Efficacy of laser and ultrasonic activated irrigation on eradicating a mixed species biofilm grown in the mesial roots of human mandibular molars

A thesis submitted to The University of Adelaide in partial fulfilment of the requirements for the Degree of Doctor of Clinical Dentistry (Endodontics)

November 2014

Dr Jonathan Race
BDS (Adel),
BScDent(Hons) (Adel),
Grad Dip Clin Dent (Oral Implants) (Syd)
1 Introduction ... 1
 1.1 Microbial basis of endodontic disease .. 2
 1.1.1 Identification of endodontic microbiota 2
 1.1.1.1 Microbial sampling of endodontic microbiota 3
 1.1.1.2 Culturing methods ... 4
 1.1.1.3 Limitations of culturing techniques 5
 1.1.1.4 Quantification of endodontic bacteria 5
 1.1.2 Polymerase chain reaction (PCR) .. 6
 1.1.2.1 Basic PCR protocols .. 6
 1.1.2.2 Methodological detection limits ... 7
 1.1.2.3 Advantages of PCR based studies ... 7
 1.1.3 Real-time PCR .. 8
 1.1.3.1 The chemistry of real-time PCR .. 9
 1.1.3.2 The threshold level ... 9
 1.1.3.3 Threshold cycle and quantification 10
 1.1.3.4 Absolute quantification .. 11
 1.1.3.5 Relative quantification ... 11
 1.1.4 Limitations of PCR based studies .. 11
 1.1.4.1 Survival of DNA or RNA within the root canal system 12
 1.1.4.2 Variation in prevalence .. 13
 1.1.5 The microbiology of endodontic infections 13
 1.1.5.1 Primary intraradicular infections ... 13
 1.1.5.1.1 The number of species per canal 13
 1.1.5.1.2 The most common species found in primary intraradicular infections ... 14
 1.1.5.1.3 Expanding the list of endodontic microbiota 14
 1.1.5.2 Persistent/secondary endodontic infections 14
 1.1.5.2.1 The number of species per canal 15
 1.1.5.2.2 The dominance of Gram-positive species 15
1.1.6 Three bacteria of importance in endodontic infections

