binders
and the spatial inhomogeneities in the material parameters. This assumption allows us to study
the attachment/detachment of the binders normal to the adhering surface (thereby ignoring
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Figure 2. (a) Total surface potential, W(D) versus the separation distance D, for two rigid, spherical flocs of radii
R1 = 0.25 μm and R2 = 0.5 μm, respectively, and (b) surface force per binder, f, (Equation (11)) versus D; at different
ionic concentration of a 1:1 electrolyte. Regions of attraction: f > 0, region of repulsion: f < 0. The units of f are in nN.

the tangential displacement of the spheres) [32]. Furthermore, the binder kinetics is assumed
to be independent of the salt concentration (i.e. the spring stiffness, κ0 is independent of the
charge-screening length, κ , and the zeta potentials, ψi. This implies that we are neglecting the
electro-viscous stresses [35]). Compared with the time scale of floc aggregation (or the time scale
on which the aggregate number density changes), the attachment/detachment rates of the flocs
are sufficiently rapid so that the non-equilibrium binding kinetics can be ignored (i.e. dg/dt = 0
in Equation (5)). In this last assumption, we have ignored the anisotropic arrangement (or the
fractal nature) of the flocs, i.e. the aggregation is followed by a quick restructuring step with very
short relaxation time. Although this assumption may not be realistic in experiments but some
groups have shown that the results are, otherwise, qualitatively similar [30]. We anticipate that
the length-scales will be O(l0), and hence introduce dimensionless variables. From now on we
will denote the non-dimensional quantities with a superscript (′),

D = l0D′, t = t0t′, Kon/off = Kon/off,eqK ′
on/off, g = Keqg′, (8)

where t0 = 1 min represents the timescale of the duration of the experiments. Furthermore, we
introduce the following non-dimensional parameters:

r = κ0l20
2kBT

, κ ′
s = κs

κ0
. (9)

The non-dimensional form of the expression for the reaction rates (Equation (4)) and the fraction
of effective ligands (after setting dg/dt = 0 in Equation (5)) respectively, reduce into

K ′
on = exp[−κ ′

sr(D
′ − 1)2 + W ′(D)],

K ′
off = exp[(1 − κ ′

s)r(D
′ − 1)2 + W ′(D)],

g′ = e−r(D′−1)2
. (10)

We remark that g′ ∈ [0, 1] and the corresponding dimensional value of g ∈ [0, Keq]. In the limit
of small binding affinity (Keq � 1), this value of g cannot exceed 1.
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84 S. Sircar et al.

Under the influence of the binding kinetics and the surface charges, the instantaneous force due
to one bound ligand is

f ′(D) = (D′ − 1) + ∇D · W ′(D), (11)

where f ′ = f/f0 and f0 = κ0l0. The first term in Equation (11) represents the stretching force
from the binder due to Hooke’s law and the second term represents the force due to the surface
potential. The direction of this force is along the normal to the two colliding surfaces, and along
the direction vector from the spherical floc of radius R2 towards the floc of radius R1 (Figure 1).
The total force arising from all such bound bonds on the floc surface, is therefore

F′
Tot(D, t) =

∫
A′

s

ATotg
′(t)f ′(D) dA′ (12)

with F′
Tot = FTot/F0, and F0 = Keqκ0l0. The adhesion area of the circular patch is given by A′

s =
πR

′2
s , where the adhesion radius, R′

s, is found using a scaling law argument of the ‘settling phase
of the particles’ (details in supplementary material, [23])

R′
s =

(
kBT

κ0l0

)1/2 (
1

R1
+ 1

R2

)
(R1 + R2)

1/2. (13)

Finally, in a Stokes regime, the aggregation kernel, KA (in Equation (3a) and (3b)), is
proportional to the total force arising from all the bound bonds, FTot, and is given by

KA = γAFTot

= γAF0g′||f ′(D)||πR′2
s

= 4κ0l30kBT

Aμ
e−r(D′−1)2 (R1 + R2)

3

(R1R2)2

(
D′ − 1 + 1

κ0l0

(
−2πε0εψ1ψ2

2R1R2

R1 + R2

e−κD

κ

+ A

6l20D′2
R1R2

R1 + R2

))
(14)

where γA = 4κ0l30/AπμATotKeq is the aggregation contact efficiency parameter and μ is the vis-
cosity of the fluid. Equations (2), (3a), (3b) and 14) along with initial conditions, b(0, x) = b0(x)
(discussed in Section 3.2) constitute the entire system which calculates the size distribution of
round floc aggregates. In limit of perfect binding effectiveness (i.e. the fraction of effective bind-
ing ligands, g′ → 1 and the minimum separation distance, D′ → 1) and in a neutral solution with
no dissolved ions (i.e. the Debye length, κ−1 → 0), Equation (14) reduces into the kernel for
Brownian diffusion for hard spheres [15],

KA(g′ → 1, κ−1 → 0) = KBr
A = 2kBT

3μ

(R1 + R2)
2

R1R2
, (15)

which is regularly used for numerous simulations involving purely diffusive kernels [3,19,26].
However, we have used Equation (14) to generate our numerical results in the next section.