1.1.6.1 Enterococcus faecalis

1.1.6.1.1 The role of Enterococcus faecalis in persistent/secondary infections

1.1.6.1.2 Survival and virulence factors

1.1.6.2 Streptococcus sanguinis

1.1.6.3 Fusobacterium nucleatum

1.1.7 Biofilms

1.1.7.1 Biofilm formation

1.1.7.2 The increased protection of bacteria in a biofilm

1.2 Endodontic treatment

1.2.1 Mechanical instrumentation

1.2.1.1 The limitations of instrumentation due to the root canal anatomy

1.2.2 Irrigation

1.2.2.1 Sodium hypochlorite

1.2.2.1.1 Tissue dissolving capabilities and antibacterial action

1.2.2.2 Irrigation dynamics

1.3 Ultrasonic activated irrigation

1.3.1 Acoustic microstreaming and acoustic cavitation

1.3.2 Dissolution of organic matter

1.3.3 Removal of debris

1.3.4 Curved canals

1.3.5 Smear layer removal

1.3.6 Biofilm removal

1.4 Laser activated irrigation

1.4.1 Laser activated irrigation definitions

1.4.2 Cavitation and its mechanism of action in the root canal

1.4.3 Types of lasers

1.4.4 Laser power setting

1.4.5 Laser fibres

1.4.6 Irrigants

1.4.7 Smear layer removal

1.4.8 Debris removal

1.4.9 The efficacy of laser activated irrigation

1.5 Rationale of this study
2 Materials and Methods ... 53
2.1 Tooth collection and storage ... 53
2.2 Root preparation ... 53
2.3 Determination of root canal configuration 54
2.4 Radiographic determination of root canal angle 54
2.5 The flow cell .. 56
2.6 Allocation and installation of tooth roots to the flow cells 57
2.7 Sterilisation of the flow cell .. 58
2.8 Experimental apparatus ... 58
2.9 Bacterial strains ... 59
2.10 Inoculation of the flow cell and biofilm growth 60
2.11 Disassembly of the flow cell and preparation for endodontic treatment of tooth roots ... 61
2.12 Allocation of tooth roots to the treatment groups 62
2.13 Treatment protocols .. 63
2.14 Crushed tooth sample preparation ... 65
2.15 Sample separation and volume standardization 66
2.16 Cellular viability ... 66
2.17 Sample preparation for ultra-low temperature freezing 67
2.18 DNA extraction ... 68
2.19 Preparation of bacteria stock solutions used for qPCR verification assays ... 69
2.20 Preparation of DNA stock solutions used for qPCR verification assays ... 69
2.21 Calculating 16S rRNA gene copy number in DNA stock solutions ... 70
2.22 Calculating 16S rRNA gene copy number in the mixed species stock solutions ... 70
2.23 Primer optimisation ... 71
2.24 Quantitative PCR conditions ... 72
2.25 Construction of the mixed species standard curve 72
2.26 Standardisation of qPCR runs and samples 73
2.27 Determining 16S rRNA gene copy and bacteria cell number in treatment group samples ... 73
2.28 SEM analysis .. 73
2.29 Statistics ... 75
3 Results ... 76
3.1 Primer optimisation ... 76
3.2 Standard curve analysis ... 76
3.3 Treatment group 16S rRNA gene copy number.. 76
3.4 Flow cell analysis .. 77
3.5 Descriptive statistics .. 77
3.6 Linear mixed-effects models .. 78
 3.6.1 Model 1: Unadjusted linear mixed-effects model of treatment group versus CFU/mL ... 78
 3.6.1.1 Analysis of treatment groups .. 78
 3.6.2 Model 2: Adjusted linear mixed-effects model of treatment group versus CFU/mL ... 79
 3.6.2.1 Analysis of treatment groups ... 79
 3.6.2.2 Analysis of position in flow cell, foramen type and curvature type 80
 3.6.3 Model 3: Unadjusted linear mixed-effects model of treatment group versus cells/mL ... 80
 3.6.3.1 Analysis of treatment groups ... 81
 3.6.4 Model 4: Adjusted linear mixed-effects model of treatment group versus cells/mL ... 81
 3.6.4.1 Analysis of treatment groups ... 82
 3.6.4.2 Analysis of position in flow cell, foramen type and curvature type 82
3.7 SEM – qualitative analysis .. 83
 3.7.1 No treatment ... 83
 3.7.2 Saline standard irrigation ... 84
 3.7.3 Ultrasonic activated irrigation .. 85
 3.7.4 Laser activated irrigation 0.5 W ... 86
 3.7.5 Laser activated irrigation 0.75 W ... 87

4 Discussion... 89
 4.1 Flow cell and biofilm growth ... 89
 4.2 Bacterial penetration of dentine tubules ... 89
 4.3 SEM sectioning and bacterial recovery ... 90
 4.4 Contamination of flow cell D and flow cell layout limitations 91
 4.5 Quantification limitations .. 92
 4.6 Laser power setting and activation time ... 93
 4.7 Clinical relevance of the initial preparation and the chemomechanical preparation of the teeth .. 94
 4.8 The efficacy of the treatment protocols as determined by culturing methods 95
 4.9 Canal curvature and its impact on treatment efficacy .. 99
 4.10 The efficacy of the treatment protocols as determined by qPCR 100
Table of Figures

Figure 1. Images from Matsumoto *et al.* (2011). Laser induced cavitation and implosion. ... 41

Figure 2. Radiographic image showing three mandibular molar mesial roots, each with a size 15 K-file and Hedstrom file in separate canals... 56

Figure 3. Sterilised flow cell containing 24 tooth roots, sealed in place with medium and light body impression material... 57