To summarize, we have presented a model describing the surface adhesion of round flocs, with
the following features:

• Each floc constitutes a rigid spherical core onto which linear, Hookean, spring-like binding
ligands are attached and the surface of the coalescing flocs is linked through these lig-
ands. The ligand kinetics is modelled using a differential equation mediated by the bond
formation/breakage rates.

• The rigid core of the floc is charged and suspended in an ionic medium. The charge effects are
modelled via the repulsive Coulombic interactions and the attractive Van der Waal interactions.
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Table 1. Parameters corresponding to the Coulom-
bic interactions, Equation (6) [1].

salt (M) ψ1(mV) ψ2 (mV) κ

0.01 −16 −31.7 3.04
0.05 −14 −9.2 1.36
0.5 −10 −3 0.43

3. Numerical results

We assume that the salt dissolved in the fluid is a 1–1 electrolyte. The values of the zeta potentials
and the corresponding Debye lengths at different salt concentrations are used from the experiments
of Camesano et al. which involves adhesion of rigid spherical bacterial surface with silicon nitride
atomic force microscopy tip [1]. These values are listed in Table 1. The formula relating the
Debye length with the electrolyte concentration is given in [16] (Chapter 14). The viscosity of
the fluid (water) at temperature T = 25◦C, is μ = 10−3 Pa.s. The dielectric constant in vaccum is
ε0 = 8.854 × 10−12, while the permittivity of water at this temperature is ε = 78.5. The Hamaker
constant measuring the macroscopic Van der Waal sphere–sphere interaction is fixed at 2.44
kBT [15].

3.1. Surface potential and bond fraction calculations

In this section we present the salient features of the DLVO interaction potential, W(D), as well
as the evolution of the fraction of bound ligands, g, versus select values of material parameters.
Figure 2 highlights the interaction potential versus the minimum separation distance, D, at various
salt concentrations (represented by the corresponding Debye length, κ−1).

A weak electrolytic solution (e.g. κ = 3.04, solid curve, Figure 2(a)) has a large positive
potential energy barrier at short separation distances, since a weak salt solution results in dif-
fuse screening length surrounding the charged surfaces which hinders adhesion (also see the
corresponding floc-size distribution dynamics in Figure 4(b)). Conversely, for sufficiently con-
centrated solution (e.g. κ = 0.43 curve, Figure 2(a)), the energy barrier is reduced and aggregation
is favoured. The primary minima (shown in Figure 2(a)) is unphysical, since at very short separa-
tion distances, non-DLVO interactions are dominant and that prevents the surface of the particles
from coming into true contact. The regions of attraction/repulsion of this potential is inferred
from surface force per binder, f (Figure 2(b)). For sufficiently concentrated salt solution these
forces are attractive (f > 0 for all D, κ = 0.43, dotted curve, Figure 2(b)) and hence, adhesion is
always favoured. Otherwise at lower salt concentrations, the general feature is that at intermediate
distances (2 nm < D < 15 nm), the short range repulsive Coulombic forces are dominant while
at longer distances (D > 15 nm), the adhesive forces are dictated by the attractive spring force of
the stretched binders. We choose to conduct our numerical simulations for calculating floc-size
distribution at a minimum separation distance D = 11 nm, a point far away from the primary
minima where the adhesive forces are attractive.

In stagnant fluid conditions, the bound ligand fraction, g(D), is symmetric about the mean rest
length of the binders, l0 (i.e. g is symmetric about D = l0 or D′ = 1, Equation (10)). The adhesion
mechanism is more efficient for elastic binders (i.e. springs with lower stiffness, κ0), since these
binders have a non-zero attachment over a larger contact area (e.g. compare the non-zero region
in Figures 3(a) versus 3(b)). Consequently, we expect the formation of larger aggregates in the
size distribution dynamics of flocs with elastic binders, as discussed in the next section.

D
ow

nl
oa

de
d 

by
 [

U
N

IV
E

R
SI

T
Y

 O
F 

A
D

E
L

A
ID

E
 L

IB
R

A
R

IE
S]

 a
t 1

8:
51

 2
4 

A
ug

us
t 2

01
5 



86 S. Sircar et al.

Figure 3. Sticking probability g versus spatial coordinates (s1, s3) with spring stiffness (a) κ0 = 10−5 Nm−1 and (b)
κ0 = 10−2 Nm−1. The radius of the two identically colliding flocs is R = 1 μm. The elastic ligands (or bonds with lower
spring stiffness) have a larger contact area (s1, s2) with a non-zero collision impact.

Table 2. Parameters common to all simulations [23].

Parameter Value Units

κ0 (0.01 − 10) × 10−3 N m−1

l0 10−8 m
ATot 109 –
K∗

on/K∗
off 10−12 –

3.2. Floc volume distribution

Next, we describe the floc volume distribution dynamics which uses the ligand-mediated binder
kinetics and DLVO interaction potential. We solve the complete population balance model
(Equation (2)) using the adhesion kernel described earlier. We employ the discretization scheme
developed by Ackleh and Fitzpatrick [4], Banks and Kappel [2] and adopted by Prigent et al.
[28]. The parameters used in the simulations are listed in Table 2. The convergence of the scheme
was tested using standard test functions [7]. A linear relationship between the L∞-error and the
mesh-size, δx was found using this first-order approximation scheme. The initial number density
is chosen as b0(x) = 3.89 × 109 e−1.56x + 7.47 × 10−4 e−0.00676x, where the coefficients are fit to
the experimental data from the Younger Lab [7]. The solutions in Figure 4 are shown at time
T = 100 min. We chose 1 femtoliters (fL) as a lower bound x in our simulations. Although the
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Figure 4. Floc number density distribution, b(x, t) × 106, versus floc volume in fL, at time T = 100 min for (a) different
binder stiffnesses but a fixed screening length, κ = 1.36, and (b) different screening lengths but a fixed spring stiffness
κ0 = 10−3 Nm−1. The dash-dot curve in these figures is the initial condition, b0(x).
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model allows the upper bound, x̄, of the domain to go unrestrained, but the results are presented
inside the window 1 ≤ x ≤ 1000 fL.

Figure 4 highlights the floc number density for various volume intervals, x, and at different
material parameters, κ0, κ . The studies suggest that stiff binders lead to fewer large aggregates
(i.e. b(x, T , κ0 = 10−2) < b(x, T , κ0 = 10−3) < b(x, T , κ0 = 10−5) for x ≥ 600 fL). This is not
surprising since aggregation is influenced by the sticking probability, g (Equation (10)). A value
of g which is non-zero over a larger contact area (s1, s3), implies that the two flocs close to each
other are more likely to coalesce leading to bigger flocs (e.g. compare the values of g in Figure 3(a)
versus Figure 3(b)). Conversely, for stiff binders, the sticking probability is significant over a
smaller region of contact and does not favour formation of large aggregates (Figure 4(a)). Surface
adhesion is comparatively stronger in highly ionic fluids (i.e. the curves which are represented by
a shorter Debye length, κ , Figure 4(b)). At shorter Debye length, the diffuse charge-shield around
the spherical particles become thinner and the particles approach closer to each other, leading to
a strong adhesion (Figure 4(b)). In a separate study, we have found that adhesion is favoured in
flocs of smaller size (i.e. smaller radius of the spheres). This is effect is explained via a lower
DLVO-potential energy barrier in small size particles.

4. Conclusions

We have presented a multi-scale model for the aggregation dynamics of rigid, charged, spherical,
micron-sized flocs. This feature is achieved by developing an aggregation kernel which bridges
the micro-scale description of ligand initiated binder kinetics and DLVO interactions, with the
macro-scale population balance model. The kernel reduces to the well-known Brownian diffusion
kernel for hard spheres, in the limit of perfect binding efficiency. The binding kinetics of the flocs
is incorporated via the sticking probability, a term popularly associated with the floc adhering
efficiency, in the colloid literature [19,26]. Numerical predictions about the floc aggregate size
at various material and fluid parameters are made. Preliminary investigation in quiescent flow
conditions highlight that the adhesion mechanism is favoured if the binding ligands of the flocs
are elastic, or the surrounding fluid is highly ionized. The effects of surface deformation which
modifies the adhesion area and hence the aggregation kernel [17], spatial inhomogeneities of the
material parameters, the non-equilibrium effects, stochasticity and the discrete number of bonds
[39] have not been considered in the present study. These effects are the subject of current and
future investigations, on the numerical as well as on the experimental front.
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