Figure 4. Experimental apparatus. ... 59

Figure 5. Digital photographs of three Gram stained slides to check the purity of broth cultures before inoculation of the flow cell.. 60

Figure 6. Flow cell upper chamber as seen through the Perspex viewing plate four weeks after inoculation with bacteria. ... 61

Figure 7. Tooth crushing device. ... 65

Figure 8. Screenshot image of the software program “OpenCFU”. 67

Figure 9. Longitudinally split tooth root (Group 4: LAI 0.5 W) prepared for SEM imaging. ... 74

Figure 10. SEM image of the 4 week biofilm within the root canal of the no treatment group (5,000 x magnification). ... 83

Figure 11. SEM image of the root canal surface in the no treatment group (5,000 x magnification). ... 83

Figure 12. SEM image of the root canal surface following mechanical preparation and saline standard irrigation (5,000 x magnification). ... 84

Figure 13. SEM image of the root canal surface following mechanical preparation and saline standard irrigation (5,000 x magnification). ... 84

Figure 14. SEM image of the root canal surface following chemomechanical preparation and ultrasonic activated irrigation with 4% NaOCl and 15% EDTAC (5,000 x magnification). ... 85

Figure 15. SEM image of the root canal surface following chemomechanical preparation and ultrasonic activated irrigation with 4% NaOCl and 15% EDTAC (5,000 x magnification). ... 85

Figure 16. SEM image of the root canal surface following chemomechanical preparation and laser activated irrigation 0.5 W with 4% NaOCl and 15% EDTAC (5,000 x magnification). ... 86

Figure 17. SEM image of the root canal surface following chemomechanical preparation and laser activated irrigation 0.5 W with 4% NaOCl and 15% EDTAC (5,000 x magnification). ... 86

Figure 18. SEM image of the root canal surface following chemomechanical preparation and laser activated irrigation 0.75 W with 4% NaOCl and 15% EDTAC (5,000 x magnification). ... 87

Figure 19. SEM image of the root canal surface following chemomechanical
preparation and laser activated irrigation 0.75 W with 4% NaOCl and 15% EDTAC (5,000 x magnification). ... 87

Figure 20. Schematic diagrams of tooth root positions for flow cells A-D............ 106

Figure 21. Amplification profile of the primer validation assay. 107

Figure 22. Primer concentration optimisation. ... 108

Figure 23. Melting curve analysis for the primer validation assay............................. 109

Figure 24. Standard curve for mixed species qPCR. .. 109

Figure 25. Amplification profile for the mixed species qPCR standard curve.......... 111

Figure 26. Melting curve analysis for the mixed species standard curve.................. 111
Table of Tables

Table 1. A summary of the number of teeth in each treatment group from the four flow cells (A, B, C, D). ... 63

Table 2. Theoretical determination of the number of 16S rRNA gene copies in 5 ng/µL of each stock solution... 70

Table 3. Descriptive statistics and percentage kill for each treatment group as quantified using culturing methods (CFU/mL). .. 77

Table 4. Descriptive statistics and percentage bioburden reduction for each treatment group as quantified using qPCR methods (cells/mL). ... 78

Table 5. Model 1: Unadjusted linear mixed-effects model of treatment group versus CFU/mL.. 79

Table 6. Model 2: Adjusted linear mixed-effects model of treatment group versus CFU/mL ... 80

Table 7. Model 3: Unadjusted linear mixed-effects model of treatment group versus cells/mL... 81

Table 8. Model 4: Adjusted linear mixed-effects model of treatment group versus cells/mL ... 82

Table 9. Allocation of tooth roots to treatment groups for each flow cell. 105

Table 10. Primer validation assay data. .. 107

Table 11. Primer concentration optimisation data. .. 108

Table 12. Data for the mixed species qPCR standard curve. 110

Table 13. Flow cell A data. .. 112

Table 14. Flow cell B data. .. 113

Table 15. Flow cell C data. .. 114

Table 16. Flow cell D data. .. 115
Abstract

Aim
To compare the efficacy of Er,Cr:YSGG laser and ultrasonic activated irrigation on eradicating a biofilm grown in the mesial roots of human mandibular molars.

Methods
A biofilm containing *Enterococcus faecalis*, *Streptococcus sanguinis* and *Fusobacterium nucleatum* was grown over 4 weeks in the mesial root canals of decoronated human mandibular molar teeth. Following removal from the flow cell, control roots (n=5) received no further treatment. The remaining tooth roots were chemomechanically prepared using different irrigating protocols: saline standard irrigation (Saline SI; n=15); 4% NaOCl and 15% EDTAC with ultrasonic activated irrigation (UAI; n=18); 4% NaOCl and 15% EDTAC with laser activated irrigation using power settings 0.5 W (LAI 0.5 W; n=18) or 0.75 W (LAI 0.75 W; n=10). Following treatment and crushing, bacteria were quantified by culturing (CFU/mL) and quantitative real-time PCR (qPCR). One tooth from each group was subjected to SEM analysis.

Results
Quantification by culturing revealed significant differences between controls and all other treatment groups. Significant differences were found between Saline SI and UAI, Saline SI and LAI 0.5 W and also between LAI 0.5 W and LAI 0.75 W. No significant differences were found between Saline SI and LAI 0.75 W or between UAI and LAI 0.5 W or LAI 0.75 W.

From qPCR results, significant differences were found between controls and all other treatment groups. No statistically significant differences were found between Saline SI and UAI, LAI 0.5 W or LAI 0.75 W.

Conclusions
Both culture and molecular techniques showed that mechanical preparation significantly reduces bacteria from the root canals of lower molar mesial roots. Further reductions were achieved by irrigating with 4% NaOCl and 15% EDTAC UAI or 4% NaOCl and 15% EDTAC LAI. No significant reductions in bacterial number were found between UAI and LAI protocols.
Declaration

I, Jonathan Race, certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of The University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Declared by: Jonathan Race Date: 03/03/2015
Acknowledgements

Some things in life feel insurmountable until completed. Only by combining persistent hard work with the help and encouragement of others can those things be overcome. Thank you to all who have helped me overcome.

I would like to sincerely thank Associate Professor Peter Cathro for your belief in me. You have provided me with the knowledge and skills to succeed and have been a constant source of encouragement. I could not have asked for a better supervisor and teacher.

Thank you to my research supervisor, Dr Peter Zilm for always being available to discuss the challenges I encountered in my research. Thank you for your microbiological knowledge and invaluable assistance in the scientific writing process.

Thank you to Professor Geoffrey Heithersay. You have graciously given of your time and knowledge. I highly value your perspectives, vast clinical experience and wisdom.

Thank you to Associate Professor Giampiero Rossi-Fedele for your knowledge and clinical insights and allowing me the freedom to place my energies where they were most needed.

Thank you to Ceilidh Marchant for your invaluable help and PCR problem solving abilities. Thank you to Lynn Waterhouse at Adelaide Microscopy Centre. Thank you to Suzanne Edwards, Discipline of Public Health at The University of Adelaide, for providing the statistical analysis.

Thank you to my wonderful wife Alex. I thank you for your love. You have been my reassuring strength and a constant source of encouragement. Your love for me, our family and our God is what truly matters in life – I love you. To my gorgeous daughter Matilda, I love your big “cubbles”. I look forward to seeing you continually explore what life has to offer.

Thank you to my DClinDent colleagues Drs Jonathan Christo, Elizabeth Lou and Suzy Wang. You have provided me with friendship throughout the course. I wish you all the...
best in your lives and careers ahead.

Thank you to the Australian Society of Endodontology for their generous financial support.

Finally and most importantly of all, I would like to thank and acknowledge the Lord Jesus Christ, my God, for all things. For in Him is where all knowledge begins and finds its ultimate meaning and purpose.